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3D Representations

* Point clouds

* Parametric surfaces
* Implicit surfaces

* Triangular meshes

e Part-based models



Point Cloud




Parametric surfaces

e

Bspline curve

Eck and Hoppe’ 96



Implicit Surfaces

Image from http://paulbourke.net/geometry/implicitsurf/implicitsurf4.gif



Triangular Mesh




Scene Graph

Scene Graph: rootNode
MNode
i i_ ﬁ 4
Ceometry e : :

Image from https://gamedev.stackexchange.com/tags/scene-graph/info



What to Learn?

* Pros and cons of each representation

e Conversions between different
representations



This Lecture

* Implicit surface
* Point cloud -> Implicit Surface

* Implicit surface -> triangular mesh



Implicit Surfaces



What is implicit surface?

* A sphere x?+ y?+z?=radius? is an implicit
surface




What is implicit surface?

* |Implicit surfaces are two-dimensional,
geometric shapes that exist in three
dimensional space

— Defined in R3
— 2D Manifold if no singular points
— A surface embedded in R3



Examples of implicit surfaces

Metaball Radial Basis Function
[Carr et al. 01]



Definition of implicit surface

 Definition
{p=(x,,2): ip)=0, peR’}

* When fis algebraic function, i.e., polynomial
function
— Note that f and c*f specify the same curve

— Algebraic distance: the value of f(p) is the
approximation of distance from p to the algebraic
surface f=0



Definition of implicit surface

* Regular point p on the surface

of of oOf
ox’ Oy’ 82) 7

0

Vfp)=(

* Consider cone z?=x%+y?
— (0,0,0) is not a regular point




Implicit function theorem

Let : R”™™ — R™ be a continuously differentiable function, and let R”*™ have coordinates (x, y). Fix a
point (a, b) = (a4, ..., an, b1, ..., bm) with f(a, b) = 0, where 0 € R" is the zero vector. If the Jacobian matrix
Jr.y(a, b) =[(0f; / Ovj)(a, b)] is invertible, then there exists an open set U of R" containing a, and such

that there exists a unique continuously differentiable function g: U — R" such that

g(a)="h
and
f(x,9(x)) =0forallx € U.

Moreover, the partial derivatives of g in U are given by

() = = 3 U e 00) s -, 0).

1

No singular points then an implicit surface is a manifold

From https://en.wikipedia.org/wiki/Implicit_function_theorem



Jordan-Brouwer Separation Theorem

* Any compact, connected hyper-surface X in R" will
divide R" into two connected regions: the “outside”

D, and the “inside” D,. Furthermore, D, is itself a
compact manifold with boundary X

@ K/}/



Point Cloud -> Implicit



Implicits from point samples

« Constraints define inside o

and outside ® o

« Simple approach (Turk, *

O’'Brien) ® - ¢
— Sprinkle additional e -

information manually ®

— Make additional ®
information soft T e o
constraints

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf



Implicits from point samples

« Use normal information "\ .[
N o«
 Normals could be o o
computed from scan
« Or, normals have to be —* -
estimated A N

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf



Estimating normals

 Normal orientation
(Implicits are signed)
— Use inside/outside (
information from scan /
q

* Normal direction
by fitting a tangent
— LS fit to nearest neighbors
— Weighted LS fit

— MLS fit ‘(‘

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf



Estimating normals

« General fitting prozblem
ﬁn} - (q-p,n) O(qa—p,) >

— Problem is non-linear /q
because n is constrained
to unit sphere

7

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf



Estimating normals

* The constrained minimization problem
: 2
min 2 (q-p,n) ¢,
nji=1"

IS solved by the eigenvector corresponding to
the smallest eigenvalue of the following co-
variance matrix

2.@-p)(@-p) 9

which is constructed as a sum of weighted outer
products.
http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf



Normal orientation [Hoppe et al. 92]

(b) Oriented tangent planes (Tp(x;))

(a) Traversal order of orientation propagation

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf



Implicits from point samples

« Compute non-zero 2 " +0-5I 1.5
anchors in the G ® o
distance field

« Compute distances at| . o
specific points 1 = +1
— Vertices, mid-points, *—

etc. in a spatial A
subdivision /0 t .
+2.5 +0.5 +2

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf



Computing Implicits

« Given N points and normals P, 1,
and constraints f(pl,)z (),f(cl_): d

* Let Py =€
« An RBF approximation

f(x)= Zwﬂ(l

leads to a system of linear equations

P, — XH)

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf



Computing Implicits

 Practical problems: N > 10000
 Matrix solution becomes difficult

* Two solutions
— Sparse matrices allow iterative solution
— Smaller number of RBFs

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf



Computing Implicits

. Sparse matrices | 0  #e-n.[) alp-p)
9(”1’1 _PUH) &(0) ‘9(”131 _PzH)
op-pl) op.-pl) O
\ : Y

—Needed: d>c—>r(d)=0,r'(c)=0

~_

|
| | |
C C

— Compactly supported RBFs

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf



Computing Implicits

« Smaller number of RBFs

» Greedy approach (Carr et al.)
— Start with random small subset

— Add RBFs where approximation quality is not
sufficient

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf



RBF Implicits - Results

* Images courtesy Greg Turk

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf



Defining point-set surfaces [Amenta et al. 05]

Defining Point-5et Surfaces

Mina Amenta Yong J. Kil

Center for Image Processing and Integrated Computing, U € Davis




Poisson surface reconstruction [Kazhdan et al.
06]
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Poisson surface reconstruction [Kazhdan et al.
06]

Define the vector field:

V(xm*F)(q 2/ Fp (p)dp
sES

—

~ 2 | Ps| s p(q) s.N = V(q)

sES

Solve the Poisson equation:

Ay =V-V



Poisson surface reconstruction [Kazhdan et al.
06]

Poisson Surface
Reconstruction



Implicit Surface -> Mesh



Contouring (On A Grid)

* |nput
— A grid where each grid
point (pixel or voxel) has a
value (color)

— An iso-value (threshold)

* Qutput

— A closed, manifold, non-
intersecting polyline (2D) or
mesh (3D) that separates
grid points above the iso-
value from those that are
below the iso-value.

Grid point
L (pixel)

<— Grid edge

— Grid cell
]

Iso-value = []

Slide Credit: Tao Ju



Contouring (On A Grid)

* |nput

— A grid where each grid
point (pixel or voxel) has a
value (color)

— An iso-value (threshold)

* Qutput

— Equivalently, we extract the
zero-contour (separating
negative from positive) Iso-value = 0
after su btracting the iso- M negative [ positive
value from the grid points

Slide Credit: Tao Ju



Algorithms

* Primal methods

— Marching Squares (2D),
Marching Cubes (3D)

— Placing vertices on grid edges

* Dual methods
— Dual Contouring (2D,3D)
— Placing vertices in grid cells

Slide Credit: Tao Ju



Marching Squares (2D)

* For each grid cell with a
sign change

— Create one vertex on each
grid edge with a sign change

— Connect vertices by lines

Slide Credit: Tao Ju



Marching Squares (2D)

* For each grid cell with a
sign change L s L

=

— Create one vertex on each N
grid edge with a sign change

— Connect vertices by lines

Slide Credit: Tao Ju



Marching Squares (2D)

* Creating vertices: linear interpolation

— Assuming the underlying, continuous function is
linear on the grid edge

— Linearly interpolate the positions of the two grid
points f,

f t=

t 1. fo— 1,

., — o — X0y X=X, + (X, — X,)
{Xo:Yo} | {x.y} Y=Yt t(yl - yo)

Slide Credit: Tao Ju




Marching Squares (2D)

* For each grid cell with a
sign change L s L

— Create one vertex on each N
= grid edge with a sign change

— Connect vertices by lines

Slide Credit: Tao Ju



Marching Squares (2D)

* Connecting vertices by lines .
— Lines shouldn’t intersect 4 Key:0001
— Each vertex is used once i g Data: {24}
* So that it will be used exactly twice
by the two cells incident on the edge 4
* Two approaches n -

— Do a walk around the grid cell
» Connect consecutive pair of vertices

— Or, using a pre-computed look-up

O— ) Key:0011
Data: {{3,4}}

il [
table = -
e 274=16 sign configurations [ ] H
* For each sign configuration, it stores Key: 1001
the indices of the grid edges whose |
vertices make up the lines. ks
N [ ]

Slide Credit: Tao Ju



Marching Cubes (3D)

* For each grid cell with a
sign change
— Create one vertex on each
grid edge with a sign change
(using linear interpolation)

— Connect vertices into
triangles

Slide Credit: Tao Ju



Marching Cubes (3D)

* For each grid cell with a
sign change
— Create one vertex on each
grid edge with a sign change
—>  (using linear interpolation)

— Connect vertices into
triangles

Slide Credit: Tao Ju



Marching Cubes (3D)

Connecting vertices by triangles
Triangles shouldn’t intersect
To be a closed manifold:

Each vertex used by a triangle “fan”

Each mesh edge used by 2 triangles (if
inside grid cell) or 1 triangle (if on a grid
face)

Slide Credit: Tao Ju



Marching Cubes (3D)

Connecting vertices by triangles
Triangles shouldn’t intersect
To be a closed manifold:

Each vertex used by a triangle “fan”

Each mesh edge used by 2 triangles (if
inside grid cell) or 1 triangle (if on a grid
face)

Slide Credit: Tao Ju



Marching Cubes (3D)

* Connecting vertices by triangles
— Triangles shouldn’t intersect
— To be a closed manifold:

e Each vertex used by a triangle “fan”

e Each mesh edge used by 2 triangles
(if inside grid cell) or 1 triangle (if on
a grid face)

Open mesh: each magenta
edge is shared by one triangle

Slide Credit: Tao Ju



Marching Cubes (3D)

 Connecting vertices by triangles
— Triangles shouldn’t intersect

— To be a closed manifold:

* Each vertex used by a triangle
Ilfan”

e Each mesh edge used by 2
triangles (if inside grid cell) or 1
triangle (if on a grid face)

* Each mesh edge on the grid face
is shared between adjacent cells

Closed mesh: each edge is
shared by two triangles

Slide Credit: Tao Ju



Marching Cubes (3D)

 Connecting vertices by triangles
— Triangles shouldn’t intersect

— To be a closed manifold:

* Each vertex used by a triangle
Ilfan”

e Each mesh edge used by 2
triangles (if inside grid cell) or 1
triangle (if on a grid face)

* Each mesh edge on the grid face
is shared between adjacent cells

* Look-up table
— 2/8=256 sign configurations

— For each sign configuration, it Sign:“00010100’
stores indices of the grid edges Triangles: {{2,8,11},{4,7,10}}
whose vertices make up the
triangles

Slide Credit: Tao Ju



Lookup Table

iiﬂgﬂ@@

Slide Credit: Tao Ju



Two Approaches

Computational Geometry
Implicit Surface -> Contouring Based




