
CS395T Lecture 18: 3D Representations

Qixing Huang

Oct. 31th 2018

3D Representations

• Point clouds

• Parametric surfaces

• Implicit surfaces

• Triangular meshes

• Part-based models

Point Cloud

Parametric surfaces

Implicit Surfaces

Triangular Mesh

Scene Graph

What to Learn?

• Pros and cons of each representation

• Conversions between different
representations

This Lecture

• Implicit surface

• Point cloud -> Implicit Surface

• Implicit surface -> triangular mesh

Implicit Surfaces

What is implicit surface?

• A sphere x2 + y2 +z2 = radius2 is an implicit
surface

What is implicit surface?

• Implicit surfaces are two-dimensional,
geometric shapes that exist in three
dimensional space

– Defined in R3

– 2D Manifold if no singular points

– A surface embedded in R3

Examples of implicit surfaces

Metaball Radial Basis Function
[Carr et al. 01]

Definition of implicit surface

• Definition

• When f is algebraic function, i.e., polynomial
function
– Note that f and c*f specify the same curve

– Algebraic distance: the value of f(p) is the
approximation of distance from p to the algebraic
surface f=0

Definition of implicit surface

• Regular point p on the surface

• Consider cone z2=x2+y2

– (0,0,0) is not a regular point

Implicit function theorem

From https://en.wikipedia.org/wiki/Implicit_function_theorem

No singular points then an implicit surface is a manifold

Jordan-Brouwer Separation Theorem

• Any compact, connected hyper-surface X in Rn will
divide Rn into two connected regions: the “outside”
D0 and the “inside” D1. Furthermore, D1 is itself a
compact manifold with boundary X

Point Cloud -> Implicit

Implicits from point samples

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

Implicits from point samples

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

Estimating normals

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

Estimating normals

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

Estimating normals

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

Normal orientation [Hoppe et al. 92]

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

Implicits from point samples

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

Computing Implicits

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

Computing Implicits

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

Computing Implicits

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

Computing Implicits

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

RBF Implicits - Results

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

Defining point-set surfaces [Amenta et al. 05]

Poisson surface reconstruction [Kazhdan et al.

06]

Poisson surface reconstruction [Kazhdan et al.

06]

Define the vector field:

Solve the Poisson equation:

Poisson surface reconstruction [Kazhdan et al.

06]

VRIP Poisson Surface
Reconstruction

Implicit Surface -> Mesh

Contouring (On A Grid)

• Input
– A grid where each grid

point (pixel or voxel) has a
value (color)

– An iso-value (threshold)

• Output
– A closed, manifold, non-

intersecting polyline (2D) or
mesh (3D) that separates
grid points above the iso-
value from those that are
below the iso-value.

Iso-value =

Grid point

(pixel)

Grid edge

Grid cell

Slide Credit: Tao Ju

Contouring (On A Grid)

Iso-value = 0

negative positive

• Input
– A grid where each grid

point (pixel or voxel) has a
value (color)

– An iso-value (threshold)

• Output
– Equivalently, we extract the

zero-contour (separating
negative from positive)
after subtracting the iso-
value from the grid points

Slide Credit: Tao Ju

Algorithms

• Primal methods
– Marching Squares (2D),

Marching Cubes (3D)

– Placing vertices on grid edges

• Dual methods

– Dual Contouring (2D,3D)

– Placing vertices in grid cells

Slide Credit: Tao Ju

Marching Squares (2D)

• For each grid cell with a
sign change

– Create one vertex on each
grid edge with a sign change

– Connect vertices by lines

Slide Credit: Tao Ju

Marching Squares (2D)

• For each grid cell with a
sign change

– Create one vertex on each
grid edge with a sign change

– Connect vertices by lines

Slide Credit: Tao Ju

Marching Squares (2D)

• Creating vertices: linear interpolation

– Assuming the underlying, continuous function is
linear on the grid edge

– Linearly interpolate the positions of the two grid
points

{x0,y0}
{x1,y1 }

{x,y})(

)(

010

010

10

0

yytyy

xxtxx

ff

f
t

−+=

−+=

−
=

t 1-t
f

f0

f1

0

+

-

<0

>0

Slide Credit: Tao Ju

Marching Squares (2D)

• For each grid cell with a
sign change

– Create one vertex on each
grid edge with a sign change

– Connect vertices by lines

Slide Credit: Tao Ju

• Connecting vertices by lines
– Lines shouldn’t intersect
– Each vertex is used once

• So that it will be used exactly twice
by the two cells incident on the edge

• Two approaches
– Do a walk around the grid cell

• Connect consecutive pair of vertices

– Or, using a pre-computed look-up
table

• 2^4=16 sign configurations
• For each sign configuration, it stores

the indices of the grid edges whose
vertices make up the lines.

Marching Squares (2D)

1 2

3 4

1

3

4

2

Key: 0 0 0 1

Data: {{2,4}}

Key: 0 0 1 1

Data: {{3,4}}

Key: 1 0 0 1

Data: {{1,3},

{2,4}}

Slide Credit: Tao Ju

Marching Cubes (3D)

• For each grid cell with a
sign change

– Create one vertex on each
grid edge with a sign change
(using linear interpolation)

– Connect vertices into
triangles

Slide Credit: Tao Ju

Marching Cubes (3D)

• For each grid cell with a
sign change

– Create one vertex on each
grid edge with a sign change
(using linear interpolation)

– Connect vertices into
triangles

Slide Credit: Tao Ju

Marching Cubes (3D)

• Connecting vertices by triangles

– Triangles shouldn’t intersect

– To be a closed manifold:

• Each vertex used by a triangle “fan”

• Each mesh edge used by 2 triangles (if
inside grid cell) or 1 triangle (if on a grid
face)

Slide Credit: Tao Ju

Marching Cubes (3D)

• Connecting vertices by triangles

– Triangles shouldn’t intersect

– To be a closed manifold:

• Each vertex used by a triangle “fan”

• Each mesh edge used by 2 triangles (if
inside grid cell) or 1 triangle (if on a grid
face)

Slide Credit: Tao Ju

Marching Cubes (3D)

• Connecting vertices by triangles
– Triangles shouldn’t intersect
– To be a closed manifold:

• Each vertex used by a triangle “fan”
• Each mesh edge used by 2 triangles

(if inside grid cell) or 1 triangle (if on
a grid face)

Open mesh: each magenta

edge is shared by one triangle

Slide Credit: Tao Ju

Marching Cubes (3D)

• Connecting vertices by triangles
– Triangles shouldn’t intersect
– To be a closed manifold:

• Each vertex used by a triangle
“fan”

• Each mesh edge used by 2
triangles (if inside grid cell) or 1
triangle (if on a grid face)

• Each mesh edge on the grid face
is shared between adjacent cells

Closed mesh: each edge is

shared by two triangles

Slide Credit: Tao Ju

Marching Cubes (3D)

• Connecting vertices by triangles
– Triangles shouldn’t intersect
– To be a closed manifold:

• Each vertex used by a triangle
“fan”

• Each mesh edge used by 2
triangles (if inside grid cell) or 1
triangle (if on a grid face)

• Each mesh edge on the grid face
is shared between adjacent cells

• Look-up table
– 2^8=256 sign configurations
– For each sign configuration, it

stores indices of the grid edges
whose vertices make up the
triangles

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9

10

11

12

Sign: “0 0 0 1 0 1 0 0”

Triangles: {{2,8,11},{4,7,10}}

Slide Credit: Tao Ju

Lookup Table

Slide Credit: Tao Ju

Two Approaches

Computational Geometry
BasedImplicit Surface -> Contouring

