GAMES 3D Reconstruction & Understanding Lecture I

Qixing Huang July 9th 2021

MISC

- Instructor: Qixing Huang (UT Austin)
- Time: Beijing Time 10:00 am
- Send me emails for questions (<u>huangqx@cs.utexas.edu</u>)
- Webpage: https://www.cs.utexas.edu/~huangqx/

Introduction

Geometry Processing Pipeline

Reconstruction

Processing & Analysis

Printing

3D Vision

Recovering the Underlying 3D structures from Images

Structure-from-motion

Multi-view Stereo

Pose Estimation

RGB images

RGB-D images

Large-scale online repositories

3D Warehouse

Yobi3D

3DFront

3M models in more than 4K categories

50k Indoor Scenes

3D Vision (2015-)

2D Vision versus 3D Vision

2D Vision

3D Vision

Classification

Segmentation

Detection

3D Representations

Volumetric

Triangular mesh

Point cloud

Multi-view

Scene-graph

Semantic segments

Applications

3D mapping

Semantic 3D model of Enschede, Netherlands

Semantic 3D model of Dortmund, Germany

Semantic 3D model of Zurich, Switzerland

Semantic 3D model of a synthetic city [Cabezas et al. 2015]

https://prs.igp.ethz.ch/research/current_projects/large-scale_reconstruction.html

Performance capture

https://www.engadget.com/2015/03/08/using-the-kinect-for-motion-capture/

Robotics

[Lenz et al. 15]

Autonomous driving

[Yurtsever et al. 19]

https://arxiv.org/pdf/1906.05113.pdf

Reverse engineering

Interdisciplinary field

Topics to be covered

Topic I: 3D Reconstruction

- Scanning
- Scan registration
- Surface reconstruction
- Structure-from-motion
- Multi-view stereo
- Map synchronization

Topic I: 3D Reconstruction

- Scanning
- Scan registration
- Surface reconstruction
- Structure-from-motion
- Multi-view stereo
- Map synchronization

Textbook

INTERDISCIPLINARY APPLIED MATHEMATICS

IMAGING, VISION, AND GRAPHICS

An Invitation to 3-D Vision

From Images to Geometric Models

Yi Ma Stefano Soatto Jana Kosecka Shankar S. Sastry

Topic II: How to represent 3D Data

Triangular mesh

Part-based models

Implicit surface

Light Field Representation

Point cloud

Conversion between different representations

Implicit -> mesh (Marching Cube)

Conversion between different representations

• Pointcloud -> Implicit -> Mesh

[Kazhdan et al. 06]

Two recommended books

Polygon Mesh Processing

Mario Botsch Leif Kobbelt Mark Pauly Pierre Alliez Bruno Lévy

Topic III: How to understand 3D Data

 Design algorithms to extract semantic information from one or a collection of shapes

We focus on the basics

Recent trends in Al

- Deep reinforcement learning
- Robot learning
 Manipulation
- Autonomous driving
- Visual navigation
- Fairness in machine learning

Building blocks

- Localization
 - Registration
- Recognition under different representations

- Matching
 - Linking objects from different domains

Mathematics is important

Geometry

• Linear algebra

• Perspective geometry

• Differential geometry/topology

Numerical Optimization is Important

Optimization problems

• We will see time and time again:

Translate

into P: $\min_{x \in D} f(x)$

Real problem

Optimization problem

Examples in Vision/Robotics/NLP /ML/Graphics/ Example of the contrary?

This course: how to formulate P, how to solve P, and what are the guarantees

Many similar domains: Graphics/Robotics/Vision

Why bother how to solve P and what are the guarantees

• There are plenty of optimization softwares

- Almost all algorithms are data-dependent and can perform better or worse on different problems and data sets
- In many cases, studying P leads to new algorithms and... research papers

Categories of optimization models

• Linear vs. Nonlinear

Convex vs. Nonconvex

• Continuous vs. Discrete

• Deterministic vs. Stochastic

We see all of them in various 3D Vision tasks

Example 1: Bundle adjustment

Example 2: Surface fitting

Important in reverse engineering

[Flory and Hofer' 10]

A surface fitting example. (Left) The initial setup. (Right) The unsigned distance between point cloud (grey) and surface (blue) is iteratively minimized. The approximating surface is deformed until it fits the point cloud.

Example 3: MRF Inference

Unary terms Pairwise terms (compatability of data with label w) (compatability of neighboring labels)

The literature reflects almost all advances in optimization during the past decade:

Trends in optimization

Non-linear optimization Convex optimization Non-convex optimization

Trends in optimization

Second-order methods First-order methods Distributed optimization

Homework

Assignment 1: dense reconstruction

Multi-view stereo [Furukawa and Ponce]

Geometry reconstruction

Assignment 2: primitive extraction

Slippage analysis [Gelfand and Guibas' 04]

Deep Primitive [Li et al. 04]

Optional final project

- Image-based modeling from internet images
 - A few images
 - Non-identical objects
 - Symmetries
 - Relative pose
 - Machine learning

- Single-view reconstruction from real images
 - 3D Representation?
 - Volumetric/point cloud/part-based
 - Network architecture
 - Domain adaptation
 - Depth/semantic labels
 - Human
 - Hand

- Neural networks for 3D representations
 - Implicit surface
 - Multi-view
 - Point cloud
 - Mesh?
 - Scene graph?
 - Physics?
 - Hybrid?

[Wu et al. 16]

- Geometry understanding
 - Task
 - Normal/Curvature
 - Feature extraction
 - Segmentation
 - Part/object decomposition
 - Correspondence
 - Affordance
 - Data
 - Thousands of categories

- Reconstruction from hybrid sensors
 - Low-res depth scan+ High-res stereo
 - Depth + shading
 - Web cameras + internet images
 - 360 images + internet images
 - Street views + images from drones

- Robot 3D Vision
 - Salient views
 - Next-best-view
 - Robot grasping
 - Human-object interaction
 - Model-based View planning
 - Active vision
 - Policies for exploration

- Structure recovery via optimization
 - 2D human pose -> 3D human pose
 - Structure from symmetry
 - Structure from template
 - Shape from shading

- Local/global convergence
- Exact recovery condition

[Zhou et al. 16]

- Map synchronization
 - Multiview structure from motion
 - Pose
 - Pose + Point cloud
 - Geometric alignment of point clouds
 - Pose
 - Pose + shape
 - Global/Local convergence
 - Exact recovery condition

- Uncertainties
 - Human pose estimation
 - Depth prediction
 - Camera poses in MVSFM
 - Geometry reconstruction
 - Geometry understanding
 - Quantification/Visualization

Scanning

Slide credit: Szymon Rusinkiewicz

Geometry Reconstruction Pipeline

Depth Sensing

Touch Probes

 Jointed arms with angular encoders

 Return position, orientation of tip

Faro Arm – Faro Technologies, Inc.

Pulsed Time of Flight

 Basic idea: send out pulse of light (usually laser), time how long it takes to return

Triangulation

Depth from Stereo Uses Parallax

 The Kinect analyzes the shift of the speckle pattern by projecting from one location and observing from another

Triangulation: Moving the Camera and Illumination

• Moving independently leads to problems with focus, resolution

 Most scanners mount camera and light source rigidly, move them as a unit

Triangulation: Moving the Camera and Illumination

Triangulation: Extending to 3D

- Possibility #1: add another mirror (flying spot)
- Possibility #2: project a stripe, not a dot

Pattern Design

Structured Light General Principle

Zhang et al, 3DPVT (2002)

Project a known pattern onto the scene and infer depth from the deformation of that pattern

Time-Coded Light Patterns

• Assign each stripe a unique illumination code over time [Posdamer82]

Time-Coded Light Patterns

• Assign each stripe a unique illumination code over time [Posdamer82]

Binary Coding Example

Identifies the corresponding pattern stripe

Temporal vs. Spatial Continuity

- Structured-light systems make certain assumptions about the scene
- Temporal continuity assumption
 - Assume scene is static
 - Assign stripes a code over time
- Spatial continuity assumption
 - Assume scene is one object
 - Project a grid, pattern of dots, etc.

Grid Methods

- Assume exactly one continuous surface
- Count dots or grid lines
- Occlusions cause problems
- Some methods use dynamic programming

Codes Assuming Local Spatial Continuity

Codeword
Codes Assuming Local Spatial Continuity

[Zhang et al. 02]

[Ozturk et al. 03]

Kinect

Kinect combines structured light with two classic computer vision techniques: depth from focus, and depth from stereo

Figure copied from Kinect for Windows SDK Quickstarts

The Kinect uses infrared laser light, with a speckle pattern

Shpunt et al, PrimeSense patent application US 2008/0106746

Next lecture

• Registration