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Abstract

This paper introduces a robust translation synchroniza-
tion approach which takes relative directions between pairs
of images as inputs and outputs absolute image locations.
Our approach is based on a generalized eigenvalue formula-
tion, which contains edge weights in relative directions and
vertex weights in absolute image translations. We present
a rigorous stability analysis to determine how to set these
weights optimally. Specifically, optimal vertex weights are
always identical, whereas optimal edge weights depend on
the magnitudes of relative translations and variances of rel-
ative directions. These results lead to an iterative synchro-
nization procedure, which progressively removes outliers in
the inputs by adaptively adjusting the edge weights. Ex-
perimental results justify our theoretical results and show
that our approach outperforms state-of-the-art baseline ap-
proaches on both synthetic and real datasets.

1. Introduction

This paper studies the classical pose synchroniza-
tion problem of computing the absolute 6D poses
of a collection of images from pairwise relative 6D
poses along a graph of these images. A 6D pose
has a rotation component and a translation compo-
nent. Pose synchronization typically proceeds in two
phases. The first phase performs rotation synchro-
nization, which determines the absolute rotation of
each image. The resulting rotations transform the rel-
ative translations expressed in local coordinate frames
into relative translations in a global coordinate sys-
tem. The second phase then determines the absolute
translations of the input images.

As we cannot predict the absolute scale of the
underlying objects, translation synchronization is
much more challenging than rotation synchroniza-
tion. Specifically, the relative translation associated
with each pair of images is a direction that offers only
two constraints. Therefore, even though a connected

(a) Input graph of relative di-
rections. Purple points are the
camera locations. The blue ar-
rows are the input relative trans-
lations. The red arrow is an out-
lier relative prediction.

(b) Recovered global absolute
translations. Purple points are
the camera locations. Blue ar-
rows are the predicted relative
translations

Figure 1. (Left) Input graph of relative directions, in which
the color of each edge indicates the directional error. (Right)
Recovered global absolute translations, overlaid with the
ground-truth absolute translations.

graph of image pairs is sufficient for rotation synchro-
nization, translation synchronization needs more im-
age pairs. Computationally, the fundamental chal-
lenge lies in jointly estimating the scales of relative
translations and absolute translations. This challenge
also makes it difficult to obtain closed-form solutions
for translation synchronization.

In this paper, we introduce a novel translation syn-
chronization that admits a closed-form solution. Our
approach solves a generalized eigenvalue problem.
The formulation has a set of edge weights associ-
ated with the relative directions and a set of vertex
weights associated with the input images. We present
a rigorous stability analysis of this generalized eigen-
value formulation. We show that the optimal ver-
tex weights are identical, whereas the optimal edge
weights depend on the variances and magnitudes of
relative translations. Based on these results, we then
develop an iterative translation synchronization for-
mulation that adaptively adjusts the edge weights, in
which estimations of variances and magnitudes of rel-
ative translations are derived from current predicted
absolute translations. We present theoretical results
on the robust recovery conditions of our approach,



showing the robustness of our approach against cor-
rupted measurements.

We have evaluated our approach on both synthetic
and real datasets. Experimental results on synthetic
datasets justify our theoretical results. Experimen-
tal results on both synthetic and real datasets show
that our approach outperforms state-of-the-art ap-
proaches. We also present an advanced analysis to
show the effectiveness of our iterative scheme.

2. Related Work

We discuss related work in three categories, namely,
map synchronization, translation synchronization,
and spectral techniques.

2.1. Pose synchronization

Map synchronization, which generalizes pose syn-
chronization, estimates consistent maps among a col-
lection of objects from maps estimated between pairs
of objects in isolation. Maps can take different forms,
including transformations (the case of pose synchro-
nization) [5, 28, 31], point-based maps [12, 17], and
functional maps [13]. Map synchronization typically
utilizes the generic constraint that composite maps
along cycles should be equal to identify maps. In
the case of point-based maps, Huang and Guibas [11]
show the equivalence between the cycle-consistency
constraint and the positive semidefiniteness of the
matrix that encodes pairwise maps in blocks. In
fact, many state-of-the-art map synchronization ap-
proaches solve low-rank matrix recovery problems to
recover consistent maps. Optimization strategies in-
clude convex optimization [8, 11, 13, 24, 28, 31, 33],
non-convex optimization [5, 7, 14, 18, 19, 34], and
spectral techniques [1, 2, 4, 12, 16, 17, 22, 23, 26, 29, 30].
Our approach introduces a novel matrix encoding of
the directional constraints for translation synchroniza-
tion and falls into the categories of non-convex opti-
mization and spectral techniques.

2.2. Translation synchronization

Translation synchronization requires optimizing both
the scales of the directional constraints and the ab-
solute translations. Because of this, few existing ap-
proaches admit closed-form solutions. Govindu [9]
utilized the cross product and constructed a linear sys-
tem of to estimate translations. Özyesil et al. [21] pro-
posed iteratively reweighted least squares algorithm
for the least squared deviations (LUD) solver in L1

the norm of the relaxed displacement cost function.
Hand et al. [10] proposed the ShapeFit algorithm by
optimizing a convex program in the translation di-
rection. Wilson proposed 1DSfm [32] to remove out-

liers by projecting from 3d to 1d and optimize the
direction-based cost function on the remaining accu-
rate matches. Zhuang et al. [35] analyzed LUD and
ShapeFit and proposed the bilinear angle-based trans-
lation averaging algorithm (BATA) that optimizes a
relaxed direction cost function. In particular, BATA
shows that the loss based on the angle between the in-
put direction and the optimized direction is superior
to standard distance norms between directions. Our
approach also uses angles to define the loss term but
introduces a novel spectral formulation that admits a
closed-form solution.

Combining displacement and direction cost func-
tions, Lalit et al. [20] alternatively update translations
by direction and displacement-based methods. In
contrast, our approach is based on a spectral formu-
lation that admits a closed-form solution. We analyze
its stability to derive an iterative approach to robust
translation synchronization.

2.3. Spectral techniques

Our approach is motivated by the stability of eigen-
values and eigenvectors of a symmetric matrix un-
der perturbation. We refer to a survey article on this
topic [6]. Compared to convex and non-convex op-
timization formulations, spectral techniques are sim-
ple and efficient. Unlike robust low-rank matrix re-
covery, in which outliers may be unbouned, outliers
in pairwise maps have bounded norms. This fact im-
proves the robustness of applying spectral techniques
in map synchronization [3, 15, 22, 23, 25, 27]. Unlike
most prior work that studies robust recovery under
random and independent noise, this paper presents a
robustness result under adversarial noise.

3. Problem Statement and Approach
Overview

3.1. Problem Statement

Consider a connected graph G = (I, E) of n = |I| im-
age objects. Each edge (i, j) ∈ E is associated with
a measurement v

inp
ij (∥vinp

ij ∥ = 1) of the normalized
translation from Ii to Ij . Specifically, denote tgti as the
underlying ground-truth translation of Ii, we have

v
inp
ij ≈

tgti − tgtj

∥tgti − tgtj ∥
. (1)

In particular, we expect that for a subset of the edges
{(i, j)}, vinp

ij have large errors.
Translation synchronization aims at recovering ti

from v
inp
ij up to a global scale and a global translation.



3.2. Approach Overview

A fundamental challenge of translation synchroniza-
tion is that (1) is non-linear. Our approach addresses
this challenge using a generalized spectral formula-
tion by introducing weights associated with edges E
and vertices I (Section 4.1). When there is no input
noise, this generalized formulation allows us to derive
simple conditions on which the translation synchro-
nization problem has a unique solution (Section 4.2).
When the input has noise, the accuracy of the out-
put depends on these weights. We present a rigorous
stability analysis on the relations between output er-
rors and these weights (Section 4.3). The results lead
to an iterative approach that adaptively adjusts these
weights to progressively eliminate outliers in the in-
puts and average inliers in the inputs (Section 4.4). Fi-
nally, we present a robust recovery condition for our
approach under adversarial input noise (Section 4.5).

3.3. Notations

For each (i, j) ∈ E , we define eij ∈ Rn as the edge in-
dicator function whose element eij(k) satisfies eij(i) =
1, eij(j) = −1, and eij(k) = 0 otherwise.

We will also use several matrix norms. Given a
block matrix A ∈ R3m×3n and a block vector v ∈ R3m,
we define the L1 norm of A and the L∞ norm of v as

∥A∥1 = max
1≤i≤m

n∑
j=1

∥Aij∥, ∥v∥∞ = max
1≤i≤m

∥vi∥. (2)

Moreover, ∥A∥ denotes the spectral norm of matrix A.
A† denotes the pseudo-inverse of A.

4. Approach

This section presents our technical approach.

4.1. Spectral Translation Synchronization

Let sij be the latent absolute scale parameter of edge
(i, j) ∈ E . We can write out the relation between vij

and ti and tj as

sijv
inp
ij ≈ (ti − tj). (3)

When ti and tj are fixed, the optimal sij is given by

sij = argmin
s

∥svinp
ij − (ti − tj)∥2

=
v

inp
ij

T
(ti − tj)

v
inp
ij

T
v

inp
ij

= v
inp
ij

T
(ti − tj). (4)

Denote t = (ti) ∈ R3n. Substituting Eq. (4) into
Eq. (3) and introducing a weight wij > 0 for each edge

(i, j) ∈ E , we arrive at the following quadratic loss
term among t:

f(t) =
∑

(i,j)∈E

wij∥(I3 − v
inp
ij v

inp
ij

T
)(ti − tj)∥2

=
∑

(i,j)∈E

wij(ti − tj)
T (I3 − v

inp
ij v

inp
ij

T
)(ti − tj).

(5)

Remark 1. Let θij be the angle between v
inp
ij and ti−tj

∥ti−tj∥ .
It is easy to see that

(ti − tj)
T (I3 − v

inp
ij v

inp
ij

T
)(ti − tj)

= sin(θij)
2∥ti − tj∥2.

Therefore, our formulation can be viewed as a variant of the
angle-based loss proposed in [35].

Minimizing Eq. (5) directly has a trivial solution, in
which ti = 0. We apply the standard approach of en-
forcing a quadratic normalization constraint on ti:

n∑
i=1

si∥ti∥2 = 1 (6)

where si > 0 is the weight associated with image Ii.
Introduce a generalized connection Laplacian ma-

trix L ∈ R3n×3n whose blocks are given by

Lij =


∑

j∈Ni

wij(I3 − v
inp
ij v

inp
ij

T
) i = j

−wij(I3 − v
inp
ij v

inp
ij

T
) (i, j) ∈ E

0 otherwise

It is clear that we can rewrite

L =
∑

(i,j)∈E

wijEij(I3−v
inp
ij v

inp
ij

T
)ET

ij , Eij = eij⊗I3.

Denote S = diag({si}) ⊗ I3. We can then reformulate
the optimization problem of minimizing Eq. (5) sub-
ject to the constraint Eq. (6) as

min
t

tTLt s.t. tTSt = 1 (7)

It is easy to see that the optimal solution t⋆ of Eq. (7) is
given by the following generalized eigen-value prob-
lem:

Lt⋆ = λSt⋆. (8)

The following proposition describes some basic
properties of L.



Proposition 1. L is positive semidefinite. It has three zero
eigenvalues. The corresponding eigenvectors are given by
1⊗ I3.

Proof: See Section B.1.
Therefore, we look for t⋆ as the eigenvector that

corresponds to the fourth-smallest eigenvalue of
Eq. (8) and satisfies (1⊗ I3)

T
t⋆ = 0.

4.2. Uniqueness of Translation Synchronization

This section studies the uniqueness problem of trans-
lation synchronization, that is, under what condi-
tions of tgti and E , one can recover tgti from vgt

ij =
tgti −tgtj

∥tgti −tgtj ∥ ,∀(i, j) ∈ E . Although there are a lot of trans-

lation synchronization approaches, this uniqueness
problem is underexplored. We show a simple neces-
sary and sufficient uniqueness condition using Eq. (8).

Without losing generality, we assume that tgt is
normalized so that

n∑
i=1

tgti = 0,

n∑
i=1

si∥tgti ∥2 = 1.

Proposition 2. Suppose that the input directions are exact,

that is, vij =
tgti −tgtj

∥tgti −tgtj ∥ , then the fourth eigenvalue of Eq. (8)

λ4 = 0. If and only if the fifth eigenvalue λ5 > 0, tgt

is the unique fourth eigenvector of Eq. (8) and translation
synchronization has a unique solution.

Proof: See Section B.2.
It is difficult to develop explicit conditions of tgti on

which λgt
5 > 0. However, in many practical settings,

tgti usually lie close to a plane, e.g., images captured by
a moving vehicle. Therefore, we study the properties
of λgt

5 when projecting vgt
ij onto a plane.

First, we have the relation between the uniqueness
of the 2D projection problem and the uniqueness of
the original problem.

Proposition 3. Let n be the normal to the plane of con-
sideration. Denote vgt,2D

ij = (I3 − nnT )vgt
ij /∥(I3 −

nnT )vgt
ij ∥ as the projected direction along (i, j). Introduce

L2D as the connection Laplacian derived from vgt,2D
ij . With

λgt,2D
5 we denote the fifth smallest eigenvalue of L2D. We

have, if λgt,2D
5 > 0, then λgt

5 > 0.

Proof: See Section B.3.
We can also understand why 2D uniqueness is

more difficult than 3D uniqueness as follows. We have
3n − 4 variables in 3D and each edge offers two con-
straints. Therefore, we need |E| ≥ 3n−4

2 to have a
unique solution. We have 2n − 3 variables in 2D and

Figure 2. Connected graphs with six vertices. (Left) An ex-
ample graph that does not have unique solutions. (Right)
An example graph that has unique solutions.

each edge offers one constraint. Therefore, we need
more edges, i.e., |E| ≥ 2n − 3, to have a unique solu-
tion. This also means that if the G is a 2D planar graph,
then we do not have unique solutions.

In Section C of the supp. material, we present a nec-
essary uniqueness condition on the topological struc-
ture of E . It is also a sufficient condition in a proba-
bilistic sense. Figure 2 shows examples of topological
graphs that admit unique solutions and do not admit
unique solutions.

4.3. Local Stability Analysis

When v
inp
ij are not exact, the fourth eigenvector u4 of

generalized eigen-decomposition probelm in (8) will
deviate from tgt . The deviations depend on wij , si,
and the edge set E . This section presents local stability
results that provide insights into how to set wij and si
to minimize the deviations of u4.

We begin by describing a noise model for vinp
ij . De-

note vgt
ij as the ground truth of vinp

ij . Let θij be the an-

gle between v
inp
ij and vgt

ij . We assume v
inp
ij is a random

perturbation of vgt
ij such that the perturbation is circu-

lar symmetric and E(sin2(θij)) = σ2
ij .

Given {wij , si, σij}, we define a stability score of u4

as

f({wij}, {si}, {σij}) = E
{vinp

ij }

∥u4 − tgt∥2

∥tgt∥2
. (9)

Our analysis focuses on the regime in which σij is
small, i.e., vgt

ij

T
(v

inp
ij − vgt

ij ) ≈ 0. As we shall discuss
next, we have simple and analytical results on the op-
timal wij and si in this regime. We will use these re-
sults to derive our algorithm, as we find them to be
effective on arbitrary inputs.

The following theorem shows that when {σij , wij}
are fixed, the optimal values of si to minimize
f({wij}, {si}, {σij}) are identical.



Theorem 1. Suppose
n∑

i=1

si = n. Then

{1} = argmin
{si}

f({wij}, {si}, {σij}).

Proof: See Section D.1 and Section D.2.
The following theorem characterizes the optimal

values of {wij} given σij .

Theorem 2. Factoring out the global scale of wij , we have

{ 1

σ2
ij∥t

gt
ij ∥2

} = argmin
{wij}

f({wij}, {1}, {σij}).

where tgtij = tgti − tgtj .

Proof: See Section D.1 and Section D.3.
From the analysis above, we can always set si = 1.

The values of wij depend on the estimations of σij and
∥tgtij ∥, which can be determined in an iterative manner.
This leads to our iterative spectral translation synchro-
nization algorithm, which is introduced next.

4.4. Iterative Spectral Translation Synchronization

Our algorithm consists of an initialization phase and
an alternating phase of location optimization and
weight update.
Initialization phase. We set wij = 1,∀(i, j) ∈ E at
iteration k = 1. On real datasets where graphs may
contain weakly connected components, we find that
taking the whole graph as the input can lead to de-
generate solutions, i.e., ∥ti∥ → 1 for some i. To ad-
dress this issue, we iteratively prune vertices until
min
i

∥ti∥ < δ where δ is a user specified threshold.

Translation synchronization is performed on the re-
maining sub-graph. Please refer to Section A in the
supp. material for more details.
Alternating step II: location optimization. Given the
current edge weights wij and vertex weights si = 1 at
the current iteration k, we solve (8) to obtain an esti-
mation of the image locations ti.
Alternating step III: weight update. Given the cur-
rent image locations ti, 1 ≤ i ≤ n at iteration k, we
estimate

σ2
ij = ∥vinp

ij − tij
∥tij∥

∥2

where tij = ti − tj . Similarly, we predict tgtij using tij
Based on these two estimations, we set

wij =
σ2
k

σ2
k + ∥σ2

ij∥∥tij∥2

where σk is introduced to avoid overconfident estima-
tions of σij and tgtij . We set σk using the geometric
decaying scheme, i.e.,

σk = σmax(
σmin

σmax
)sk , sk =

k − 1

kmax − 1
.

where kmax is the maximum number of iterations. In
all of our experiments, we set σmax = 1, σmin = 10−3,
kmax = 30. During optimization, we also truncate
wij = 0 when wij ≤ 0.01. This operation removes
outlier contributions and improves performance.

4.5. Robust Recovery Conditions

In this section, we present a robust recovery condition
on our approach. We will use the ground-truth con-
nection Laplacian matrix in which all input directions
are exact.

Lgt(w) =
∑

(i,j)∈E

wijEij(I3 − vgt
ijv

gt
ij

T
)ET

ij . (10)

where w = (wij) ∈ R|E| collects all edge vectors. In
the following, we first present a noise model. We then
present the robust recovery result.
Noise model. Most previous work performs analy-
sis by assuming that the noisy observations are in-
dependent. However, this assumption does not hold
as the pairwise matches are computed from the input
images, which exhibit correlations. In this paper, we
present a worst-case analysis where the noisy obser-
vations can be adversarial.

Our noise model considers a mixture of inliners
and outliers. Specifically, given a fixed observation
graph G = (I, E). The edge set E = E in ∪ Eout decom-
poses into an inlier set E in and an outlier set Eout. With
N in

i = {j|(i, j) ∈ E in} and N out
i = {j|(i.j) ∈ Eout} we

denote the neighbors of i that form inlier and outlier
edges.

For each (i, j) ∈ Ein, we assume vij is an arbitrary
unit length vector in the neighborhood of vgt

ij that sat-
isfies

∥(I3 − vgt
ijv

gt
ij

T
)vij∥ ≤ ϵ (11)

where ϵ is a sufficiently small constant. For each edge
(i, j) ∈ Eout, vij can be an arbitrary unit vector. Based
on this noise model, we proceed to present the follow-
ing robust recovery result.

Denote t⋆ij = t⋆i − t⋆j and tgtij = tgti − tgtj , where t⋆i
and tgti as the output translation of our approach and
the ground-truth translation of image i.

Theorem 3. Consider three universal small constants



c1, c2, c3 ≥ 1. Denote

δ1(σ) = max
1≤i≤n

(
ϵ|N in

i |+ c1σ
2|N out

i |
)
,

δ2(σ) = max
1≤i≤n

(
ϵ
∑

j∈N in
i

∥tgtij ∥+ c1σ
2

∑
j∈N out

i

∥tgtij ∥
)
,

δ3(σ) = ϵ2
∑

(i,j)∈E in

∥tgtij ∥
2 + c1σ

2
∑

(i,j)∈Eout

∥tgtij ∥
2.

Suppose δ1(1) ≤ 1
3λ

gt
5 and

c2(δ1(1) + δ3(1))∥Lgt+(1)∥1 < 1

Then under mild conditions in σmin, σmax, and kmax, our
interactive spectral translation synchronization approach
converges to a solution t⋆i that satisfies

∥t⋆ij − tgtij ∥ ≤(1− β)
c3δ

min
2 ∥ET

ijL
gt(1)

†∥1
1− c3(δmin

1 + δmin
3 )∥Lgt(1)

†∥1
+ β∥tgtij ∥, ∀(i, j) ∈ E , (12)

and

∥t⋆ − tgt∥∞ ≤(1− β)
c3δ

min
2 ∥Lgt(1)

†∥1
1− c3(δmin

1 + δmin
3 )∥Lgt(1)

†∥1
+ β∥tgtij ∥, (13)

where

β ≤ δmin
1

2

2(λgt
5 − δmin

1 − δmin
3 )2

(14)

and δmin
i = δi(σmin)

Proof: See Section E.
Theorem 3 shows that our approach can effectively

remove input outliers whenever their noise level is
upper-bounded. Note that we do not place any as-
sumptions on their correlations.

5. Experimental Results

We begin with the experimental setup in Section 5.1.
We then present results on synthetic and real datasets
in Section 5.2 and Section 5.3, respectively. Finally, we
present an analysis of our approach in Section 5.4.

5.1. Experimental Setup

Synthetic datasets. We describe a synthetic dataset
as D(n, pedge, t, pnoise, σ). Here n denotes the number
of images that are randomly sampled from the unit
sphere. pedge ∈ [0, 1] denotes the percentage of edges.
When t = r, these edges follow the Erdős–Rényi
model. When t = g, these edges connect nearest

BATA Fused TA 1dSFM LUD ShapeFit TranSync
D(0.7, r, 0.1, 0.01) 3.87 3.16 30.6 4.15 2.86 1.53
D(0.7, g, 0.1, 0.01) 3.73 2.98 29.1 3.38 2.43 1.32
D(0.7, r, 0.1, 0.03) 5.68 5.49 34.3 11.91 8.30 5.31
D(0.7, g, 0.1, 0.03) 4.94 4.83 30.5 10.03 7.14 4.49
D(0.7, r, 0.4, 0.01) 13.15 14.96 106 26.26 102 1.93
D(0.7, g, 0.4, 0.01) 10.82 13.89 100 15.28 17.4 1.70
D(0.7, r, 0.4, 0.03) 13.93 17.45 108 44.19 228 6.75
D(0.7, g, 0.4, 0.03) 11.59 16.00 96.3 28.90 78.6 5.79
D(0.3, r, 0.1, 0.01) 6.93 5.44 70.8 6.57 4.55 2.58
D(0.3, g, 0.1, 0.01) 4.37 4.34 55.5 3.97 21.4 1.61
D(0.3, r, 0.1, 0.03) 10.12 9.46 69.6 18.93 14.0 8.97
D(0.3, g, 0.1, 0.03) 6.21 6.18 50.9 11.11 8.64 5.54
D(0.3, r, 0.4, 0.01) 32.66 57.87 226 86.14 592 9.19
D(0.3, g, 0.4, 0.01) 16.02 20.83 219 38.36 267 2.22
D(0.3, r, 0.4, 0.03) 29.54 40.80 232 96.23 508 18.29
D(0.3, g, 0.4, 0.03) 16.70 23.46 234 46.64 297 7.28

Table 1. Translation errors(×10−3) on synthetic datasets.
The top-performing approach is bold-faced. The second best
is underlined.

neighbors, meaning G is a geometric graph. pnoise de-
notes the percentage of edges, in which the associated
directions are random outliers. σ is the variance of
the inliers. We fix n = 100 and use two values for
each other hyper-parameter, i.e., pedge ∈ {0.3, 0.7},
t ∈ {′r′,′ g′}, pnoise ∈ {0.1, 0.4}, σ ∈ {0.01, 0.03}. For
each configuration of hyper-parameters, we sample 20
times. In total, we have 16 synthetic datasets. As n =
100, we simplify the notation as D(pedge, t, pnoise, σ).
Real datasets. We perform evaluations on the dataset
provided by [32]. To ensure uniqueness, we remove
the images whose degree is less than 3.
Baseline techniques. The baselines include five state-
of-the-art methods: LUD [21], 1DSfm [32], BATA [35],
ShapeFit [10], Fused- TA [20].
Evaluation protocol. We compare our method with
the baseline methods using the protocol in [32], which
is based on estimating the optimal scaling and global
translation to align the output of an algorithm with
the ground-truth. On synthetic datasets, we report
the mean translation error of each algorithm. On real
datasets, we report the median translation error of
each algorithm. This is because our approach may
remove a small number of images. We include these
images when calculating the median. Note that we
find these images have large errors among baseline
approaches as well and do not affect the median value.

5.2. Results on Synthetic Datasets

Table 1 presents the quantitative results of our ap-
proach and the baseline approaches in synthetic data
sets. Overall, our approach outperforms all baseline
approaches by salient margins. The top baseline ap-
proaches are BATA and FusedTA, which show differ-
ent behaviors in different data sets.



BATA shows a strong performance among baseline
approaches in data sets with high noise levels, that is,
pnoise = 0.4. The error reductions of our approach on
these datasets range 38.1% and 86.1%. The greatest
improvement is in D(0.3, g, 0.4, 0.01). The improve-
ments are great when σ = 0.01. The smallest improve-
ment is in D(0.3, r, 0.4, 0.03). We observe similar be-
haviors when σ = 0.03. These salient improvements
show the strength of our approach in handling out-
liers in the inputs. In particular, our approach excels
when there are clear separations between inliers and
outliers, i.e., there are large variations in magnitudes
of σij . This shows the strength of our local analysis.

Fused TA (LUD and ShapeFit) show good perfor-
mance in the small outlier regime or large σ. The error
reductions of our approach range from 3.3% to 59.4%.
The greatest improvement is in D(0.3, g, 0.1, 0.01). We
obtain similar improvements when σ = 0.01. The
smallest improvement is in D(0.7, g, 0.1, 0.03). We ob-
serve a similar relative performance when σ = 0.03.
Moreover, the relative improvements when pedge =
0.3 are greater than when pedge = 0.7. Those results
are consistent with our discussion that our formula-
tion is very effective in pruning outliers. When pnoise
and the variations in σij are small, our approach is
restricted to the linear approximation of u4 used to
determine wij and si. This shows certain limitations
when σ = 0.03 (See Figure 4).

Our approach and baseline approaches perform
better on geometric graphs than random graphs. This
is counter-intuitive because the spectral gap, which is
closely related to stability of eigenvectors under noisy
observations, is smaller on geometric graphs than on
random graphs. However, in Appendix D.3 we show
that for our approach the difference between u4 and
ugt
4 is related to Tr(Lgt †). In geometric graphs, this

quantity is smaller than their random counterparts.
This explains why geometric graphs have smaller
translation errors than random graphs.

5.3. Results on Real Datasets

Table 2 shows the quantitative results in the 1DSFM
benchmark datasets. In general, our approach
still outperforms all baseline approaches. To bet-
ter understand the relative performance of our ap-
proach and baseline approaches, we divide the fif-
teen datasets into four groups: (ds) that consists
of Alamo, Montreal-Notre Dame, Notre Dame, Pi-
azza del Popolo, which are dense graphs with small
noise ratios, (dl) that consists of Ellis Island, Madrid
Metropolis, and NYC Library, which are dense graphs
with large noise ratios, (ss) that consists of Roman Fo-
rum, Tower of London, Vienna Cathedral, Yorkmin-

BATA Fused TA 1dSFM LUD ShapeFit TranSync
Alamo 0.87 1.03 0.86 2.77 2.56 0.82

Montreal Notre Dame 0.73 2.06 1.23 1.20 1.96 0.68
Notre Dame 1.28 1.49 0.92 1.67 1.32 0.92

Piazza del Popolo 1.76 1.79 2.80 1.77 1.66 1.65
Roman Forum 6.04 42.94 5.40 24.77 46.01 5.65

Tower of London 2.86 4.52 9.40 8.93 47.49 2.46
Vienna Cathedral 2.95 5.38 3.90 5.91 11.23 2.54

Yorkminster 1.73 2.66 6.36 5.34 8.09 1.56
Ellis Island 4.09 7.70 3.46 8.02 16.24 3.56

Madrid Metropolis 3.78 7.07 8.12 8.84 28.80 2.57
NYC Library 1.06 1.90 2.00 2.22 9.83 0.92

Gendarmenmarkt 58.30 31.48 46.72 30.19 33.18 27.81
Piccadilly 1.74 7.25 2.45 4.00 14.59 1.56
Trafalgar 5.90 15.35 6.66 13.26 53.38 5.12

Union Square 5.48 7.10 4.82 7.32 10.60 6.12

Table 2. Translation errors for real dataset from 1dsfm. Units
are specified by the ground-truth.

ster, which are sparse graphs with small noise ratios,
and (sl) that consists of Gandarmenmarkt, Piccadilly,
Trafalgar, Union Square, which are sparse graphs with
large noise ratios.

In (ds), which are easier datasets, our approach
is comparable to the top performing baselines. In
these data sets, all approaches can successfully re-
move small fractions of outliers in the inputs and per-
form a prediction from the remaining inputs.

In (ss), which are harder than (ds) because of the
sparsity of the graph, our approach outperforms the
baseline approaches in average. This is attributed
to our interactive scheme and the local analysis that
shows how to properly reweight the measurements.

In (ds) and (dl), which have large noise ratios,
our approach outperforms baseline approaches except
Union Square. This again shows the advantage of our
approach, which is based on principled analysis to
reweight inputs for translation synchronization.

Note that the relative improvements of our ap-
proach in real data are smaller than the relative im-
provements in synthetic data. One reason is that there
is no clear separation of inliers and outliers in real
data. However, our approach can still remove outliers
and properly reweight the inputs to balance their er-
rors to obtain considerably improved results.

5.4. Advanced Analysis

We proceed to analyze our iterative spectral transla-
tion synchronization approach. For this analysis, we
show average results on the synthetic datasets, where
we know the distributions of input errors.
Effects of the alternating minimization. As shown
in Figure 3(a), the iterative procedure can effectively
reduce the prediction error. The relative improve-
ments depend on the type of observations. On dense
graphs with small noise ratio, where the initialization
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Figure 3. Advanced analysis of our approach. We show average translation error among all synthetic datasets. Above are
on dense graphs with small noise ratio and bottom are on sparse graphs with large noise ratio (a) Effects of alternating
minimization. (b) Effects of varying kmax. (c) Effects of varying σmax. (d) Effects of varying σmin.

stage already returns a good solution, the improve-
ment obtained from the iterative procedure is not sig-
nificant. However, on sparse graphs with large noise
ratio, the initial solution has large error as outliers par-
ticipate in the estimation. Our reweighted scheme can
substantially reduce the prediction error as the out-
liers have small weights in the end.
Effects of varying kmax. Figure 3(b) shows the re-
sults when varying kmax. We can see that when kmax

is above 10 across all datasets, the output of our al-
gorithm becomes steady. In addition, on more chal-
lenging datasets, i.e., sparse graphs with large noise
ratios, kmax that is required to reach a steady state is
larger. This is expected, as when using a small kmax,
the weights of inliers may not differentiate from those
of outliers during the alternating procedure due to in-
accurate initial solution.
Effects of varying σmax. Figure 3(c) shows the effects
when varying σmax. We can see that for easy datasets,
there is not much difference when choosing a small
σmax. This is because the initial solution is close to
the underlying ground truth. The weighting scheme
with a small σmax can differentiate inliers and outliers.
However, for hard data sets, that is, sparse graphs
with large noise ratios, it is important to start from a
large σmax. This allows us to gradually remove out-
liers at different noise levels.
Effects when varying σmin. Figure 3(d) shows the ef-
fects when varying σmin. We can see that decreasing
the value of σmin improves the prediction accuracy.
However, σmin can not be too small, i.e., smaller than
variances of inliers. In this case, the weighting scheme
cannot differentiate inliers and outliers, and we see
that the prediction error drastically goes up. This ef-
fect is particularly salient on hard datasets, i.e., sparse
graphs with large noise ratios.

6. Conclusions and Limitations

In this paper, we have introduced a robust translation
synchronization approach that iteratively solves gen-

(a) (b)

Figure 4. Comparison with our approach and BATA under
N (0.7, g, 0, σ). (Left) σ = 10−3. (Right) σ = 0.03.

eralized eigenvalue problems. We present a rigorous
stability analysis of this spectral formulation. The re-
sults are used to determine how to adaptively set the
edge weights to progressively remove input outliers
and average inliers of the input. Experimental results
justify the effectiveness of our approach.

One limitation of our approach is that we derive
the optimal values of si and σij in the infinitesimal
regime, in which we have simple expressions of vinp

ij

and u4. The optimal wij and si are effective in re-
moving outliers in v

inp
ij . On the other hand, when all

v
inp
ij are inliers with nonnegligible variance, we find

that the linear approximation we used is sub-optimal
when σ is large. As shown in Figure 4, our approach
slightly outperforms BATA when σ = 10−3. How-
ever, BATA slightly outperforms our approach when
σ = 0.03. In the future, we plan to address this issue
using second-order approximations of u4.

In the future, we also plan to integrate translation
synchronization and rotation synchronization into a
single optimization formulation, since the constraints
for translation synchronization depend on rotations.
Another direction is to explore learning-based ap-
proaches to set the edge weights, which have been
shown to be effective for pose synchronization of
RGB-D scans.
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Figure 5. This figure shows ∥ti∥ sorted by their magnitudes
at each iteration on the Alamo dataset. (a) Iteration 1. (b)
Iteration 2. (c) Iteration 3. (d) Iteration 4. (e) Iteration 5. (f)
Iteration 6.

A. Details on Graph Pruning on Real Data

In this section, we provide more details on the prun-
ing procedure which obtains a sub-graph to perform
translation synchronization. Specifically, given the
current sub-graph, which is initialized as the original
graph, we perform translation synchronization with
edge weights wij = 1. Let ti be the resulting trans-
lations. If max ti ≤ δ, we use the corresponding sub-
graph to perform the alternating procedure of updat-
ing the edge weights and optimizing the image trans-
lations. Otherwise, we remove the image with the
largest value in ∥ti∥ and detect the maximum con-
nected component within the remaining vertices to it-
erate this procedure. We set δ = 10√

n
in our experi-

ments.

Figure 5 shows the iterative procedure on the
Alamo dataset in 1DSFM, which removes x images.
The numbers of images removed from all the datasets
in 1DSFM are less than 8 images.

B. Spectral Translation Synchronization
Properties

B.1. Proof of Proposition 1

Denote

Eij = eij ⊗ I3. (15)

Introduce vij,1 and vij,2, so that (vij ,vij,1,vij,2) forms
an orthonormal basis. Then we have

L =
∑

(i,j)∈E

wijEij(I3 − vijv
T
ij)E

T
ij

=
∑

(i,j)∈E

wijEij(vij,1v
T
ij,1 + vij,2v

T
ij,2)E

T
ij ⪰ 0.

Consider any vector c ∈ R3. Introduce u = 1 ⊗ c.
The i-th block of Lu is

(Lu)i

=
∑
j∈Ni

wij(I3 − vijv
T
ij)ui +

∑
j∈Ni

−wij(I3 − vijv
T
ij)uj

=
∑
j∈Ni

wij(I3 − vijv
T
ij)c−

∑
j∈Ni

wij(I3 − vijv
T
ij)c = 0.

Therefore, the first three eigenvalues of L are zero,
and the eigenvectors are 1 ⊗ I3. It is easy to check
that this also applies to generalized eigen-values and
eigen-vectors.

B.2. Proof of Proposition 2

The i-th block of Ltgt is

(Ltgt)i

=
∑
j∈Ni

wij(I3 − vgtij v
gt
ij

T
)(tgti − tgtj )

=
∑
j∈Ni

wij∥tgti − tgtj ∥(I3 − vgtij v
gt
ij

T
)vgt

ij = 0.

Therefore, tgt is a fourth eigenvector L. If λ5 > 0.
Then tgt is the unique fourth eigenvector.

If λ5 = 0. Then there exists a different vector u5 ̸=
tgt that is a slight pertubration of tgt , so that Lu5 = 0.
Note that

0 = uT
5 Lu5

=
∑

(i,j)∈E

uT
5 Eij(I3 − vgt

ijv
gt
ij

T
)Eiju5

=
∑

(i,j)∈E

(
∥u5i − u5j∥2 −

(
(u5i − u5j)

Tvgt
ij

)2)
.

Therefore, ∀(i, j) ∈ E ,

∥u5i − u5j∥2 =
(
(u5i − u5j)

Tvgt
ij

)2
.



This means
u5i − u5j

∥u5i − u5j∥
= sijv

gt
ij ,

where sij ∈ {−1, 1}. As u5 is a slight perturbation of
tgt , we have sij = 1,∀(i, j) ∈ E . This ends the proof.

B.3. Proof of Proposition 3

As λgt,2D
4 > 0, we can determine the tgt,2Di on the

plane with normal n, up to a global scale s and trans-
lation. In addition, we have tgt,2Di ̸= tgt,2Dj ,∀(i, j) ∈ E .
Consider a spanning tree of G. Without losing gener-
ality, we assume for the root r of this tree, we have
nT tgtr = 0. It is easy to see that starting the root r,
we can determine nT tgti iteratively. This is because,
tgt,2Di − tgt,2Dj is given, and nT (tgti − tgtj ) can be recov-
ered from vgt

ij .

C. Topological Uniqueness Condition

In the following, we present a necessary uniqueness
condition on the topological structure of E . It is also a
sufficient condition in a probabilistic sense.

Definition 1. Introduce a rigidity matrix A = (1 ⊗
I2;v;B) ∈ R(|E|+3)×2n of a graph G with edge set
E . The elements of v are v2i−1 = cos(iθ) and
v2i = sin(iθ) where θ = 2π

n . The elements of B

are zero except B(i,j),2i−1 = cos( (i+j)θ
2 , B(i,j),2i =

sin( (i+j)θ
2 ,B(i,j),2j−1 = − cos( (i+j)θ

2 , and B(i,j),2j =

− sin( (i+j)θ
2 . We say G is rigid if rank(B) = 2n.

Theorem 4. G is rigid is a necessary condition for 2D
uniqueness of translation synchronization. It is a sufficient
condition in the sense that 2D uniqueness holds with prob-
ability 1 if we randomly sample tgt,2Di .

Proof: Consider an arbitrary set of n vertices pi =
(xi, yi)

T , 1 ≤ i ≤ n with edge set E .

vij =
(xi − xj , yi − yj)√

(xi − xj)2 + (yi − yj)2
,

v⊥
ij =

(−(yi − yj), xi − xj)√
(xi − xj)2 + (yi − yj)2

.

Define J ∈ RE×2n, where J((i, j), (2i− 1) : (2i)) = v⊥
ij

and J((i, j), (2j−1) : (2j)) = −v⊥
ij . When xi = cos(πin )

and yi = sin(πin ), it is clear that rank(J) = 2n − 3 if
and only if rank(B) = 2n. When rank(A) < 2n. Then
rank(J) < 2n− 3. This means the rank of Lgt = J ′ ∗ J
is smaller than 2n − 4. In this case, λ4,gt

i = 0, and 2D
uniqueness does not hold.

Suppose rank(B) = 2n. We show that rank(J) =
2n− 3 when xi, yi are random samples. It is sufficient
to show that for an edge subset E ′ ⊂ E where |E ′| =
2n− 3 and rank(B′) = 2n, the corresponding Jacobian
matrix J has rank rank(J ′) = 2n− 3. Denote

J ′ = diag(
1√

(xi − xj)2 + (yi − yj)2
)J

′

where

J
′
((i, j), (2i− 1) : (2i)) = (−(yi − yj), (xi − xj)),

J
′
((i, j), (2j − 1) : (2j)) = ((yi − yj),−(xi − xj)).

Then it is clear that rank(J ′) = 2n − 3 when xi =
cos( iπn ) and yi = sin( iπn ). We show that rank(J ′) =
2n − 3 when xi and yi are arbitrary. Suppose this is
not true, there exists non-zero coefficients ci, 1 ≤ i ≤

2n − 3, so that
2n−3∑
i=1

ciJ
′
(i, :) = 0 for any xi and yi al-

most surely. As J
′
(i, :) are linear in xi and yi, it means

that
2n−3∑
i=1

ciJ
′
(i, :) = 0 holds for all xi and yi, including

xi = cos( iπn ) and yi = sin( iπn ).

D. Proofs of Theorems 1 and Theorems 2

We begin with an analytic expression of the objec-
tive function f({wij}, {si}, {σij}) in Section D.1. Sec-
tion D.2 and Section D.3 complete the proofs of Theo-
rem 1 and Theorem 2. Section D.4 presents proofs of
the propositions in Section D.1.

D.1. Analytical Expression of f({wij}, {si}, {σij})

Denote Aij = I3 − v
inp
ij v

inp
ij

T
and Agt

ij = I3 − vgt
ijv

gt
ij

T
.

Introduce
dAij = Aij −Agt

ij

The following proposition characterizes an important
property regarding dAij .

Proposition 4. Consider a symmetric matrix F ∈ R3×3.
Then by dropping third-and-higher order terms, we have

E
v

inp
ij

dAij =
σ2
ij

2
(3vgt

ijv
gt
ij

T − I3),

and

E
{ϵij,k}

dAijFdAij =
σ2
ij

2

(
vgt
ijv

gt
ij

T
(Tr(F )− 4vgt

ij

T
Fvgt

ij )

+ vgt
ij

T
Fvgt

ij I3 + vgt
ijv

gt
ij

T
F + Fvgt

ijv
gt
ij

T
)

(16)



Proof. See Section D.4.1.
The blocks of the perturbation connection Lapla-

cian matrix dL = L− Lgt is given by

dLij =


∑

k∈Ni

wikdAik i = j

−wijdAij (i, j) ∈ E
0 otherwise

The following proposition characterize an expectation
of dL when dAij follows the distribution described
above.

Proposition 5. Consider a positive semidefinite matrix
B ∈ R3n×3n. Let tgt ∈ R3n collect tgti in its blocks. Then

E
{vinp

ij }
tgt

T
dLBdLtgt =

∑
(i,j)∈E

σ2
ij

2
w2

ij∥t
gt
i − tgtj ∥2

(
Tr(EijBET

ij)− vgt
ij

T
EijBET

ijv
gt
ij

)
+
( ∑

(i,j)∈E

wijσ
2
ij∥t

gt
i − tgtj ∥ET

ijv
gt
ij

)T

B

( ∑
(i,j)∈E

wijσ
2
ij∥t

gt
i − tgtj ∥ET

ijv
gt
ij

)
. (17)

where Eij is defined in Eq. (15).

Proof. See Section D.4.2.
We proceed to analyze the stability of u4. First of

all, all 3n generalized eigenvectors ui, 1 ≤ i ≤ 3n sat-
isfy that

uT
i Wuj =

{
1 i = j
0 otherwise

Note that
n∑

i=1

tgti = 0. Without losing generalization,

we assume
n∑

i=1

si = 1,

n∑
i=1

sit
gt
i = 0. (18)

The first constraint in (18) normalizes the scale of si.
The second equality in (18) places an additional con-
straint on si. The following proposition characterizes
the top four generalized eigenvectors of L.

Proposition 6. Under the assumptions in (18), we have

(u1,u2,u3) = 1⊗ I3, u4 =
tgt√

n∑
i=1

si∥tgti ∥2
(19)

The next proposition describes the perturbation in
u4 with respect to the perturbation dL in L.

Proposition 7. Suppose λ5(L
gt) > 0. Then

du4 = −
(
I3n −U4U

T
4 S

)
L†(I3n − Su4u

T
4

)
dLu4. (20)

where U4 = (u1,u2,u3,u4).

Proof: See Section D.5.
Denote s = (si) ∈ Rn. When σij and wij are fixed

and applying (20), we can rewrite the objective func-
tion f as

f(s) = E
{ϵij,k}

tgt
T
dLB(s)dLtgt (21)

where

B(s) = (I3n−
tgt(Stgt)T

n∑
i=1

si∥tgti ∥2
)L†C(s)L†(I3n−

Stgttgt
T

n∑
i=1

si∥tgti ∥2
)

where

C(s) = I3n − (1sT + s1T )⊗ I3 + nssT ⊗ I3

− tgt(Stgt)T + Stgttgt
T

n∑
i=1

si∥tgti ∥2
+

∥tgt∥2Stgt(Stgt)T

(
n∑

i=1

si∥tgti ∥2)2

Note that L(1⊗ I3) = 0 and Ltgt = 0. We can simplify

L†C(s)L† = L†2 + nL†(ssT ⊗ I3)L
†

+
∥tgt∥2

(
n∑

i=1

si∥tgti ∥2)2
(L†Stgt)(L†Stgt)T . (22)

To apply Prop. 5 to derive a closed-form expression
of f(w), we compute

EijB(s)ET
ij = (Eij −

(tgti − tgtj )(Stgt)
T

n∑
i=1

si∥tgti ∥2
)

L†C(w)L†(ET
ij −

Stgt(tgti − tgtj )T

n∑
i=1

si∥tgti ∥2
) (23)

To simplify f(s), we note that for any vector h ∈ R3,

Tr((tgti − tgtj )hT )− vgt
ij

T
(tgti − tgtj )hT )vgt

ij

=Tr((tgti − tgtj )hT )− Tr((tgti − tgtj )hT )

=0.

It follows that we can simplify the objective function
as

f(s) =
∑

(i,j)∈E

σ2
ij

2
w2

ij∥t
gt
i − tgtj ∥2

(
Tr(EijL

†C(s)L†ET
ij)

− vgt
ij

T
EijL

†C(w)L†ET
ijv

gt
ij

)
. (24)



D.2. Proof of Theorem 1

According Eq. (22), it is clear that

L†C(s)L† ⪰ L†2,

and equality holds if and only if s = 1. Therefore,

f(s) ≥
∑

(i,j)∈E

σ2
ij

2
w2

ij∥t
gt
i − tgtj ∥2

(
Tr(EijL

†2ET
ij)

− vgt
ij

T
EijL

†2ET
ijv

gt
ij

)
and equality holds when s = 1. This ends the proof of
Theorem 1.

D.3. Proof of Theorem 2

Suppose si = 1. In this case, we optimize wij to min-
imize f({wij}, {si}, {σij}). L becomes a function of
{wij}. Define

L =
∑

(i,j)∈E

σ2
ijw

2
ij∥t

gt
i − tgtj ∥2ET

ij(I3 − vgtvgtT )Eij ,

and
g =

∑
(i,j)∈E

σ2
ijwij∥tgti − tgtj ∥ET

ijv
gt
ij .

The objective function to be minimized is given by

f({w⋆
ij}) =

1

2

∑
(i,j)∈E

σ2
ijw

2
ij∥t

gt
i − tgtj ∥2

(
Tr(EijL

†2ET
ij)

− vgt
ij

T
EijL

†2ET
ijv

gt
ij

)
=

1

2
Tr
(
L†LL†

)
.

Apply the chain rule, we have

∂f

∂wij
=

1

2
Tr
(
L† ∂L

∂wij
L† − L†LL† ∂L

∂wij
L†

− L† ∂L

∂wij
L†LL†

)
. (25)

To simplify (25), we introduce G = (G1;G2) ∈
R2|E|×3n where

G1 = (
√
wijv

gt
ij,1

T
Eij), G2 = (

√
wijv

gt
ij,2

T
Eij).

It is easy to check that

L = GTG, L† = G†G†T ,

and

L = GTD4G, D4 = I2 ⊗ diag(wijσ
2
ij∥t

gt
i − tgtj ∥2)

Moreover,

∂L

∂wij
=

1

wij
GT (I2 ⊗ eije

T
ij)G (26)

∂L

∂wij
=

2

wij
GTD4(I2 ⊗ eije

T
ij)G (27)

Substituting Eq. (26) and Eq. (27) into Eq. (25), we have

∂f

∂wij
=

2

wij
Tr
(
(I2 ⊗ eij)

TG†TG†D4(I −G†GT )

(I2 ⊗ eij)
)
. (28)

When w⋆
ij =

1
σ2
ij∥t

gt
i −tgtj ∥2

, we have D4 = I2|E|. As

G†TG† = G†TG†G†GT ,

we have ∂f
∂wij

= 0. This means {w⋆
ij} is a critical point.

Next, we show that {w⋆
ij} is a local minimum.

Proposition 8. Consider any vector x ̸= 0 ∈ R|E|, where∑
(i,j)∈E

xijw
⋆
ij = 0. We have

∑
(i,j)∈E

∑
(i′,j′)∈E

xijxi′j′
∂2f

∂wij∂wi′j′
> 0.

Proof. See Section D.5.1.
Next, we show that {w⋆

ij} is the only critical point
of f .

Proposition 9. {sw⋆
ij} is the only solution to ∀(i, j) ∈ E ,

Tr
(
(I2 ⊗ eij)

TG†TG†D4(I −G†GT )(I2 ⊗ eij)
)
= 0.

(29)

Proof. See Section D.5.2.
This ends the proof of Theorem 2.

D.4. Proofs of Propositions

D.4.1 Proof of Prop. 4

Note that We can decompose v
inp
ij to the orthogonal

vectors vgt
ij ,v

⊥
ij . vinp

ij = cos θijv
gt
ij + sin θijv

⊥
ij



E
v⊥
ij

v⊥
ij

T
Fv⊥

ij =
1

2

(
Tr(F )− vgt

ij

T
Fvgt

ij

)
,

E
v⊥
ij

v⊥
ijv

⊥
ij

T
=

1

2

(
I3 − vgt

ijv
gt
ij

T
)
.

E
v⊥
ij

v⊥
ijFvgt

ij

T
= 0.

E
dvij

v
inp
ij v

inp
ij

T
= E

v
inp
ij

(cos2 θijv
gt
ijv

gt
ij

T
+ sin2 θijv

⊥
ijv

⊥
ij

T
).

E
v

inp
ij

dAij = E
v

inp
ij

vgt
ijv

gt
ij

T − v
inp
ij v

inp
ij

T

= − E
v

inp
ij

(sin2 θij)v
⊥
ijv

⊥
ij

T
+ E

θij
(sin2 θij)v

gt
ijv

gt
ij

T

=
σ2
ij

2
(3vgt

ijv
gt
ij

T − I3).

It follows that

E
dvij

dAijFdAij

= E
v

inp
ij

(
vgt
ij dv

T
ij + dvijv

gt
ij

T
+ dvijdv

T
ij − ∥dvij∥2vgt

ijv
gt
ij

T )
=vgt

ijv
gt
ij

T E
v

inp
ij

sin2 θij cos
2 θijv

⊥
ij

T
Fv⊥

ij

+ vgt
ij

T
Fvgt

ij E
v

inp
ij

sin2 θij cos
2 θijv

⊥
ij

T
v⊥
ij

+ vgt
ijv

gt
ij

T
F E

v
inp
ij

sin2 θij cos
2 θijv

⊥
ijv

⊥
ij

T

+ E
v

inp
ij

sin2 θij cos
2 θijv

⊥
ijv

⊥
ij

T
Fvgt

ijv
gt
ij

T

=
σ2
ij

2

(
vgt
ijv

gt
ij

T
(Tr(F )− 4vgt

ij

T
Fvgt

ij ) + vgt
ij

T
Fvgt

ij I3

+ vgt
ijv

gt
ij

T
F + Fvgt

ijv
gt
ij

T
)
.

D.4.2 Proof of Prop. 5

First of all, we have

tgt
T
dLBdLtgt =∑

1≤i,j≤n

∑
k∈Ni

∑
l∈Nj

wikwjl(t
gt
i − tgtk )T dAikBijdAjl(t

gt
j − tgtl ).

Note that dAij , (i, j) ∈ E are independent. There-

fore

E
{vinp

ij }
tgt

T
dLBdLtgt =

E
{vinp

ij }

( ∑
1≤i≤n

∑
k∈Ni

(tgti − tgtk )Tw2
ikdAikBiidAik(t

gt
i − tgtk )

−
∑

1≤i≤n

∑
k∈Ni

w2
ik(t

gt
i − tgtk )T dAikBikdAik(t

gt
i − tgtk )

)
+ E

{vinp
ij }

∑
1≤i,j≤n

∑
k∈Ni

∑
l∈Nj

1(i ̸= j ∨ k ̸= l)(wikwjl)

(tgti − tgtk )T dAikBijdAjl(t
gt
j − tgtl )

)
.

We have

E
{vinp

ij }
tgt

T
dLBdLtgt =

∑
(i,j)∈E

w2
ij(t

gt
i − tgtj )T

E
v

inp
ij

dAij(Bii +Bjj −Bij −BT
ij)dAij(t

gt
i − tgtj )

+
∑

(i,k),(j,l)∈E

1(i ̸= j ∨ k ̸= l)wikwjl(t
gt
i − tgtk )T

E
v

inp
ik

dAik(Bij +Bkl −Bil −Bjk) E
v

inp
jl

dAjl(t
gt
j − tgtl ).

(30)

As vgt
ij =

tgti −tgtj
∥tgti −tgtj ∥ . Applying Prop. 4, we have

E
{ϵij,k}

tT dLBdLt =
∑

(i,j)∈E

σ2
ij

2
w2

ij∥t
gt
i − tgtj ∥2

(
Tr(Bii +Bjj

−Bij −BT
ij)− vgt

ij

T
(Bii +Bjj −Bij −BT

ij)v
gt
ij

)
+

∑
(i,k),(j,l)∈E

1(i ̸= j ∨ k ̸= l)(wikwjlσ
2
ikσ

2
jl)

(tgti − tgtk )T ((Bij +Bkl −Bil −Bjk))(t
gt
j − tgtl )

)
=

∑
(i,j)∈E

σ2
ij

2
w2

ij∥t
gt
i − tgtj ∥2

(
Tr(EijBET

ij)

− vgt
ij

T
EijBET

ijv
gt
ij

)
+

∑
(i,k),(j,l)∈E

wikwjlσ
2
ikσ

2
jl(t

gt
i − tgtk )TEikBET

jl(t
gt
j − tgtl )

(31)

D.5. Proof of Prop. 7

Note that
∂uT

i Wu4

∂v
= 0.



Since ui, 1 ≤ i ≤ 3 do not depend on v, we have

UT
4 Wdu4 = 0. (32)

Let the columns of U4 ∈ R3n×(3n−4) collect bases of
vectors that orthogonal to U4, i.e., U

T

4 U4 = 0. Express

du4 = U4y + U4x (33)

where y ∈ R3n−4 and x ∈ R4. Combining Eq. (33) and
Eq. (32), we have

x = −(UT
4 WU4)

−1UT
4 WU4y = −UT

4 WU4y. (34)

This means

du4 = (I3n − U4U
T
4 W )U4y. (35)

Consider the equality

Lu4 = λ4Wu4.

Compute the derivatives of both sides with respect to
v, we have

Ldu4 + dLu4 = dλ4Wu4. (36)

The derivative of the eigen-value is given by

dλ4 = uT
4 dLu4. (37)

Substituting Eq. (37) into Eq. (36), we have

Ldu4 + dLu4 = Wu4u
T
4 dLu4 (38)

Multiply both sides of Eq. (38) by U
T

4 and combine
Eq. (33), we arrive at

U
T

4 LU4y + U
T

4 dLu4 = 0. (39)

Substituting Eq. (39) into Eq. (35), we have

du4 = −(I3n−U4U
T
4 W )U4

(
U

T

4 LU4

)−1
U

T

4 dLu4. (40)

Note that
L† = U4

(
U

T

4 LU4

)−1
U

T

4 .

D.5.1 Proof of Prop. 8

We can expand

∑
(i,j)∈E

∑
(i′,j′)∈E

xijxi′j′
∂2f

∂wij∂wi′j′

=H1 −H2 +H3 −H4 +H5 +H6 (41)

where

H1 =
∑

(i,j)∈E

∑
(i′,j′)∈E

x2
ijTr

(
L† ∂2L

∂2wij
L†),

H2 =
∑

(i,j)∈E

∑
(i′,j′)∈E

xijxi′j′Tr
(
L† ∂L

∂wi′j′
L† ∂L

∂wij
L†

+ L† ∂L

∂wij
L† ∂L

∂wi′j′
L†),

H3 =
∑

(i,j)∈E

∑
(i′,j′)∈E

xijxi′j′Tr
(
L† ∂L

∂wi′j′
L†LL† ∂L

∂wij
L†

+ L† ∂L

∂wij
L†LL† ∂L

∂wi′j′
L†),

H4 =
∑

(i,j)∈E

∑
(i′,j′)∈E

xijxi′j′Tr
(
L† ∂L

∂wi′j′
L† ∂L

∂wij
L†

+ L† ∂L

∂wij
L† ∂L

∂wi′j′
L†),

H5 =
∑

(i,j)∈E

∑
(i′,j′)∈E

xijxi′j′Tr
(
L†LL† ∂L

∂wi′j′
L† ∂L

∂wij
L†

+ L† ∂L

∂wij
L† ∂L

∂wi′j′
L†LL†),

H6 =
∑

(i,j)∈E

∑
(i′,j′)∈E

xijxi′j′Tr
(
L†LL† ∂L

∂wij
L† ∂L

∂wi′j′
L†

+ L† ∂L

∂wi′j′
L† ∂L

∂wij
L†LL†).

Introduce

D2 = I2 ⊗ diag(
xij

wij
).

We have

H1 =2
∑

(i,j)∈E

x2
ij

wij
σ2
ij∥t

gt
i − tgtj ∥2

Tr
(
L†Eijwij(v

gt
ij,1v

gt
ij,1

T
+ vgt

ij,2v
gt
ij,2

T
)ET

ijL
†)

=2Tr
(
L†GTD2

2D4GL†) = 2Tr
(
G†D2

2D4G
†T ).

(42)

Through similar calculations, we have

H2 = H4 = 4Tr
(
G†D2GG†D2D4G

†T ), (43)



and

H3 = 2Tr
(
G†D2G

†TGTD4 = GG†D2G
†T ), (44)

and

H5 = H6 = 2Tr
(
G†D4GG†D2G

†TGTD2G
†T ). (45)

Introduce orthonormal matrix U ∈ R2|E|×(2|E|−3n+4)

where
I − UU

T
= GG†.

Substituting Eq. (42), Eq. (43), Eq. (44), and Eq. (45)
into Eq. (41), we have∑

(i,j)∈E

∑
(i′,j′)∈E

xijxi′j′
∂2f

∂wij∂wi′j′
= 2Tr

(
G†FG†T )

(46)

where

F = D2
2D4 − 2D2(I − UU

T
)D2D4 − 2D2D4(I − UU

T
)D2

+D2(I − UU
T
)D4(I − UU

T
)D2

+D4(I − UU
T
)D2(I − UU

T
)D2

+D2(I − UU
T
)D2(I − UU

T
)D4

= D2UU
T
D4UU

T
D2 −D2(I − UU

T
)D2UU

T
D4

−D4UU
T
D2(I − UU

T
)D2.

When wij = 1
σ2
ij∥t

gt
i −tgtj ∥2

, we have D4. As U
T
G† = 0,

we have

Tr
(
G†FG†T ) = ∥G†D2UU

T ∥2F = ∥G†D2U∥2F

It is clear that Tr
(
G†FG†T ) ≥ 0 and equality holds if

and only if D2 = sI2|E|

D.5.2 Proof Prop. 9

We prove a stronger result.

Lemma 1. Consider a unitary matrix U ∈ R2m×n where
2m > n. Let Σ = diag(σi) ∈ Rn×n be a diagonal ma-
trix with all positive values. Consider a vector x ∈ Rm.
Suppose ∀1 ≤ i ≤ m,

Tr
(
(I2⊗ei)

TUΣUT (I2⊗diag(x))(I−UUT )(I2⊗ei

)
= 0,

(47)
then x = s1.

Proof. Denote U = (U1;U2). Then Eq. (47) is equiva-
lent to(

(U1ΣU
T
1 ).(Im − U1U

T
1 ) + (U2ΣU

T
2 ).(Im − U2U

T
2 )

− (U1ΣU
T
2 ).(U1U

T
2 )− (U2ΣU

T
1 ).(U2U

T
1 )

)
x = 0.

(48)

where A.B is the element-wise matrix multiplication
operation.

Denote

A =(U1ΣU
T
1 ).(Im − U1U

T
1 ) + (U2ΣU

T
2 ).(Im − U2U

T
2 )

− (U1ΣU
T
2 ).(U1U

T
2 )− (U2ΣU

T
1 ).(U2U

T
1 ).

We show that xTAx ≥ 0 and equality holds if and
only if x = s1. Let i-th row of U1 and U2 as u1i and
u2i. It follows that

xTAx =

m∑
i=1

x2
i

(
u1iΣu

T
1i + u2iΣu

T
2i

)
−

m∑
i=1

m∑
j=1

xixj

(
(u1iΣu

T
1j)(u1iu

T
1j) + (u2iΣu

T
2j)(u2iu

T
2j)

+ (u1iΣu
T
2j)(u1iu

T
2j) + (u2iΣu

T
1j)(u2iu

T
1j)

)
≥

m∑
i=1

x2
i

(
u1iΣu

T
1i + u2iΣu

T
2i

)
−

m∑
i=1

m∑
j=1

x2
i + x2

j

2

(
(u1iΣu

T
1j)(u1iu

T
1j) + (u2iΣu

T
2j)(u2iu

T
2j)

+ (u1iΣu
T
2j)(u1iu

T
2j) + (u2iΣu

T
1j)(u2iu

T
1j)

)

=

m∑
i=1

x2
i

(
u1iΣu

T
1i + u2iΣu

T
2i

)
−

m∑
i=1

x2
i

(
u1iΣ

(

m∑
j=1

uT
1ju1j)u

T
1i + u2iΣ(

m∑
j=1

uT
2ju2j)u

T
2i

+ u1iΣ(

m∑
j=1

uT
2ju2j)u

T
1i + u2iΣ(

m∑
j=1

uT
1jujj)u

T
2i

)
=

m∑
i=1

x2
i

(
u1iΣu

T
1i + u2iΣu

T
2i

)
−

m∑
i=1

x2
i

(
u1iΣ

(UT
1 U1 + UT

2 U2)u
T
1i + u2iΣ(U

T
1 U1 + UT

2 U2)u
T
2i

)
= 0.

and equality holds if and only if xi = xj ,∀i ̸= j.

E. Proof of Theorem 3

We begin with key lemmas regarding general-purpose
stability results of eigen-values and eigen-vectors and
matrix-norms in Section E.1. Section E.2 complete the
proof of Theorem 3. Section E.3 presents proofs of the
lemmas in Section E.1.

E.1. Key Lemmas

We first present two lemmas regarding the stability
of eigen-values and eigen-vectors. Suppose that the
measurement with edge (i, j) ∈ E is v

inp
ij , and the



underlying ground truth is vgt
ij . The edge weight is

wij ∈ [0, 1]. Let w = (wij). We define

L(w) =
∑

(i,j)∈E

wijEij(I3 − v
inp
ij v

inp
ij

T
)ET

ij ,

Lgt(w) =
∑

(i,j)∈E

wijEij(I3 − vgt
ijv

gt
ij

T
)ET

ij ,

dL(w) =
∑

(i,j)∈E

wijEij(v
gt
ijv

gt
ij

T − v
inp
ij v

inp
ij

T
)ET

ij .

It is clear that L(w) = Lgt(w) + dL(w). Consider

L(w)u4 = λ4u4, Lgt(w)ugt
4 = λgt

4 ugt .

The first lemma characterizes an upper bound of λ4

using dL(w)

Lemma 2. We have,

λ4 ≤ ugtT dL(w)ugt . (49)

Proof: See Section E.3.1.
Denote tij = u4i − u4j and tgtij = ugt

4i − ugt
4j . The

next lemma provides an upper bound on ∥tij − tgtij ∥.

Lemma 3. Suppose ∥dL(w)∥ ≤ λgt
5

3 and

∥Lgt(w)
†
dL(w)∥1 + ∥Lgt(w)

†∥1tgt
T
dL(w)tgt < 1.

Then

∥tij − tgtij ∥ ≤(1− β)
∥ET

ijL
gt(w)

†∥1∥dL(w)tgt∥∞
α

+ β∥tgtij ∥, (50)

and

∥t− tgt∥∞ ≤(1− β)
∥Lgt(w)

†∥1∥dL(w)tgt∥∞
α

+ β∥tgt∥∞, (51)

where

β ≤ ∥dL(w)∥2

2(λgt
5 − ugt

4

T
dL(w)ugt

4 − ∥dL(w)∥)2
,

α =1−
(
ugt
4

T
dL(w)ugt

4 + ∥dL(w)∥1
)
∥Lgt(w)

†∥1.

Proof: See Section E.3.2.
We proceed to bound ∥Lgt(w)

†∥1 and
∥ET

ijL
gt(w)

†∥1 with respect to references ∥Lgt(w)
†∥1

and ∥ET
ijL

gt(w)
†∥1 where w is some reference edge

vector.

Lemma 4. Suppose λ5(L
gt(w)) > 0 and λ5(L

gt(w)) >
0. Then

∥Lgt(w)
†∥1 ≤ ∥Lgt(w)

†∥1
1− ∥Lgt(w)

†∥1c(dw)
(52)

∥ET
ijL

gt(w)
†∥1 ≤

∥ET
ijL

gt(w)
†∥1

1− ∥Lgt(w)
†∥1c(dw)

(53)

where

c(dw) = max
1≤i≤n

∑
j∈Ni

|wij − wij |.

Proof: See Section E.3.3.
We then provide two L∞ bounds on dL(w).

Lemma 5.

∥dL(w)tgt∥∞ ≤ max
1≤i≤n

(
ϵδin

i (w) + δout
i (w)

)
(54)

∥dL(w)∥1 ≤ max
1≤i≤n

(
ϵ
∑

j∈N in
i

wij+

∑
j∈N out

i

wij∥v
inp
ij v

inp
ij

T
− vgt

ijv
gt
ij

T ∥
)

(55)

where

δin
i (w) =

∑
j∈N in

i

wij∥tgtij ∥

δout
i (w) =

∑
j∈N out

i

wij∥
(
v

inp
ij v

inp
ij

T
− vgt

ijv
gt
ij

T )
tgtij ∥

Proof: See Section E.3.4.
Next, we provide two spectral norms of dL(w).

Lemma 6.

tgt
T
dL(w)tgt ≤ ϵ2

∑
(i,j)∈E in

wij∥tgtij ∥
2 +

∑
(i,j)∈Eout

wij∥tgtij ∥
2

∥vinp
ij v

inp
ij

T
− vgt

ijv
gt
ij

T ∥, (56)

and

∥dL(w)∥ ≤ max
1≤i≤n

(
ϵ
∑

j∈N in
i

wij +
∑

j∈N out
i

wij

∥vinp
ij v

inp
ij

T
− vgt

ijv
gt
ij

T ∥
)

(57)

Proof: See Section E.3.5.
Finally, we present two lemmas which are used to

control wij during the alternating procedure.



Lemma 7. Consider a hyper-parameters η < 1. Define

bl(η, t
gt
ij ,v

inp
ij ) := min

∥tij−tgtij∥≤η∥tgtij∥
∥vinp

ij − vij∥2∥tij∥2.

Then bl(η, t
gt
ij ,v

inp
ij ) = 0 when

∥(I3 − v
inp
ij v

inp
ij

T
)vgt

ij ∥ ≤ η.

Otherwise,

bl(η, t
gt
ij ,v

inp
ij ) ≥ 4

(
1− η)2∥tgtij ∥

2 sin2(
ϕ1 − ϕ2

2
)

where

ϕ1 = acos(vinp
ij

T
vgt
ij ), ϕ2 = asin(η).

Proof: See Section E.4.

Lemma 8. Consider a hyper-parameter η ≤ 1. Define

bu(η, t
gt
ij ,v

inp
ij ) := max

∥tij−tgtij∥≤η∥tgtij∥
∥vinp

ij − vij∥2∥tij∥2.

Then

bu(η, t
gt
ij ,v

inp
ij ) ≤4 sin2(min(

π

2
,
ϕ1 + ϕ2

2
))

(1 + η)2∥tgtij ∥)
2

Proof: See Section E.5.

E.2. Complete the Proof of Theorem 3

Our proof is based on the eigen stability results in
Lemma 2 and Lemma 3 and the bounds in Lemma 4
to Lemma 8.

As our goal is to show the robustness of our algo-
rithm against outliers, our proof do not aim to provide
tight values of c1, c2, c3. Define

r = max
(i,j)∈E

∥tgtij ∥/ min
(i,j)∈E

∥tgtij ∥.

We assume that the value of r is not super big.
We show that the iterative procedure converges to a

local minimum that is sufficiently close to tgt . Denote

δ(ϵ,w) := max
1≤i≤n

(
ϵ
∑

j∈N in
i

wij+

∑
j∈N out

i

wij∥v
inp
ij v

inp
ij

T
− vgt

ijv
gt
ij

T ∥
)
∥.

Applying Lemma 5, we have ∀(i, j) ∈ E ,

∥dL(w)tgt∥∞ ≤ rδ(ϵ,w)∥tgtij ∥,

and
∥dL(w)∥ ≤ ∥dL(w)tgt∥1 ≤ δ(ϵ,w).

This means α and β in Lemma 3 satisfy

α ≥ 1− 2δ(ϵ,w)∥Lgt(w)
†∥1, (58)

β ≤ δ(ϵ,w)
2

2(1− 2δ(ϵ,w))2
. (59)

Applying Lemma 3, we have

∥tij − tgtij ∥
∥tgtij ∥

≤ β +
1− β

α
∥ET

ijL
gt(w)

+∥1δ(ϵ,w)

It is clear that we can choose c1, c2, c3 so that the
output of the first iteration of our algorithm satisfies

∥tij − tgtij ∥ ≤ 1

4
∥tgtij ∥, α ≥ 7

8
.

Applying Lemma 7 and Lemma 8 and after some cal-
culation, we have that the edge weights wij converge
to the neighborhood of

wij =
σ2
min

σ2
min + ∥vinp

ij − vgt
ij ∥2∥t

gt
ij ∥2

.

Theorem 3 then follows Lemma 3 and Lemma 4.

E.3. Proof of Lemmas in Section E.1

E.3.1 Proof of Lemma 2

Note the following variational definition of

λ4 = min
x∈R3n,∥x∥=1,(1⊗I3)Tx=0

xTLx. (60)

As (1⊗ I3)
Tugt

4 = 0, we have

λ4 ≤ugt
4

T
Lugt

4

=ugt
4

T
(Lgt + dL)ugt

4 = ugt
4

T
dLugt

4 .

E.3.2 Proof of Lemma 3

Let U
gt

4 ∈ R3n×(3n−4) collect the 5-th to 3n-th eigen-
vectors Lgt . As (1 ⊗ I3)

Tu4 = (1 ⊗ I3)
Tugt

4 = 0, we
can express

du = u4 − ugt
4 = −xugt

4 + U
gt

4 y. (61)



As ∥u4∥ = 1, we have

(1− x)2 + ∥y∥2 = 1. (62)

The following proposition describes the formula
for U

gt

4 y

Proposition 10. Suppose ∥dL∥+ugt
4

T
dLugt

4 < λgt
5 . Then

U
gt

4 y = −(1− x)
(
I + L†(λ4)dL

)−1
L†(λ4)dLu

gt
4 . (63)

where
L†(λ4) = U

gt

4 (Λ− λ4I)
−1U

gt

4

T
.

Proof:
First of all, from (Lgt+dL)(ugt

4 +du) = λ4(u
gt
4 +du),

we have

(Lgt + dL− λ4I)du = (λ4I − dL)ugt
4 . (64)

Substituting Eq. (61) into Eq. (64) and multiplying

both sides by U
gt

4

T
, we arrive at(

Λ− λ4I +U
gt

4

T
dLU

gt

4

)
y = −(1− x)U

gt

4

T
dLugt

4 (65)

which means

y = −(1− x)
(
Λ− λ4I + U

gt

4

T
dLU

gt

4

)−1
U

gt

4

T
dLugt

4 .

Note that

U
gt

4

(
Λ− λ4I + U

gt

4

T
dLU

gt

4

)−1
U

gt

4

T
dLugt

4

=U
gt

4 (Λ− λ4I)
− 1

2

(
I + (Λ− λ4I)

− 1
2U

gt

4

T
dLU

gt

4

(Λ− λ4I)
− 1

2

)−1
(Λ− λ4I)

− 1
2U

gt

4

T
dLugt

4

=(I + L†(λ4)dL)
−1L†(λ4)dLu

gt
4

The following proposition provides an upper
bound on x.

Proposition 11. Suppose ∥dL∥ ≤ λgt
5

3 , we have

x ≤ ∥dL∥2

2(λgt
5 − λ4 − ∥dL∥)2

. (66)

Proof: Denote

α = ∥
(
I + L†(λ4)dL

)−1
L†(λ4)dLu

gt
4 ∥,

then
(1− x)2 =

1

1 + α2
. (67)

Note that

∥L†(λ4)dL∥ ≤ ∥dL∥
λgt
5 − λ4

.

It follows that

α ≤ ∥dL∥
λgt
5 − λ4 − ∥dL∥

. (68)

As ∥dL∥ 1
3λ

gt
5 , we have

α ≤ 1

2
.

Substituting (68) into (67), we have

x ≤1− 1√
1 + α2

≤ α2

2

≤ ∥dL∥2

2(λgt
5 − λ4 − ∥dL∥)2

(69)

We have

∥tij − tgtij ∥ =∥ET
ijdu∥ ≤ x∥ET

iju
gt
4 ∥+ (1− x)

∥ET
ijL

†(λ4)dL(I + L†(λ4)dL)
−1ugt

4 ∥
≤x∥tgtij ∥+ (1− x)∥ET

ijL
†(λ4)

+∞∑
i=0

(−dLL†(λ4))
idLugt

4 ∥1

≤x∥tgtij ∥+ (1− x)
∥ET

ijL
†(λ4)∥1∥dLugt

4 ∥∞
1− ∥L†(λ4)dL∥1

(70)

Note that

∥ET
ijL

†(λ4)∥1 = ∥
+∞∑
i=0

ET
ijλ

i
4(L

†)i+1∥1

≤ ∥ET
ijL

†∥1
+∞∑
i=0

(λ4∥L†∥1)i

=
∥ET

ijL
†∥1

1− λ4∥L†∥1
(71)

Similarly,

∥L†(λ4)dL∥1 = ∥
+∞∑
i=0

λi
4L

†)i+1dL∥1

≤ ∥L†dL∥1
1− λ4∥L†∥1

(72)

Substituting (71) and (72) into (70), we obtain

∥tij − tgtij ∥ ≤ x∥tgtij ∥+ (1− x)
∥ET

ijL
†∥1∥dLugt

4 ∥∞
1− λ4∥L†∥1 − ∥L†dL∥1

(73)



Similarly, we have

∥t− tgt∥ ≤ x∥tgt∥+ (1− x)
∥L†∥1∥dLugt

4 ∥∞
1− λ4∥L†∥1 − ∥L†dL∥1

.

(74)
We now end the proof because

λ4 ≤ ugt
4

T
dLugt

4 .

E.3.3 Proof Lemma 4

We only prove Eq. (52) as the proof of Eq. (53) is very
similar.

Note that both Lgt(w) and Lgt(w) share the same
non-trivial eigenvectors denoted as U

gt

4 . This means,

Lgt(w)
†
= U

gt

4

(
U

gt

4

T
Lgt(w)U

gt

4

)−1

U
gt

4

T
,

Lgt(w)
†
= U

gt

4

(
U

gt

4

T
Lgt(w)U

gt

4

)−1

U
gt

4

T
.

It follows that,

Lgt(w)
†

=U
gt

4

(
U

gt

4

T
Lgt(w)U

gt

4 + U
gt

4

T
Lgt(dw)U

gt

4

)−1

U
gt

4

T

=U
gt

4

(
U

gt

4

T
Lgt(w)U

gt

4

)−1
∞∑
i=0

(
−
(
U

gt

4

T
Lgt(w)U

gt

4

)−1

U
gt

4

T
Lgt(dw)U

gt

4

)i

U
gt

4

T

=Lgt(w)
†

n∑
i=0

(
− Lgt(w)

†
Lgt(dw)

)i

.

Applying triangle inequality, we arrive at

∥Lgt(w)
†∥1 ≤ ∥Lgt(w)

†∥1
∞∑
i=0

(
∥Lgt(w)

†∥1∥Lgt(dw)∥1
)i

=
∥Lgt(w)

†∥1
1− ∥Lgt(w)

†∥1∥Lgt(dw)∥1
.

E.3.4 Proof of Lemma 5

We first describe two propositions regarding the non-
empty blocks of dL(w).

Proposition 12. ∀(i, j) ∈ E in, we have

∥(vgt
ijv

gt
ij

T − vijv
T
ij)t

gt
ij ∥ ≤ ϵ∥tgtij ∥, (75)

∥vgt
ijv

gt
ij

T − vijv
T
ij∥ ≤ ϵ. (76)

Moreover, ∀(i, j) ∈ Eout, we have

∥(vgt
ijv

gt
ij

T − vijv
T
ij)t

gt
ij ∥ ≤ ∥tgtij ∥, (77)

∥vgt
ijv

gt
ij

T − vijv
T
ij∥ ≤ 1, (78)

Proof: Express vij as

vij = cos(θ)vgt
ij + sin(θ)vgt

ij

⊥
,

vgt
ij

⊥
=

(I3 − vgt
ijv

gt
ij

T
)vij

∥(I3 − vgt
ijv

gt
ij

T
)vij∥

.

Then

vgt
ijv

gt
ij

T − vijv
T
ij

=(vgt
ij ,v

gt
ij

⊥
) sin(θ)

(
sin(θ) − cos(θ)

− cos(θ) − sin(θ)

)
(vgt

ij ,v
gt
ij

⊥
)T .

(79)

This means

∥vgt
ijv

gt
ij

T − vijv
T
ij∥

=| sin(θ)|∥
(

sin(θ) − cos(θ)
− cos(θ) − sin(θ)

)
∥

=| sin(θ)|.

Moreover,

∥(vgt
ijv

gt
ij

T − vijv
T
ij)t

gt
ij ∥

=| sin(θ)|∥
(

sin(θ) − cos(θ)
− cos(θ) − sin(θ)

)
(∥tgtij ∥, 0)

T ∥

=| sin(θ)|∥tgtij ∥.

We complete the proof by noting that When (i, j) ∈
E in, we have | sin(θ)| ≤ ϵ.

We now complete the proof of Lemma 5. Applying
Eq. (75) and Eq. (77), Eq. (54) is true because

∥dL(w)tgt∥∞ ≤ ∥dL(w)tgt∥∞ + ∥dL(dw)tgt∥∞

where

∥dL(dw)tgt∥∞

≤ max
1≤i≤n

( ∑
j∈Ni

|dwij |∥(vgt
ijv

gt
ij

T − vijv
T
ij)t

gt
ij ∥

)
≤ max

1≤i≤n

( ∑
j∈N in

i

ϵ|dwij |∥tgtij ∥+
∑

j∈N out
i

|dwij |∥tgtij ∥
)

= max
1≤i≤n

(
ϵδin

i (dw) + δout
i (dw)

)
.

Eq. (55) can be proven in a similar fashion.



E.3.5 Proof of Lemma 6

First of all, we have

tgt
T
dL(w)tgt = tgt

T
dL(w)tgt + tgt

T
dL(dw)tgt

where

tgt
T
dL(dw)tgt

=
∑

(i,j)∈E

(wij − wij)t
gt
ij

T
(vgt

ijv
gt
ij

T − vijv
T
ij)t

gt
ij

Applying Eq. (79), we have

tgtij
T (

vgt
ijv

gt
ij

T − vijv
T
ij

)
tgtij

=sin2(θ)∥tgtij ∥
2

Therefore,

tgt
T
dL(dw)tgt ≤ ϵ2

∑
(i,j)∈E in

|wij − wij |∥tgtij ∥
2

+
∑

(i,j)∈Eout

|wij − wij |∥tgtij ∥
2,

which proves Eq. (56).
Moreover,

∥dL(w)∥ ≤ ∥dL(w∥+ ∥dL(dw)∥
≤ ∥dL(w∥+ ∥dL(dw)∥1.

The rest of the proof follows that of Lemma 5 in Sec-
tion E.3.4.

E.4. Proof of Lemma 7

It is clear that the minimum value of ∥tij∥ and the
minimum value of ∥vinp

ij − vij∥ can be obtained in iso-
lation. The minimum value of ∥tij∥ is (1 − η)∥tgtij ∥.

When v
inp
ij is in the cone specified by ∥tij − tgtij ∥ ≤

η∥tgtij ∥, the minimum value is given by ∥vinp
ij − vij∥.

Otherwise, ∥vinp
ij − vij∥ is given by the difference be-

tween the angle between v
inp
ij and vgt

ij and half-angle
of the cone. This ends the proof.

E.5. Proof of Lemma 8

The proof is very similar to that of Lemma 7. The only
difference is that the maximum value of ∥vinp

ij −vij∥ is
2.
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