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Blending functions

* By multiplying first two matrices in lower-left
equation, you have four functions of ‘t’ that
blend the four control parameters
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Review: Bezier Curve

 Similar to Hermite, but more intuitive
definition of endpoint derivatives

Four control points, two of which are knots
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Review: Bézier vs. Hermite

e \WWe can write our Bezier in terms of Hermite
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Review: Bézier vs. Hermite

* The relation between polynomial coefficients
and the constraints are linear




Bézier Curves

* Will always remain within bounding region
defined by control points
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Figure 10-34

Examples of two-dimensional Bézier curves generated from three, four,
and five control points. Dashed lines connect the control-point
positions.



Limitations of Bezier Curves

 The degree of the polynomial is related to the
number of control points

* No local control

— Change one control point would change the entire curve



Bspline Curves



Motivating Example
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Uniform Bspline
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s<.

c1(s) = po(1 — ) +p12(1 — s)s + 5
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Basis functions
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Generalization to Bspline definition

* Control points \
* Knotvectort={(t, t,...t,) | T
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Nio(t) == { 0 otherwise
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B-Spline Curve

* Bsplines are summarized from curves that stitch
Bezier segments together

e Start with a sequence of control points

* Select four from middle of sequence (p..,, P..;, Pis Pisq)
— Bezier and Hermite goes between p., and p,,,

— B-Spline doesn’t interpolate (touch) any of them but
approximates the going through p. ; and p,



Uniform B-Splines

* Approximating Splines

e Approximates n+1 control points
— Py, Py, .., P,,n >3

* Curve consists of n —2 cubic polynomial segments
— Q3 Q- Q,

* tvariesalong B-splineasQ:t. <=t<t,,

* t (i = integer) are knot points that join segment Q. , to Q,

* Curveis uniform because knots are spaced at equal
intervals of parameter, t



Uniform B-Splines

* First curve segment, Q,, is defined by first four
control points

* Last curve segment, Q,, is defined by last four
control points, P, 5, P.. 5, P4, P,

* Each control point affects four curve segments



Bspline Surfaces



Bspline Surfaces

* The same way to we generalize Bezier curves
to Bezier surfaces
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NURBS Surfaces



NURBS Surfaces

e General form of a NURBS curve
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* Non-rational splines or Bezier curves may
approximate a circle, but they cannot
represent it exactly. Rational splines can
represent any conic section, including the
circle, exactly.



NURBS Representing an ARC

(1 —u)%(1,0) + wi2u(l — u)(1,1) + wou?(0, 1)

_ Wo
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Tspline



TSpline
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[Sederberg et al 03]



Questions?



