CS376 Computer Vision Lecture 6: Optical Flow

Slides Credit: Kristen Grauman and Sebastian Thrun, Michael Black, Marc Pollefeys

Optical Flow

What is Optical Flow?

Optical flow is the 2D projection of the physical movement of points relative to the observer

A common assumption is brightness constancy:

$$I(p_i, t) = I(p_i + \vec{v}_i, t+1)$$

When does Brightness Assumption Break down?

- TV is based on illusory motion
 - the set is stationary yet things seem to move
- A uniform rotating sphere
 - nothing seems to move, yet it is rotating
- Changing directions or intensities of lighting can make things seem to move
 - for example, if the specular highlight on a rotating sphere moves
- Muscle movement can make some spots on a cheetah move opposite direction of motion

Optical Flow Assumptions: Brightness Constancy

Assumption

Image measurements (e.g. brightness) in a small region remain the same although their location may change.

$$I(x+u, y+v, t+1) = I(x, y, t)$$

(assumption)

5

Optical Flow Assumptions:

Neighboring pixels tend to have similar motions

When does this break down?

Optical Flow Assumptions:

• The image motion of a surface path changes gradually over time

1D Optical Flow

Optical Flow: 1D Case

Brightness Constancy Assumption:

$$f(t) \equiv I(x(t), t) = I(x(t+dt), t+dt)$$

 $\frac{\partial f(x)}{\partial t} = 0$ Because no change in brightness with time

2D Optical Flow

From 1D to 2D tracking

1D:
$$\frac{\partial I}{\partial x}\Big|_t \left(\frac{\partial x}{\partial t}\right) + \frac{\partial I}{\partial t}\Big|_{x(t)} = 0$$

2D:
$$\frac{\partial I}{\partial x}\Big|_{t}\left(\frac{\partial x}{\partial t}\right) + \frac{\partial I}{\partial y}\Big|_{t}\left(\frac{\partial y}{\partial t}\right) + \frac{\partial I}{\partial t}\Big|_{x(t)} = 0$$
$$\frac{\partial I}{\partial x}\Big|_{t}u + \frac{\partial I}{\partial y}\Big|_{t}v + \frac{\partial I}{\partial t}\Big|_{x(t)} = 0$$

One equation but two velocity (u,v) unknowns...

How does this show up visually? Known as the "Aperture Problem"

Aperture Problem in Real Life Aperture Problem

z axis

From 1D to 2D tracking

The Math is very similar:

Window size here ~ 11x11

More Detail: Solving the aperture problem

- How to get more equations for a pixel? -- impose additional constraints
- most common is to assume that the flow field is smooth locally
- one method: pretend the pixel's neighbors have the same (u,v)

 $0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix}$$
$$\begin{pmatrix} A & d & b \\ 25 \times 2 & 2 \times 1 & 25 \times 1 \end{bmatrix}$$

Suppose a 5x5 window

Lukas-Kanade flow

• Prob: we have more equations than unknowns

 $\begin{array}{ccc} A & d = b \\ _{25\times2} & _{2\times1} & _{25\times1} \end{array} \longrightarrow \text{minimize } \|Ad - b\|^2$

- Solution: solve least squares problem
 - minimum least squares solution given by solution (in d) of:

$$(A^T A)_{2\times 2} d = A^T b_{2\times 1} d = A^T b$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lukas & Kanade (1981)
 - described in Trucco & Verri reading

Conditions for solvability

- Optimal (u, v) satisfies Lucas-Kanade equation $\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$ $A^T A \qquad A^T b$

When is This Solvable?

- **A^TA** should be invertible
- **A^TA** should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of **A^TA** should not be too small
- A^TA should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

Eigenvectors of A^TA

 $A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$

- Suppose (x,y) is on an edge. What is A^TA?
 - gradients along edge all point the same direction
 - gradients away from edge have small magnitude

$$\left(\sum \nabla I (\nabla I)^T\right) \approx k \nabla I \nabla I^T$$
$$\left(\sum \nabla I (\nabla I)^T\right) \nabla I = k \|\nabla I\| \nabla I$$

- $-\nabla I$ is an eigenvector with eigenvalue $\|k\|\nabla I\|$
- What's the other eigenvector of $A^T A$?
 - let N be perpendicular to ∇I

$$\left(\sum \nabla I (\nabla I)^T\right) N = 0$$

- N is the second eigenvector with eigenvalue 0
- The eigenvectors of A^TA relate to edge direction and magnitude

18

Edge

Low texture region

10

- gradients have small magnitude

– small λ_1 , small λ_2

High textured region

Observation

- This is a two image problem BUT
 - Can measure sensitivity by just looking at one of the images!
 - This tells us which pixels are easy to track, which are hard
 - very useful later on when we do feature tracking...

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose A^TA is easily invertible
- Suppose there is not much noise in the image
- When our assumptions are violated
 - Brightness constancy is **not** satisfied
 - The motion is **not** small
 - A point does **not** move like its neighbors
 - window size is too large
 - what is the ideal window size?

Improving accuracy

• Recall our small motion assumption

 $0 = I(x + u, y + v) - I_{t-1}(x, y)$

 $\approx I(x, y) + I_x u + I_y v - I_{t-1}(x, y)$

• This is not exact

- To do better, we need to add higher order terms back in:

= $I(x, y) + I_x u + I_y v$ + higher order terms - $I_{t-1}(x, y)$

- This is a polynomial root finding problem
 - Can solve using Newton's method
 - Also known as **Newton-Raphson** method
 - Lukas-Kanade method does one iteration of Newton's method
 - Better results are obtained via more iterations

Iterative Refinement

- Iterative Lukas-Kanade Algorithm
 - 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
 - 2. Warp I(t-1) towards I(t) using the estimated flow field
 - use image warping techniques
 - 3. Repeat until convergence

Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2nd order terms dominate)
 - How might we solve this problem?

Reduce the resolution!

Optical Flow Results

Optical Flow Results

What about other types of motion?

Generalization

• Transformations/warping of image

$$E(\mathbf{A}, \mathbf{h}) = \sum_{\mathbf{x} \in \mathbb{N}_{R}} \left[I(\mathbf{A}\mathbf{x} + \mathbf{h}) - I_{0}(\mathbf{x}) \right]^{2}$$

Affine:
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{h} = \begin{bmatrix} \delta x \\ \delta y \end{bmatrix}$$

Affine Flow Linear Basis

You can think of this as just another set of linear basis functions!

Horn & Schunck algorithm

Additional smoothness constraint :

$$e_{s} = \iint ((u_{x}^{2} + u_{y}^{2}) + (v_{x}^{2} + v_{y}^{2}))dxdy,$$

besides Opt. Flow constraint equation term

$$e_c = \iint (I_x u + I_y v + I_t)^2 dx dy,$$

minimize $e_s + \alpha e_c$

Horn & Schunck algorithm

In simpler terms: If we want dense flow, we need to regularize what happens in ill conditioned (rank deficient) areas of the image. We take the old cost function:

$$d = \arg\min_{d} \sum_{x \in N} (I(x,t) - I(x+d,t+1))^2$$

And add a regularization term to the cost:

$$d = \arg\min_{d} \sum_{x \in N} (I(x,t) - I(x+d,t+1))^2 + \alpha \|d\|$$

Convex Program!

We will see a lot of such formulations in in robust regression!

Discussion: What are the other methods to improve optical flows?