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Abstract

Monocular 3D prediction is one of the fundamental
problems in 3D vision. Recent deep learning-based ap-
proaches have brought us exciting progress on this problem.
However, existing approaches have predominantly focused
on end-to-end depth and normal predictions, which do
not fully utilize the underlying 3D environment’s geometric
structures. This paper introduces StruMonoNet, which
detects and enforces a planar structure to enhance pixel-
wise predictions. StruMonoNet innovates in leveraging a
hybrid representation that combines visual feature and a
surfel representation for plane prediction. This formulation
allows us to combine the power of visual feature learning
and the flexibility of geometric representations in incorpo-
rating geometric relations. As a result, StruMonoNet can
detect relations between planes such as adjacent planes,
perpendicular planes, and parallel planes, all of which are
beneficial for dense 3D prediction. Experimental results
show that StruMonoNet considerably outperforms state-of-
the-art approaches on NYUv2 and ScanNet.

1. Introduction

Monocular 3D prediction is a long-standing problem in
3D vision. Recent approaches [9, 8, 21, 35, 20, 12, 22],
which apply end-to-end feature learning, have shown great
promise of applying deep learning to this problem. 3D
prediction involves many correlated tasks. An interesting
problem is how to explore the interconnections among these
tasks that can benefit each other. This paper studies the
interconnections between predictions of local geometric
elements such as depth and normal and predictions of
middle-level planar structures rich in 3D scenes. Our
goal is to answer critical questions in developing suitable
geometric representations for plane detection and extracting
rich relations among planes to enhance the predictions of
depth, normal, and plane equations.

Specifically, we introduce StruMonoNet, which takes a
single RGB image as input and outputs joint predictions of
depth, normal, and a planar structure (See Figure 1). Instead
of training a network to regress a fixed number of plane

Figure 1. StruMonoNet takes a single RGB image of a 3D scene as
input (Left) and outputs a joint prediction of the underlying planar
structure and relations (Middle) and surfels (Right).

equations (c.f. [25]), StruMonoNet utilizes an intermediate
representation that combines surfels (positions + normals)
and dense visual features. This formulation enables a
simple clustering module for plane detection, where visual
features guide the clustering procedure through a trainable
sub-module. It also fully incorporates depth/normal labels
for plane detection through predicted surfels, which are
unavailable in black box plane detection.

Unlike merely detecting individual planes, StruMonoNet
detects and enforces geometric relations between planes,
e.g., adjacent planes, perpendicular planes, and parallel
planes. Enforcing such structures enhances the prediction
accuracy of individual planes significantly. StruMonoNet
introduces a novel plane synchronization module that au-
tomatically detects such relations and enforces them to
enhance the predicted planes’ accuracy.

StruMonoNet takes inspiration from the observation that
depth and normal prediction errors of a deep-learning ap-
proach typically have large variance and small bias. There-
fore, one can rectify the prediction error by applying suit-
able averaging operations. Although it is impossible to rec-
tify the predictions across different images, StruMonoNet
achieves the partial goal of averaging them among detected
planar regions of each image. The improved predictions
then propagate to non-planar regions. Note that the adja-
cency, perpendicular, and parallel planes are critical from
this aspect. They allow us to incorporate more pixels for
rectification.

Our approach outperforms the state-of-the-art ap-
proaches on two benchmark datasets ScanNet [6] and
NYUv2 [26] for monocular depth prediction. We also
achieve considerable improvements on normal prediction



(Table 3) on NYUv2 and plane detection (Table 5) on
ScanNet over state-of-the-art methods.

In summary, our contributions include

• A hybrid representation that combines positions, nor-
mals, and visual features for joint predictions of planar
structures and pixel-wise depth and normal.

• A synchronization module that detects planes and their
geometric relations such as adjacent planes, perpendic-
ular planes, and parallel planes.

• State-of-the-art results on depth prediction on ScanNet
and NYUv2, state-of-the-art results on normal predic-
tion on NYUv2, and state-of-the-art results on planar
detection on ScanNet.

2. Related Work
Early monocular 3D perception approaches were based

on geometric cues, such as shape-from-shading [43] and
parallel lines [5]. These approaches place critical re-
strictions on the input images and do not generalize well
to natural scenes. Recent monocular 3D perception ap-
proaches [32, 14, 13, 21, 35, 20, 12] leveraged cutting-
edge machine learning techniques to learn mappings from
visual features of the input to 3D geometric structures.
In particular, very recent deep neural techniques [9, 8,
21, 35, 20, 12] have shown remarkable performance gains
due to their ability to learn sophisticated visual features
unavailable in hand-crafted visual features. Despite the
significant progress in predicting depth, these approaches
typically do not consider rich geometric structures in natural
environments (e.g., primitive shapes and symmetric rela-
tions) beneficial for 3D depth perception.

Some recent works [23, 41] proposed to enforce differ-
ent kinds of geometric constraints in the depth prediction
network, for example, local planar structure [23]. Such ap-
proaches are shown to considerably boost the state-of-the-
art performance on depth prediction, revealing the potential
of geometric constraints. Compared with [23], our method
takes a step further in that we are not constrained to local
planar patch. Our design enables us to aggregate across
a much larger geometric neighborhood, greatly enhancing
prediction precision. Furthermore, we also leverage the
relational cues from planar patches to further improve the
performance.

StruMonoNet is also motivated by recent advances in
monocular 3D structure prediction. [25] pioneered to
predict planes from a single image using learning. [24, 42]
further enhanced the performance with new prediction mod-
ules. Besides planes, [45] proposed to predict semantic-line
structures from a single image. [46] generalized the results
to achieve 3D wire-frame reconstruction. However, all
these methods mainly focus on structure prediction. They

do not focus on depth and normal prediction. In contrast,
StruMonoNet integrates the predictions of depth, normal,
and planar structure. It first combines visual features
and predictions of depth and normal to predict the planar
structure through a plane synchronization module. The
resulting planar structure is then used to rectify predictions
of depth and normal.

StruMonoNet is relevant to the methodology of estab-
lishing a neural network from a source domain to a target
domain by composing two neural networks through an
intermediate domain. This methodology has been adopted
across many AI tasks. Examples include learning a machine
translator between two minor languages by composing
machine translators via a mother language [19], solving
6D object pose prediction via intermediate keypoint de-
tections [1, 31, 28, 36, 27, 29, 34], and predicting 3D
human poses through 2D keypoint predictions [44]. This
paper innovates in aggregating predicted point positions,
point normals, and point descriptors as an intermediate
feature representation to predict planar structures. We
also introduce a novel rectification module that leverages
predicted planar structures to refine depth and normal.

3. Approach

In this section, we present the technical details of Stru-
MonoNet. We begin with the problem statement and an
overview of StruMonoNet in Section 3.1. Section 3.2
to Section 3.4 elaborate on the design of each module.
Section 3.5 discusses network training.

3.1. Problem Statement and Approach Overview

Problem statement. Consider a single RGB image I ∈
Rm×n×3 with known intrinsic matrix K ∈ R3×3 (m =
480 and n = 640 for this paper). The goal of StruMonoNet
is to predict a set of surfels S = {s} that encodes the
3D position and normal associated with each pixel in the
camera coordinate system and a collection of planar patches
P = {p}. Here each plane p collects indices I of the points
that belong to this plane and the associated plane equation
(dp,np), where dp and np are distance to the origin and
plane normal, respectively. In particular, predictions of
depth, normal, and plane equations are consistent with each
other.
Overview of StruMonoNet. As illustrated in 2, Stru-
MonoNet has three components. The design emphasizes
the combination of geometric representations and feature
descriptors. Specifically, the first component outputs an
initial prediction of the surfels S = {s} and high di-
mensional descriptors. The descriptor is used later for
extracting semantic features such as plane embedding, i.e.,
an embedding that distinguishes pixels belongs to different
planes. This module also predicts pixels that lie at the



Figure 2. This figure illustrates the pipeline of StruMonoNet, which consists of three components. The first component provides initial
predictions of depth/normal/boundary/descriptor. The second and component perform plane detection. The third component synchronize
the detected planes and refines the surfels among non-planar regions. We illustrate the top-down view of the predicted surfels in the plane
prediction figures to highlight the effect of geometric rectification.

intersection of 3D planes. They will be used to link adjacent
planes when performing plane synchronization.

The second component performs plane detection through
a generalized mean-shift procedure on the predicted surfels
S = {s} to initialize plane detection. The clustering
procedure is driven by relative weights that aggregate surfel
feature and surfel geometry.

The third component performs geometric rectification
using the detected planar structure. This is done using a syn-
chronization module to detect pairwise relations between
the detected planes and enforce them to enhance the plane
predictions. This component also refines surfel geometry,
taking the detected planes and the first component’s output
as input. StruMonoNet is trained by combining super-
visions of pixel depth, pixel normal, planar patches, and
relations between planes.

3.2. Surfel Prediction Module

The surfel prediction module includes a backbone en-
coder and four separate decoders for predicting depth, nor-
mal, descriptor (dimension = 32), and a heat-map that en-
codes boundary pixels. Following [23], we use DenseNet-
161[15] as the backbone encoder. We add skip-connections
between the corresponding encoder and decoder layers.

We determine the ground-truth boundary pixels using
plane annotations. Specifically, we compute the intersection
of 3D lines between all pairs of ground truth planes and then
project the 3D lines into the image plane. Please refer to the
supp. material for details.

3.3. Plane Detection Module

The plane detection module generalizes mean-shift clus-
tering [4] to compute initial plane predictions. Denote
S init = {s} as the dense output of the first module. Let
s = (ps;ns;fs) collect the position ps, normal ns, and
descriptor fs of s. Our mean-shift procedure computes
a series of updated surfels S(t) = {s(t)}Tt=1 through the

following recursion:

s(t+1) = φ
( ∑

s′∈S(t)

w(s(t), s′, θms)s
′/
∑

s′∈S(t)

w(s(t), s′, θms)
)

(1)
where φ(s) is an operator that normalizes the normal
component of s while keeps other elements of s unchanged.
Weighting module. Instead of performing range query
(c.f. [4]), StruMonoNet employs a weighting sub-module
w(s, s′, θms) to predict the closeness between s and s′. We
definew(s, s′, θms) by combing a geometric distance dg and
a feature distance df .

Specifically, we define

w(s, s′, θms) = exp
(
−
d2g(s, s′, θg)

2σ2
g

−
d2f (s, s′)

2σ2
f

)
(2)

where σg and σf are trainable parameters.
For plane detection, we define the geometric distance

and feature distance as

d2g(s, s′, θg) =
(
(ps − ps′)

Tns

)2
+ θg‖ns − ns′‖2, (3)

d2f (s, s′) = ‖fs − fs′‖2 (4)

where θg is another trainable parameter.
Plane extraction. Let ST denote the updated surfels after
mean-shift clustering, StruMonoNet employs the standard
approach of binning (pT

s ns,ns), s ∈ ST to determine the
resulting clusters (c.f. [18]). The geometry of each detected
plane is determined by averaging the normals and positions
of the surfels inside the bin.

3.4. Geometric Rectification Module

This module detects and enforces relations between
planes to rectify the geometry of the detected planes. As
illustrated in Figure 3, StruMonoNet considers three types
of relations, namely, adjacent planes, perpendicular planes,
and parallel planes. Note that one pair of planes may
possess multiple relations (e.g., perpendicular and adja-
cent). We enforce such relations through a synchronization



Figure 3. Illustrations of different types of planar relations. (a)
Adjacent planes. (b) Perpendicular planes. (c) Parallel planes.
s surfel p plane b boundary
S all surfels P all planes B all boundaries
ps position of s ns normal of s fs descriptor of s
dp distance of p np normal of p b K−1(b0, b1, 1)T

t clustering iteration T max clustering step wx weight for term x
θms = {θg , σg , σf} trainable parameters for plane detection module
θreg, θperp, θpar, θadj trainable parameters for plane synchronization module

Table 1. We summarize here the notations and corresponding
definitions used in the paper.

network derived from solving a non-linear robust least
square formulation. The key idea is to minimize a robust
norm to automatically detect and prune incorrect constraints
(c.f. [2, 17]). In the following, we first introduce the
objective function of the optimization problem. We then
describe the induced synchronization module.
Objective function. Let P = {p} denote the detected
planes, where (dinit

p ,ninit
p ) encodes the initial plane equation.

With B = {b} we denote candidate boundary pixels (i.e.,
the output of the first module) that are used to bridge
adjacent planes. Each boundary pixel b encodes its homoge-
neous coordinate b = K−1(b0, b1, 1)T and its latent feature
f b (from the output of the first module).

Motivated from the iteratively reweighted non-linear
squares for robust regression [7], we set up the following
objective function to jointly optimize all plane questions
{dp,np}.

min
{dp,np}

∑
p∈P

wreg(p, pinit, θreg)d2reg(p, pinit)

+
∑

p,p′∈P
wt(p,p′)(p, p

′, θt(p,p′))d
2
t(p,p′)(p, p

′)

+
∑

p,p′∈P init

∑
b∈B

wadj(p, p
′, b, θadj)d

2
adj(p, p

′, b) (5)

where t(p, p′) ∈ {perp, par} is the relation type between p
and p′; the geometric distance measures dreg,dperp,dpar,dadj
are defined as follows:

d2reg(p, p′) = (dp − dp′)2 + α‖np − np′‖2

dperp(p, p′) = nT
p np′

dpar(p, p
′) = ‖np − sign(nT

p np′)np′‖
dadj(p, p

′, b) = dp/(n
T
p b)− dp′/(nT

p′b) (6)

where α is a tradeoff parameter between distance and
normal. Specifically, wreg, wperp,wpar and wadj apply a

similar formulation of (2), while replacing the geometric
distances by dreg, dperp, dpar and dadj, respectively.
Synchronization module. The synchronization module
applies an iteratively reweighted scheme (c.f. [7]) to solve
(5). This module starts with the output of the clustering
module. At each step, it first applies the weighting module
to determine the weight of each term. It then fixes the terms
weight and applies one step of Gauss-Newton optimization
to solve (5). The entire synchronization module is a feed-
forward sub-network.

Let v(t) collect a parameterization of plane parameters
at iteration t. The Gauss-Newton step admits the following
form:

v(t+1) = v(t) −H(v(t),Θ)−1g(v(t),Θ) (7)

where H and g are the Gauss-Newton Hessian and the
gradient g evaluated at v(t), respectively; Θ collects all
the parameters. Applying chain-rule, we use the following
recursion to derive the derivatives between v and Θ for
network training:

∂v(t+1)

∂Θ
= (I −H−1 ∂g

∂v
)
∂v(t)

∂Θ
−H−1 · ∂g

∂Θ

+H−1
(∂H
∂v

∂v(t)

∂Θ
+
∂H

∂Θ

)
H−1g.

Refinement module We also refine the depth/normal
among the predicted non-planar region by treating this
goal as a variance of the image in-painting problem. This
is done by a small encoder-decoder network. The input
consists of predicted offsets of depth/normal among the
predicted planar regions obtained from the geometric rec-
tification module. This module outputs the final offsets of
depth/normal.

3.5. Network Training

We employ a combination of three groups of loss terms
to train StruMonoNet. The first term applies loss on the first
module’s output to train the initial prediction. We use the
SmoothL1 [11] loss for depth, the L2 loss for normal, and
the binary cross-entropy loss for boundary pixel prediction.
We train the descriptor using the contrastive loss [42] to
differentiate pixels that belong to different planes. The
second group again applies the contrastive loss [42] on the
mean-shift clustering module’s output (Eq 1). The third
group combines a regression loss on the final depth/normal
prediction, and a cross-entropy loss for plane relation de-
tection. As formulations of these loss terms are relatively
standard, we defer the details to the supp. material. We
firstly train the first component for 15 epochs. Then we add
the second component and train for 5 epochs. We train the
last component for another 5 epochs.



Method AbsRel SqRel Log10 RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Saxena et al. [33] 0.349 - - 1.214 - 0.447 0.745 0.897
Eigen et al. [8] 0.158 0.121 0.067 0.639 0.215 0.771 0.950 0.988

Laina et al. [21] 0.127 - 0.055 0.573 - 0.811 0.953 0.988
Xu et al. [40] 0.121 - 0.052 0.586 - 0.811 0.954 0.987
Qi et al. [30] 0.128 - 0.057 0.569 - 0.834 0.960 0.990

Wang et al. [37] 0.156 0.118 0.067 0.643 0.214 0.768 0.951 0.989
Liu et al. [25] 0.142 0.107 0.060 0.514 0.179 0.812 0.957 0.989
Yu et al. [42] 0.134 0.099 0.057 0.503 0.172 0.827 0.963 0.990

Liu et al. [24] 0.124 - 0.073 - 0.395 - - -
Fu et al. [10] 0.115 - 0.051 0.509 - 0.828 0.965 0.992

Yin et al. [41] 0.108 - 0.048 0.416 - 0.875 0.976 0.994
Lee et al. [23] 0.110 - 0.047 0.392 - 0.885 0.978 0.994
Ours-baseline 0.113 0.070 0.049 0.407 0.148 0.868 0.978 0.995

Ours 0.107 0.065 0.046 0.392 0.139 0.887 0.980 0.995

Table 2. Depth evaluation results on NYUv2. Our method achieve state-of-the-art performance on all metrics. We take the reported
numbers directly from the respective paper. And we left out ”-” if the author does not report the corresponding metric.
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Figure 4. Qualitative comparisons between StruMonoNet and state-of-the-art monocular depth prediction approach(Lee et al.[23]) on
NYUv2. Our approach exhibits salient gains over planar regions, including floor, wall, and the planar surface of furniture.

4. Experimental Results

This section presents an experimental evaluation of
StruMonoNet. Section 4.2 and Section 4.1 analyze the
results of StruMonoNet and compare them against baseline
approaches on two popular benchmark datasets NYUv2 and

ScanNet, respectively. Section 4.3 presents an analysis of
StruMonoNet.

4.1. Analysis of Results on NYUv2

Experimental setup. NYUv2 [26] is a popular benchmark
dataset for single image depth estimation. We employ



Method Mean Median < 11.25◦ < 22.5◦ < 30◦

Eigen et al. [8] 23.7 15.5 0.392 0.620 0.711
GeoNet [30] 19.0 11.8 0.484 0.715 0.795

FrameNet [16] 21.6 13.5 0.437 0.657 0.742
VPLNet [38] 18.0 9.83 0.543 0.738 0.807

Ours 16.8 9.68 0.557 0.750 0.819

Table 3. Normal evaluation results on NYUv2. We report the mean
and median of angular normal errors as well as the percentage of
pixels whose errors fall within a varying threshold.

the same experimental setup of the state-of-the-art ap-
proach [23] on this dataset. There are 24231 training images
and 654 testing images. Unlike ScanNet, NYUv2 does not
provide annotated plane structures. We apply a RANSAC-
based plane detection method to detect plane regions from
the raw point cloud associated with each image. Then
we employ an agglomerative clustering technique to merge
similar planes. Please refer to the supp. materials on details
of such automatic plane annotations. Overall, the resulting
plane annotation is of adequate quality, although less accu-
rate than ScanNet’s annotation [25] due to the fact that Liu
et al. [25] leverage instance segmentation to derive accurate
planes. In this context, our goal is to assess the robustness
of StruMonoNet from inexact plane annotations. Since we
do not have accurate ground-truth labels for planes, we
evaluate the depth and normal predictions. We generate the
ground-truth normal for all training data following the same
approach as described in [39, 30].
Analysis of depth prediction. Table 2 compares Stru-
MonoNet with state-of-the-art depth prediction approaches
on NYUv2. We employ widely used metrics such as
absolute relative depth error (AbsRel), square root of mean
square error (RMSE), and the percentage of relative depth
errors that fall into a varying threshold 1.25i, i = 1, 2, 3.
Please refer to [23] for a detailed explanation of each metric.

StruMonoNet reduces the depth error over the state-
of-the-art method across all eight metrics. Note that al-
though our approach jointly predicts depth, normal, and
planar structures, we do not leverage any additional human
annotation for NYUv2. Such improvements suggest that
although we do not use ground-truth planes as supervision,
the output of an off-the-shelf plane detection approach still
offers considerable performance gains.

Figure 4 visualizes the difference between StruMonoNet
and baseline approaches on predicted depth images. Note
that StruMonoNet not only exhibits salient performance
gains among structural regions like floor and walls but also
in furniture surfaces where a salient planar structure can be
found. Depth of non-planar regions is also improved, thanks
to the refinement module that propagates the improvements
among planar regions to non-planar regions.
Analysis of normal prediction. StruMonoNet outperforms
state-of-the-art approaches for normal prediction (See Ta-

ble 3). The StruMonoNet improves the mean/median angu-
lar error from the top-performing baseline from 18.0◦/9.83◦

to 16.8◦/9.68◦ respectively. Moreover, StruMonoNet im-
proves the percentages of pixels whose normal error falls
within 11.25◦ from 54.3% to 55.7%. Accurate normal
enables accurate detection of pair-wise relations between
planar structure, which will, in turn, boost the accuracy of
normal prediction.

4.2. Analysis of Results on ScanNet

Experimental setup. We also benchmark our methods on
ScanNet [6]. ScanNet contains 807 unique scenes, where
each scene may contain multiple data sequences (captured
from different trajectories). We random sample 28k images
for training and 666 images for testing. Differently from
[25, 42], our setup ensures the test images do not contain
the same scene in the training set. Such a setup is necessary
for an accurate evaluation of the depth estimation model.
We train [25, 42] by removing the images in their training
set that appears in the scene of the test set, resulting
31099 training instances. We also train the top-performing
approach [22] on our training data. Furthermore, we
compare against our baseline that only consists of a surfel
prediction module to show the relative gains. We use the
plane annotations provided in PlaneNet[25] for training
StruMonoNet.
Analysis of depth prediction. Our baseline implementa-
tion already reduces the AbsRel error of the top-performing
baseline Lee et al. [23] by 9.2%, i.e., from 0.119 to 0.108,
thanks to the joint learning of depth and normal. Stru-
MonoNet further improves on the baseline from 0.108 to
0.103. The improvements are consistent across all the error
metrics, indicating the robustness of StruMonoNet. Fig-
ure 5 provides visual comparisons between StruMonoNet
and the state-of-the-art approach [23]. We can see that
StruMonoNet results in considerable performance gains
among structural regions.
Analysis of plane detection. Table 5 compares the out-
put of StruMonoNet and state-of-the-art monocular planar
detection approach[42]. We employ the same metric as
described in [25, 42]. Our approach achieves significant
improvements over both pixel recall metrics and plane
recall metrics, indicating the superior quality of our pixel-
plane association as well as accurate 3-D plane prediction.
Qualitative comparisons can be found in Figure 6. It
can be seen that our approach yields a much accurate
boundary than the baseline. Such improvements indicate
the clear advantage of integrating visual features and surfel
geometries, which enable us to incorporate interpretable ge-
ometric distances for clustering. From another perspective,
this design maximizes the influence of depth and normal
supervision on detecting planar structures. Please refer to
supp. for more experimental results on plane detection.



Figure 5. Qualitative comparisons between state-of-the-art monocular depth prediction approaches (Lee et al.[23]) and StruMonoNet
StruMonoNet(Ours) on ScanNet.

Method AbsRel SqRel Log10 RMSE RMSELog δ < 1.25 δ < 1.252 δ < 1.253

Liu et al. [25] 0.202 0.120 0.094 0.443 0.253 0.617 0.891 0.969
Yu et al. [42] 0.154 0.083 0.072 0.360 0.206 0.754 0.938 0.983

Lee et al. [23] 0.119 0.054 0.052 0.272 0.155 0.860 0.965 0.992
Ours-baseline 0.108 0.038 0.046 0.226 0.129 0.890 0.979 0.997

Ours. 0.103 0.035 0.043 0.218 0.125 0.894 0.981 0.997

Table 4. Depth evaluation results on ScanNet [6]. We compare against both state-of-the-art depth estimation method [23], and method that
jointly predict depth and planar structure [25, 42]. Our approach achieve 9.2% improvement over top-performing method [23] on AbsRel.
The improvements are consistent across all metrics.

Method Pixel Recall Plane Recall
0.1 0.3 0.5 0.1 0.3 0.5

Liu et al. [42] 0.096 0.298 0.402 0.051 0.153 0.205
Yu et al. [42] 0.192 0.442 0.550 0.115 0.275 0.344

Ours 0.258 0.543 0.595 0.174 0.370 0.410

Table 5. Plane detection results on ScanNet. We follows the
same evaluation metric as Liu et.al [25]. We report the pixel and
plane recall at depth difference thresholds 0.1m, 0.3m, 0.5m. Our
approach yields considerable gains.

Figure 6. Qualitative comparisons between Ours and the state-of-
the-art plane detection algorithm (Yu et.al [42]) on ScanNet.

4.3. Analysis of StruMonoNet

This section presents an analysis of different components
of StruMonoNet. As shown in Table 6, we treat the
full model of StruMonoNet as the baseline and report the

percentages of increments in the AbsRel when removing a
component. The AbsRel is reported based on the prediction
(-D) and the rectified prediction (-D-G) that factors out the
global scale of the prediction and the ground-truth. We also
show the improvements on pixels that belong to large planes
(occupies more than 8% of the total image pixels) and small
planes (occupies less than 8% of the total pixels) to further
understand the behavior of StruMonoNet.

Structure prediction module. Without the structure
prediction module, the depth errors increase by 4.85%
and 5.62% on ScanNet and NYUv2, respectively. The
performance gaps are consistent with factoring out the
global scale of each image, i.e., 12.3% (ScanNet) and
13.1%(NYUv2). These numbers show the importance of
enforcing and detecting plane structures. Note that depth
improvements on small planes are bigger than those on
large planes as the predictions among large planes are
already good, e.g., floors and walls, while the inter-plane
constraints help rectify the depth of small planes.

Pairwise relations. Enforcing pairwise relations among
predicted planes is a crucial component for StruMonoNet.
Without this component, the depth error increases by
3.32%/7.4% (ScanNet) and 3.82%/7.8% (NYUv2) with
respect to the metrics of (-D)/(-D-G), respectively. In par-
ticular, such performance gaps dominate the performance
gaps when dropping the entire structure prediction module.
In contrast to the marginal performance gains derived from
enforcing pairwise constraints for structure prediction on
images [3], these numbers show the importance of detecting
and enforcing pairwise relations among 3D planar struc-
tures.



Method No-Structure No-Relative No-Adjacency No-Normal-Relation No-Refine
All Large Small All Large Small All Large Small All Large Small All No-P. Large Small

ScanNet-D 4.85 6.5 8.5 3.32 4.91 8.41 2.02 4.55 7.21 1.32 1.88 2.13 1.12 1.45 0.32 0.44
ScanNet-D-G 12.3 14.3 19.3 7.4 12.6 19.1 5.33 13.2 17.1 3.42 6.12 7.34 3.36 5.13 1.13 1.72

NYUv2-D 5.62 7.4 9.6 3.82 4.77 8.4 2.12 4.11 7.25 1.27 2.14 2.96 1.56 1.82 0.46 0.56
NYUv2-D-G 13.1 15.6 18.4 7.8 11.7 19.3 5.83 11.1 15.6 3.64 6.8 7.9 4.14 5.17 1.31 0.93

Table 6. We show error increments (percentages) in relative absolute depth (-D) when removing a component from the full
model of StruMonoNet. (-D-G): Depth after removing the global-scale. (No-Struture): Remove the structure prediction
module completely. (No-Relative): Remove the component of detecting end enforcing pairwise relations between planes.
(No-Adjacency): Do not enforce depth continuity between adjacent planes. (No-Normal-Relation): Do not enforce relations
between planar normals. (No-Refine): no refinement among non-planar regions. (All): all pixels. (Large): pixels of large
planes (>8% total pixels). (Small): pixels of small planes (<8% total pixels). (No-P.): pixels of non-planar regions.

Adjacent planes. Table 6 shows that removing the relations
between adjacent planes has significant impacts on the
performance of StruMonoNet. The depth error increases
by 2.02%/5.33%(ScanNet) and 2.12%/5.83%(NYUv2), re-
spectively. Moreover, the improvements in depth prediction
are salient on small planes, i.e., 7.2%/17.1%(ScanNet)
and 7.25%/15.6%(NYuv2). These results suggest that the
geometric approach of integrating normal prediction and
depth continuity between adjacent planes is critical. In
particular, the improvements on small planes largely come
from this constraint, e.g., depth continuity between adjacent
planes and relations between plane normals.

Relations between plane normals. The accuracy of plane
normals also impacts the rectified planes, which influence
the depth accuracy. Geometric relations between plane
normals, e.g., perpendicular planes and parallel planes, are
important for normal prediction. As shown in Table 6, drop-
ping these relations leads to 1.32%/3.42%(ScanNet) and
1.27%/3.64%(NYUv2) increments in depth error. More-
over, the improvements on small planes are bigger than
those on large planes; we can again understand this from the
fact that the normal accuracy on small planes is relatively
low, and enforcing the inter-plane constraints can rectify the
normal of these planes.

Refinement module. The surfel refinement module refines
the depth and normal prediction after the planar rectifica-
tion step, which enhances pixel depth among non-planar
regions of a 3D scene, is also essential for StruMonoNet.
Without this module, the mean depth error increases by
1.12%/3.36% (ScanNet) and 1.56%/4.14% (NYUv2). We
can also see that this module significantly impacts the non-
planar regions when compared to the planar regions, i.e.,
1.45%/5.13% (ScanNet) and 1.82%/5.17%(NYUv2). Such
differences indicate strong correlations between planar re-
gions and non-planar regions, and improved depth among
planar regions helps that among non-planar regions.

Alternative structure prediction modules. We have tested
alternative structure detection approaches that first detect
planes and edges and then solve a global optimization to

jointly refine pixel depth, pixel normal, and planes (the
same as SURGE [37]). However, we found that our
approach outperforms these network designs considerably,
which only achieved marginally performance gains from
the baseline. In contrast, the advantages of StruMonoNet
come from combing geometric and visual features for plane
detection, inter-plane relations, and the refinement network
for rectifying non-planar regions.

5. Conclusions

This paper introduces StruMonoNet, a monocular depth
prediction network that leverages planar structures of the
underlying 3D environment to enhance depth prediction.
StruMonoNet innovates in combing visual features and a
surfel representation to predict and enforce planar struc-
tures. This approach offers a unique way to detect not
only individual planes but also rich geometric relations
among them (e.g., adjacent, perpendicular, and parallel
planes). Experimental results show that the latter is critical
for boosting the performance of depth prediction. Over-
all, StructMonoNet outperforms state-of-the-art monocular
depth prediction networks by considerable margins on both
NYUv2 and ScanNet.

There are ample opportunities for future work. The
plane structures can be considered an abstraction of the
underlying 3D environment. An interesting question is
how to extend the idea to develop a hierarchical structural
representation of 3D scenes for depth prediction. Another
direction is to explore how to leverage such rich interme-
diate representations and object size priors to rectify the
the absolute scale of depth prediction, which remains a
challenge in monocular depth prediction.
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