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Abstract set which contains semantically similar images. Nonpara-

metric methods tend to be more scalable than parametric
Simultaneously segmenting and labeling images is a fun-methods because it is easy for nonparametric methods to
damental problem in Computer Vision. In this paper, we incorporate new training examples and class labels.
introduce a hierarchical CRF model to deal with the prob- In this paper, we introduce a hierarchical two-stage CRF
lem of labeling images of street scenes by several distinc-model which combines the ideas used in both parametric
tive object classes. In addition to learning a CRF model and nonparametric image labeling methods. In addition to
from all the labeled images, we group images into clusters learning a global CRF model from all the training images,
of similar images and learn a CRF model from each cluster we group training data into clusters of images with similar
separately. When labeling a new image, we pick the closestspatial object class layout and object appearance, amdirai
cluster and use the associated CRF model to label this im-separate CRF model for each cluster. Given a testimage, we
age. Experimental results show that this hierarchical imag first run the global CRF model to obtain initial pixel labels.
labeling method is comparable to, and in many cases supe-We then find the cluster with most similar images, as shown
rior to, previous methods on benchmark data sets. In addi-in Fig. 1. Finally, we relabel the input image by the CRF
tion to segmentation and labeling results, we also showedmodel associated with this cluster. To effectively compare
how to apply the image labeling result to rerank Google and extract similar images, we introduce a new image de-
similar images. scriptor: thelabel-based descriptavhich summarizes the
semantic information of a labeled image.
Our approach is motivated by the emergence of large
1. Introduction data sets of labeled images, such as Labelme datadet [
The Labelme data set contains tens of thousands of labeled
Simultaneous segmenting and labeling images is a fun-images. It provides sufficient instances to train classifier
damental problem in computer vision. It is the core tech- for each type of images with similar spatial layout. In this
nology of image understanding, content based retrieval andpaper, we focus on images of street scenes which are the
object recognition. The goal is to assign every pixel of the most dominant ones in Labelme data set. However, there is
image with an object class label. Most solutions fall into no restriction on extending our approach to handling other
two general categories: parametric methods and nonparatypes of images if more training data is available.

metric methods. Experimental results show that the hierarchical two-
Parametric method[ 4, 7, 12, 14, 17, 18] usually in- stage CRF model is superior to the global CRF model
volve optimizing aConditional Random Fiel(CRF) model learned from all training examples. Evaluations on bench-

which evaluates the probability of assigning a particudar | mark data sets demonstrate that our approach is comparable,
bel to each pixel, and the probability of assigning each pair and in many cases, superior to state-of-the-art parametric
of labels to neighboring pixels. A parametric method usu- and nonparametric approaches. In addition, we also show
ally has a learning phase where the parameters of the CRFPromising results of applying the label-based descripgor t
models are optimized from training examples, and an infer- compute images of similar spatial layout and re-rank simila
ence phase where the CRF model is applied to label a testmage results from Google Image Search.
image.

In contrast to parametric methods, nonparametric meth-l'l' Related Work
ods [L0, 15] do not involve any training at all. The basic Parametric methods. Image labeling by optimizing a
idea of these methods is to transfer labels from a retrieval CRF model has proven to be the state-of-the-art paramet-
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Figure 1: The pipeline of our hierarchical two-stage CRF model. Gieetest image, we first run the global CRF model
trained by all training images to obtain initial pixel lal®IBased on these pixel labels, we compute the label-basedmter
to find the closest image cluster. Finally, we relabel thé ireage using the CRF model associated with this cluster.

ric image labeling method. Traditional CRF models{4] of object classes and object appearances. However, the fun-
combine unary energy terms, which evaluate the possibility damental difference is that we pre-compute classifiers for
of a single pixel taking a particular label, and pair-wise en groups of similar images. This gives us freedom in design-
ergy terms, which evaluate the probability of adjacent pix- ing suitable classifiers at the learning phase and saves the
els taking different labels. Although these approache&wor inference time.
well in many cases, they still have their own limitations be-
cause these CRF models are only up to second-order an@. Image Labeling Using Standard CRF
it is difficult to incorporate large-scale contextual infa-
tion.

Many researchers have considered variants of traditional
CRF models to improve their performance. &, [Kohli et
al. proposed to use higher order potentials for improvieg th
labeling consistency. Another line of research focuses on
exploring the object class co-occurrenee(, 12, 17, 19].

In particular, Ladicky.e.t al. q intr_od_uced a co-occurrence As there are many different objects in street scene im-
model that can be efficiently optimized using graph-cuts. ages, it is quite challenging to classify all of them. In this

~ Our approach also falls into the category of paramet- haner, we choose five distinctive super-classes: sky,archi
ric image labeling methods, but it has notable differencesgcqre. plant, road and misc. Each super-class contains se

from previous approaches. Instead of improving the CRF ¢4 gifferent objects. Please refer to Tablfer detalils.
model used in labeling, we try to divide training images into

In this section, we describe the CRF model used for la-
beling images of street scenes. This CRF model serves as
the building block for the hierarchical CRF model to be in-
troduced in next Section. Our CRF model is similar to the
ones used in{] and [L4]. However, we use different fea-
tures for both the unary and pair-wise potentials which are
more suitable for images of street scenes.

groups of visually and semantically similarimages such tha [ super-classe$ objects

traditional CRF models could have better fits on each of sky sky, cloud

them. Note that learning CRF models from clusters of sim- | grchitecture building, wall, hill, bridge; - -

ilar images implicitly includes high-level statistics $uas plant tree, grass, flower, -

high-order potentials and object class co-occurrence. ground road, street, sidewalk, water, earth,
Nonparametric methods. The key components of non- misc people, car, animal, bicycle; -
parametric methods are how to find the retrieval set which

contains similar images, and how to build pixel-wise or Table 1: Objects in each super-class.
superpixel-wise links between the input image and images

in the retrieval set. InJ(], Liu et al. introduced SIFT The motivation of introducing super-classes is three-

Flow to establish pixel-wise links. Since SIFT Flow works fold. First, the position, shape and appearance of these five
best when the retrieval set images are highly similar to the super-classes primarily determine the semantic infolmati
input image in spatial layout of object classes, Tighe and of a street scene image. Second, maintaining a small set of
Lazebnik introduced a scalable approach that allows moresuper-classes reduces the training time which, on the other
variation between the layout of the input image and imageshand, enables us to incorporate more information for clas-
in the retrieval set15. Moreover, both methods utilize a  sification. Third, if necessary, one can still apply another
MRF model to obtain the final labeling result. The differ- |ayer of other classification method to distinguish the ob-
ence is that the approach df] works at super-pixel level  jects within each super-class.
which turns out to be more efficient than the approach of  The training and testing images used in this paper come
[10 which is pixel-wised. from the Labelme data setl§]. We manually collect all
Like most nonparametric methods, our approach also ex-the labeled images that were taken outdoor and contain at
tracts information from images with similar spatial layout least two labels from the set sky, building, tree, streefAs
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adjacent super-pixels. In the remainder of this section, we
will discuss the unary and pairwise energy terms in details.

2.1. Unary Energy Term

The unary energy term evaluates a classifier. The clas-
sifier takes the feature vectar, of a super-pixel as input,
and returns a probability distribution of labels for thgpett
pixel: P(c|x, 6,). Same as in14], we use JointBoost clas-
sifier [L6]. Then, the unary energy of a label is equal to
its negative log-probability:

Figure 2: We label image at the super-pixel level. (Left)
Input image. (Right) Its super pixels\(s) denotes the
neighboring super-pixels (colored in green) of a supelepix
s (colored in black).

El(CS,X,Hl) = _IOgP(CS|XS791)'

many images from Labelme data sets are partially Iabeled,Features We use HSV color, image location of the

we only ke_ep those images which have at least twq d?ﬁerentsuper-pixel center and SIFT feature descriptatsi[] at
labels. This is because we need different labels within eachg .o e where < i < 7to form a basié17-dimensional

image to extract contextual_ information for training. In_tq feature vectok, per super-pixet. Note that using multiple
tal we have collected 3303 images. We randomly subdivide ;oo is t account for the varying size of the same object

these images into a training set, a validation set and a tests yifferent images.

@ng set which cqntain, 1712 images, 301 images and 1100z, e vectors.  We could take thiss17-dimensional
'mages, respectively. . feature vector into the JointBoost learning process. How-
S_lmllar to [, we also over-segment each Image and la- ever, we found that a better strategy is to augment these
pel itatthe super-p ixellevel. We use the method introduced e o1, re vectors with those ones that are likely to separate
in [1.] for C"mp”“”g _super-plxels. \_N'tﬁs we denote the each pair of different classes. A candidate feature vector
set of superpixels ofimage We typically use 400 super-  hich tends to separate two classes is the vector connecting

pixels for or;e ime;]gbe. For each Squ;pix&j\/fs, \(ve Ic?jm' two feature vectors with one from each class. Therefore, for
pute a set of neighboring super-pixél§s). A'(s) includes each pair of classesandc’, we randomly pickV pointsp;

two types of super-pixels: those that are adjacent and from classc and NV pointsq; from classc’, and add the first
those that are not adjacentddut in its neighborhood. The n(n = 15) eigenvectors of

second type of neighboring super-pixels are used to incor-

porate contextual information at a larger scale (Se€kig. N
The goal in image labeling is to asso- Moo = Z(pi —q) - (pi—a)”
ciate each super-pixels with a label ¢, € i=1

{sky, archiecture, plant, ground, misc}. Each super-
pixel has a vector of unary features, which includes
color, positions and local gradient information. In aduiti
for each pair of neighboring super-pixe(s, s’) where

s’ € N(s), we define a vector of pairwise features, .
Then, computing all image labels involves minimizing the
following objective function

as additional feature vectors. Experimental results show
that adding these additional 150 feature vectors from 10 dif
ferent pairs of classes (out of 5 classes) increases thk pixe
wise classification accuracy @yx.

Fig. 3 shows some classification result of applying the
unary classifier. The unary classifier is able to obtain the
outline of each object. However, there are still plenty of
B(c,0) = Z(El (s X5, 01)+ Z Eo(cy, o5 Yssrs 02)). mis-classified pixels. This is because the unary term does

e SN (s) not con§|der the conS|stepcy of I.abels_ across nelghbormg

(1) super-pixels and the spatial relationship between differe

where the unary terr; measures the consistency between Objects. For example, in Fig(a), the unary classifier mis-
the featurex, of super-pixek and its labet, the pair-wise classifies several super-pixels of the architecture ckatsa
term E, measures consistency between neighboring superSky class. However, this issue can be resolved if we know
pixel labelse, and ¢y, given pairwise featurs,... The tha.t sky object is more po_herent_ and a sky object is very
model parameters afe = (6,62, \) (\ is defined in the  Unlikely to be under a building object.
term E5, as shown in ER).

The objectiveE(c, ) is optimized using the efficient
guad-relaxation technique described #. [ The resulting The goal of introducing the pair-wise energy term is to
labelingc implicitly defines a segmentation of the inputim- take contextual information into account. Similar to the
age, with segment boundaries lying between each pair ofunary energy term, the pairwise energy term also evaluates a

2.2. Pairwise Energy Term
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Figure 3: Representative classification results on testing images frabelme data set. The hierarchical CRF model yields
more accurate and cleaner results than the standard CRF hmuearious scenes. (1st-row) Input images. (2nd-row to
5nd-row) Classification results using the global unary slésr, the global CRF model, the corresponding closesttetus
unary classifier and the closest cluster CRF model, respelgti

JointBoost classifier. The pairwise energy of a pair of label Our approach is motivated by the fact that images of

cs andey is equal to street scenes can be divided into clusters of images with
similar global layout and appearance. For example, images

2) within one cluster may h ildi [

y have sky on the top, buildings in
where) controls the contribution of the pairwise term. We  the middle and roads on the bottom. Images within another
learn \ using the validation data set by trying different  cluster may have trees on the top and roads on the bottom.
and picking the\ with the smallest testing error. If we only take a look at images within each cluster, the

In our implementation, we define the pairwise feature object classes have roughly fixed spatial relationship and
yss' = (Xs,Xs). Again we use the technique described in global appearance. In other words, the complexity and di-
the previous section to incorporate additional feature vec versity of images within each cluster are reduced such that
tors for training. a standard CRF model is able to fit them very well.

The difference between our pairwise energy term and the  Fo|iowing the above discussion, we introduce a hierar-
one used in {4] is that we actually evaluate the complete chjcal two-stage CRF model for image labeling. In the
distribution of labels of pairs of neighboring super-p&el  |earning phase, we first train a standard CRF model from all
This enables us to incorporate the contextual informatfon o the training images. In the following, we will call this CRF
different objects. model the global CRF model. Then we subdivide all the

Fig 3 shows the comparison between using unary clas-training images into clusters of images with similar global
sifier and using CRF. It is clear that running the CRF with |ay0ut and appearance. We learn a separate CRF model for
pairwise term results in much more coherent results. each cluster using the images within that cluster.

The key to make this two-stage CRF model work is to
cluster images in a semantically meaningful way, which

The performance of a CRF model relies on the classifica- captures the distribution structure of street scene images
tion accuracy of the classifiers used to define both the unaryWe introduce the label-based descriptor which summarizes
and pairwise terms. One possibility of improving the classi the semantic information of labeled images, given theabhiti
fication accuracy is to use classifiers that are more powerfullabeling from the global CRF model.
than Jointboost classifiers. However, these classifiels suc ~ When applying this hierarchical CRF model to label a
as non-linear kernels usually drastically increase thetra new image, we first run the global CRF model to obtain the
ing time. Moreover, they don't utilize the special struetur initial pixel labels of this image. Based on these pixel lape
existing in images of street scenes. we then compute the corresponding label-based descriptor

EQ(CSa Cs’y Yss's 92) = —)\logP(cS, Cs’ |yss’ , 92)

3. Image Labeling Using Hierarchical CRF
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and use it to find the closest cluster. Finally, we run the sionality of label-based descriptors. Clustering in the-pr
CRF model associated with that cluster to relabel the inputjected space reduces the chance of obtaining clusters-as iso
image. lated points. In our implementation, we use singular value
In the remainder of this section, we will introduce the decomposition to reduce the dimension of the label-based
label-based descriptor and how to use it for image cluster-descriptors ta\/ (M=2 in this paper). Withd; we denote

ing. the projected label-based descriptor of each image
. We employ the mean-shift clustering algorithrj fo
3.1. Label-based Descriptor group images into clusters. Suppose the mean-shift cluster

In this section, we consider the problem of computing iNg returnsk clusters of image€; wherel < i < K. For
a compact representation, called label-based descriptor, €ach cluste€;, we compute its barycenter; and variance
labeled images. By labeled image, we mean each pixel is?i 8S
labeled as one of thke object classe€ = {¢;}. Note that

d q Md, — mN\T
k = 5 in this paper. %é_ dy Igv(dl —m;)(d; —my)
The semantic information of an image is captured by the ™M: = W’ oi = p( Ci| );

position, appearance and shape of each object in this image.

Although it is easy to extract this semantic informatiomfiro wherep(A) evaluates the maximum eigenvalue of a matrix
alabeled image, we have to summarize it in a compact way. 4.

Furthermore, as every image labeling method is subject to  To ensure that each cluster includes sufficient number
classification errors, another issue of designing labeetla  of training images, we enlarge each clusteby including

descriptor is how to make it robust against errors in pixel every imagel whose association weight &
labels.

To encode the positional information of each object class
in a given image , we subdividel into a uniformn, x n,
grid. Within each grid cely;;, we evaluate the distribution
pijr Of each object class, € £. We collect all the cell cov-  In this paper, we set = 0.1.
erage information into a vectet] of length K'n?. Picking For each clustef;, we learn a CRF model from its en-
the grid size values, is a tradeoff between descriptiveness closed training images. The association weight, C;) of
and stability of this representation. A big, would make each imagd naturally describes how close this image is to
d} capture the positional information more precisely, while clusterC;, so we weight the labeled instancesoy/, C;)
a smalln,, would maked? less sensitive to image displace- when learning the CRF model.

_Jldr — my|?

2
20;

w(l,C;) = exp( ) <.

ment and classification errors. For all the experimentsdist Fig 1 shows the pipeline of image labeling using the hi-

in this paper, we set, = 4. erarchical CRF model, Given an input imagewe first
Similar to the positional information, we encode the ap- optimize the global CRF to obtain initial pixel labels. We

pearance information by evaluating the mean calgr = then compute its label-based descriptor using theselinitia

(Fijh» Gijks b1 ) of each object class, within each celly;.
To stabilize the mean color statistics, we scale each meanr
color<c;;, asp;;iCijr. Again, all mean colors;;;, are col-
lected into a vectod{ of length3Kn?.

Finally, we write down the label-based descriptor of im-
agel asd; = (d¥, w.d$) wherew, weighs the importance
of the appearance information. We set = 1 by default.
As we choose( = 5 in this paper, the dimension of a label-
based descriptor i20.

3.2. Image Clustering

We cluster the training examples based on their label-|
based descriptors. For partially labeled images, we run the
root CRF to obtain labels for unlabeled pixels. Using the
label-based descriptor, each training image is repredaste
a pointinRY whereN is the dimension of the label-based
descriptor. ) o - )

Instead of clustering using the original label-based de- Figure 4: 1702 training images are partitioned into 8 clus-

scriptors, we found that it is better to first reduce the dimen (€rs based on label descriptors.
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@) (b) (©

Per. | Misc | Sky | Arch. | Plant | Ground Unary | CRF Sky Vertical Ground
Misc 159 | 723 0.0 5.2 7.4 15.1 He et al. 82.4 89.5 Sky 0.84/0.78 | 0.16/0.22 | 0.0/0.0
Sky 142 ] 0.0 97.9 15 0.6 0.0 Shotton etal.| 85.6 88.6 Vertical | 0.06/0.09 | 0.91/0.89 | 0.03/0.02
Arch. 309 | 23 4.2 81.4 6.9 5.2 Global 83.2 86.8 Ground 0.0/0.0 0.07/0.1 | 0.93/0.90
Plant 20.0 0.3 2.0 2.6 87.5 7.6 Hierarchical 86.1 90.7
Ground | 19.0 | 3.5 0.3 6.9 3.2 86.1

(d) (e)

Per. | Misc | Sky | Arch. | Plant | Ground Per. Misc Sky Arch. Plant Ground
Misc 3.1 718 | 0.1 9.2 4.4 14.5 Misc 4.9 | 65.6/76.5] 0.9/0.5 14.9/10.2| 3.5/3.5 15.1/9.3
Sky 250 [ 0.7 92.2 5.7 0.8 0.4 Sky 14.5 0.4/0.2 93.3/94.0 | 3.0/2.7 2.6/2.7 0.7/0.4
Arch. 483 | 43 3.2 83.1 4.2 5.2 Arch. 415 4.8/3.5 2.4/2.3 81.1/84.0 | 7.2/5.8 4.5/4.4
Plant 4.8 0.3 3.3 13.3 75.5 7.6 Plant 12.3 2.4/2.4 3.3/3.3 11.3/9.3 | 79.1/81.1| 3.9/3.9
Ground | 18.8 | 6.2 0.4 4.8 3.4 85.2 Ground | 26.8 6.3/4.9 0.8/0.8 3.9/3.4 3.2/3.1 85.8/87.8

Table 2: Statistics of our method on various data sets. (a) Confusiatrix of the hierarchical CRF model on the Group
3, 7 and 17 of the MSRC data set]]. (b) Comparison of classification accuracy with He et al] &nd Shotton et al. 14]

on the Sowerby data set. (c) Confusion matrices of our metbeft) and surface contexf] (Right). (d) Confusion matrix
of the hierarchical CRF model on category street, insidgditghway and tallbuilding of the SIFTFLOW data s&&]. (e)
Confusion matrices of the standard CRF model (Left) and temtchical CRF model (Right) on 1100 testing images from
Labelme data set.

pixel labels and find its corresponding clustgrthat has  testing images described above. Tahje)shows the confu-
the biggest association weight, C;). Finally, we re-label  sion matrices of both methods and Figshows some repre-
the input image by running the CRF model associated with sentative results. It is clear that the hierarchical CRF ehod
clusterC;. Fig 4 demonstrates the clusters generated from is superior to the standard CRF model. The pixel-wise clas-

our training images. sification accuracy of the hierarchical CRF modesiis7%
A critical issue in mean-shift clustering is to set the pa- while that of the standard CRF model3.2%.
rameters. o controls the granularity of the clustering. Us- Although the hierarchical CRF model improves the clas-

ing a small number of clusters would make the CRF model sification accuracy of all the classes, the improvement on
of each cluster under-fitted while using a large number of the misc class is significantly larger than improvements on
clusters would make the CRF model of each cluster over-the other four classes. This is because the misc class is more
fitted. Thus, we compute such that it results in clusters complex than the other four classes in appearance, shape
that maximize the classification accuracy of the hieraahic and spatial positions. The standard CRF model, although
CRF model. In our implementation, we cho@seandidate  performs well on the other four classes, is not discrimina-
os that are uniformly sampled betwe%nandg whered is tive enough to classify the misc class. However, looking at
the diameter of the projected label-based descriptorsl of al the misc class within images of each cluster, since these im-
training images. We pick as the one that leads to the high- ages already have similar global appearance, the variance i
est classification accuracy. In our experiments, the optima shape, appearance and spatial position appears to be small.
value ofo = g. Thus, the performance of the CRF model associated with
There are two heuristics that could accelerate the speedeach cluster is much better than that of the standard CRF
of running the hierarchical CRF model. First, as the global
CRF modelis only used to find the corresponding cluster of
each input image, we can use fewer stumps for Jointboos
classifiers of both the unary term and the pairwise term. Ex-
perimental results show that reducing the number of stumps
of both classifiers b)% only reduces the pixel-wise classifi-
cation accuracy by.05%. Second, when optimizing the
CRF model, one can start from the labeled result of the
global CRF model. In average, this saves the total running
time of optimizing the hierarchical CRF by %. '

4. Experimental Results

We have evaluated the performance of both the standard™19ure 5: Example results of our method on the MSRC data
CRF model and the hierarchical CRF model on the 1100 S€ts.
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Evaluation. We have compared our results with those of g ] '
He et al {i] and those of Shotton et al{] on the Sowerby M
data set used in/]. As shown in Table2(b), the standard B
CRF modelis slightly worse than their methods. This is be-
cause the standard CRF model is trained from a wide range
of images while the images in the Sowerby data set has re
stricted global appearance. However, the hierarchical CRF
model, which learns a CRF model from the most similar [*
cluster of images, turns out to be better than their methods.|
We have also tested our method on the MSRC data set _—
In this experiment, we only tested three groups of images
which are related to images of street scenes (SeesFa.
example results). Tab&a)shows the confusion matrix of |
the hierarchical CRF model. On these three groups of im-|
ages, the pixel-wise classification accuracy of our method
is 84.5%, which is very competitive to the performance of Figure 6: Comparison between our method (Third row) and
Shotton et al. {4]. the SuperParsing method1j] (Second row) on the SIFT-
Moreover, we have compared our method with the sur- Flow data set.
face context method] which segments an image into three
classes: sky, vertical and ground. To make this comparison, R(K-1) ) _
we combine the plant class and the arch class as the verticdt0 & vectoil, of size —=—n;, x n; = 160. The dimen-
class. In addition, we include the misc class into the ground Sion of an augmented label-based descriptor becasies
class. On the benchmark data set providessjn\we im-  We weight the edge part as1 by default.
proved the pixel-wise classification accuracy frof py An application of the label-based descriptor is refining
3.7% (See Table(c)for details). image search result. Taking Google Similar Image Search
Finally, we evaluated our method on the SIFTFLOW for example, it returns about 400 similar images for a query
data set5]. Table2(d)shows the confusion matrix of our ~image. However, in many cases these images are not neces-
method. Compared with the nonparametric method intro- Sarily similar in appearance to the query image. We rerank
duced in [L5], our method shows similar results on sky and these images by distances of their label descriptors to the
road classes, and better results on misc, plant and arehited@bel-based descriptor of the query image. As shown in
ture classes (See Fiffor selected results). Fig. 7, the re-ranking result obtained using label-based de-
Timing. Using our Matlab implementation, labeling a scriptor is significantly better than the original rank pro-
testimage of siz&50 x 600 takes about 30 seconds on ama- Vided by Google Similar Image Search.
chine with 2.2GHZ CPU. On average, computing the super- Another possibility of reranking these images is to use
pixels takes 8 seconds, computing the descriptors takes 1dhe gist descriptor][1]. However, the gist descriptor can
seconds, and solving the CRF takes about 6 seconds eachOnly find very similar images. This behavior has been
pointed out in ] where a query image is searched within
5. Application to Computing Similar Images several millions of images to ensure that the gist descrip-
tor could return similar images. Our label-based descrip-
In this section, we show one application of the label- tor, which extracts image semantics, is able to find similar
based descriptor for image comparison. The label descripimages in a wide range. We believe that this descriptor is
tor defined in Sectior8 does not consider the shape of each peneficial to several applications such as image completion

object, which is highly sensible to human eyes. Thus, we similar images browsing and image tag transfering.
augment the label-based descriptor to take this informatio

into account. 6. Conclusion

To capture the shape information, we evaluate the orien-
tation distribution of the boundaries between each pair of In this paper, we present an approach to segment images
different objects. For stability concern, we use a coarik gr of street scenes into regions of sky, architecture, plaag r
ne X ne (ne = 2 in this paper) and use;, (n, = 4 in and misc. We introduced a novel hierarchical two-stage
this paper) bins for orientation. For efficiency, we count on CRF model based on learning the CRF models from clusters
the pairs of adjacent superpixels with different objecelab  of images with similar object appearance and spatial object
The edge orientation of each such pair is perpendicular toclass layout. For image clustering, we introduced the fabel
the centroid of the superpixels. All the counts are collécte based descriptor which summarizes the semantic informa-

Ritas,
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Figure 7: Application of the label descriptor to reranking Google Banimages. Google similar image returns about 400
images for a query image. We run both the label-based ddscimd the Gist descriptor ro rerank these images. Note that
the label descriptor can find more semantically similar irmaghan the Gist descriptor which only finds very similar iesg

tion of a labeled image. We have evaluated our approach on
benchmark data sets. The results are comparable to, and in
many cases, superior to the state-of-the-art methods.
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