
© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Pervasive Formal Verification in
Control Systems

FMCAD 2011

Darren Cofer

ddcofer@rockwellcollins.com

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Lee’s questions

1. How can formal verification compliment current simulation and
testing procedures? Drive all 3 from same models

2. What will control system design look like in 10 years? 20 years?
Software elimination (compile to HW)

3. Can formal verification help build safer "intelligent" control
systems? Yes, but SW is both problem & solution

4. Where can the greatest impact be made in improving control
system quality and reducing design costs? Better hybrid system
verification tools? Yes Better languages? No More compiler
assurance? Don’t care Easier timing analysis? Boring Automated
power analysis? Don’t care

5. Could more aggressive control systems (i.e., that save energy,
reduce operational wear, reduce the need for redundancy) be
pursued if better design assurance could be provided? Yes, see 3

6. What social and educational impediments are there to having
control systems engineers use formal verification tools? Model
checking integrated with MBD

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Why use formal methods with avionics SW?
(A lesson in marketing)

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Why use formal methods with avionics SW?
(A lesson in marketing)

• Increase safety

– Complete examination of models and requirements

– “Our systems are already safe.”

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Why use formal methods with avionics SW?
(A lesson in marketing)

• Increase safety

– Complete examination of models and requirements

– “Our systems are already safe.”

• Satisfy certification objectives

– DO-178C allows certification credit for formal verification

– Requirements/model verification is done by review (cheap), and
formal source/object code verification is difficult (too expensive)

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Why use formal methods with avionics SW?
(A lesson in marketing)

• Increase safety

– Complete examination of models and requirements

– “Our systems are already safe.”

• Satisfy certification objectives

– DO-178C allows certification credit for formal verification

– Requirements/model verification is done by review (cheap), and
formal source/object code verification is difficult (too expensive)

• Reduce cost

– YES!

– Early detection/elimination of defects

– Focus on model checking and debugging, rather than theorem
proving

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

7

Software as both solution and problem

• New functionality for advanced mission capabilities, decision
aides, precision navigation, safety of flight greatly increases
software load

• Presents an enormous verification challenge

D. Gary Van Oss, “Avionics Acquisition, Production, and Sustainment:
Lessons Learned – The Hard Way,” NDIA Systems Engineering
Conference, Oct 2002

Acronyms:

SLOC: source lines of code
COCOMO II: COnstructive COst MOdel II

System Architecture Virtual Integration (SAVI)

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Model Based Development

• “If formal methods are so great, why aren’t they more widely
used?”

• The main barriers in the past have been:

1. Cost: building/maintaining separate analysis models

2. Fidelity: models don’t match real system

3. Usability: unfamiliar notations/tools

4. Scale: inadequacy of tools for industrial-sized problems

• MBD is eliminating the first three barriers

– Leverages existing modeling effort

– Automated translations and analysis

– Familiar notations for engineers (Simulink + Stateflow)

• Fourth barrier is also falling…

– Moore’s Law = more power available on desktop

– Exploit rapid advances in model checking (e.g., SMT)

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

SCADE

Lustre

Safe State

Machines

Simulink
Simulink

Gateway

StateFlow

Reactis

Simulink

Gateway

Design

Verifier

Rockwell Collins/U of Minnesota

MathWorks

SRI International

Reactive Systems

Esterel Technologies

Model Checkers:

NuSMV, Prover,

BAT, Kind, SAL

Theorem Provers:

ACL2, PVS

Programming

Languages:

SPARK (Ada), C

What can we do now?

Automatic

translation

Design feedback

Gryphon

translation

famework

• Supports a wide
variety of back end
tools and languages

• Straightforward to
add new tools (e.g.
Prover support
added in 4 days)

• Apply “the right tool
for the job”

{ KIND }

Model checking integrated with development

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Application: Certification Techniques for Advanced
Flight Critical Systems (CerTA FCS)

• AFRL program

– Team: Lockheed Martin + Rockwell Collins

• Problem

– The cost of software V&V for UAVs has been identified as the
primary obstacle to their future development

– These costs are expected to grow rapidly as sophisticated adaptive
control systems are introduced (AAR, Sense & Avoid)

• Measure cost and quality improvements using model checking
for verification of UAV software

– Use RC model-checking tools to verify LM Aero advanced flight
control models

– Quantify the cost and quality achieved by formal verification vs.
test-based verification

It’s a contest!

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

• LM and RC teams start with
same set of requirements and
software models

• Both teams spent comparable
effort to add enhancements to
their verification framework
(support for new blocks,
graphical test case viewer, XML
test case generation)

• Measure effort to perform
verification and diagnose
results

• [FMICS 2007]

Testing vs. Model Checking

12 133

0 196

Errors found Hours

Verification effort

LM: Test

RC: MC

RC effort

includes fixing

the errors found!

4

input_sel

3

totalizer_cnt

2

persistence_cnt

1

failure_report

pc

trigger

input_a

input_b

input_c

DST_index

input_sel

triplex_input_selector

input_a

input_b

input_c

trip_lev el

persist_lim

MS

f ailreport

pc

tc

triplex_input_monitor

trip_level

trip_level1

persist_lim

persistence limit

[DSTi]

[C]

[B]

[status_c]

[status_b]

[status_a]

[A]

[trigger]

[DSTi]
[MS]

[MS]

[DSTi]
[A]

[prev_sel]

[prev_sel]

[DSTi]

[trigger]

[trigger]

[status_c]

[status_b]

[status_a]

[A]

[A]

Index

Vector

[C]

[B]

[C]

[B]

[C]

[B]

f ailure_report

dst_index

Failure_Processing

mon_f ailure_report

status_a

status_b

status_c

prev _sel

input_a

input_b

input_c

f ailure_report

Failure_Isolation

Extract Bits

[0 3]

Extract Bits

DOC

Text

double

DST

Data Store

Read

8

dst_index

7

status_c

6

status_b

5

status_a

4

input_c

3

input_b

2

input_a

1

sync

persist_lim

totalizer_cnt<tc>

trip_lev el

persistence_cnt<pc>

sy nc<>

f ailreport

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

That was nice but…

• Here’s what I really want to be able to verify:

uProc

flcs_in

inner

loop

mission

outer

loop

emb

mdl

MSLS

y_inhw
yProc

DS

DS

y_mm

y_ol

y_il

fme_y

fmM_y

flcs_y

B matrix

On-board aircraft model,

Aero data

Mod. Seq’l Least Squares

parameter ID

A, B, b matrices

(disabled in our model)

flcs_in

Control Effector

Arrangement

Spoilers (L&R)

V-Tail Rudders (L&R)

Flaps (L&R)

1

Effector
Blender

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Inputs – 33 floating point inputs

Outputs –6 floating point values

Extensive use of matrix arithmetic

166 Simulink subsystems

2000+ Simulink blocks

Operation Flight Program

Including inner loop control

Including adaptive control algorithms

Including effector blender optimization

Including dynamic inversion

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Research Challenges

• Floating point types

• Non-linear arithmetic, non-linear functions

• Complex requirements capture and formalization

• Combined methods and tools approaches

• Compositional verification

• Analysis of system architecture models

• And make it bigger

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Summary

• Model-based development is key to adoption of formal methods

• Software is both solution and problem

• Need to expand scope of systems/models that can be analyzed

• It’s all about the money

