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Lee’s questions 

1. How can formal verification compliment current simulation and 
testing procedures?  Drive all 3 from same models 

2. What will control system design look like in 10 years?  20 years?  
Software elimination (compile to HW) 

3. Can formal verification help build safer "intelligent" control 
systems?  Yes, but SW is both problem & solution 

4. Where can the greatest impact be made in improving control 
system quality and reducing design costs?  Better hybrid system 
verification tools?  Yes  Better languages? No More compiler 
assurance? Don’t care  Easier timing analysis? Boring Automated 
power analysis?  Don’t care 

5. Could more aggressive control systems (i.e., that save energy, 
reduce operational wear, reduce the need for redundancy) be 
pursued if better design assurance could be provided?  Yes, see 3 

6. What social and educational impediments are there to having 
control systems engineers use formal verification tools?  Model 
checking integrated with MBD 
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Why use formal methods with avionics SW? 
(A lesson in marketing) 

• Increase safety 

– Complete examination of models and requirements 

– “Our systems are already safe.” 

• Satisfy certification objectives 

– DO-178C allows certification credit for formal verification 

– Requirements/model verification is done by review (cheap), and 
formal source/object code verification is difficult (too expensive) 

• Reduce cost 

– YES! 

– Early detection/elimination of defects 

– Focus on model checking and debugging, rather than theorem 
proving 
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Software as both solution and problem 

• New functionality for advanced mission capabilities, decision 
aides, precision navigation, safety of flight greatly increases 
software load 

• Presents an enormous verification challenge 

D. Gary Van Oss, “Avionics Acquisition, Production, and Sustainment: 
Lessons Learned – The Hard Way,” NDIA Systems Engineering 
Conference, Oct 2002  

Acronyms:

SLOC: source lines of code
COCOMO II: COnstructive COst MOdel II

System Architecture Virtual Integration (SAVI) 
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Model Based Development  

• “If formal methods are so great, why aren’t they more widely 
used?” 

• The main barriers in the past have been: 

1. Cost: building/maintaining separate analysis models 

2. Fidelity: models don’t match real system 

3. Usability: unfamiliar notations/tools 

4. Scale: inadequacy of tools for industrial-sized problems 

• MBD is eliminating the first three barriers 

– Leverages existing modeling effort 

– Automated translations and analysis 

– Familiar notations for engineers (Simulink + Stateflow) 

• Fourth barrier is also falling… 

– Moore’s Law = more power available on desktop 

– Exploit rapid advances in model checking (e.g., SMT) 
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Lustre

Safe State

Machines

Simulink
Simulink

Gateway

StateFlow

Reactis

Simulink

Gateway

Design

Verifier

Rockwell Collins/U of Minnesota

MathWorks

SRI International

Reactive Systems

Esterel Technologies

Model Checkers:

NuSMV, Prover, 

BAT, Kind, SAL

Theorem Provers: 

ACL2, PVS

Programming 

Languages:

SPARK (Ada), C

What can we do now? 

Automatic 

translation 

Design feedback 

Gryphon 

translation 

famework 

• Supports a wide 
variety of back end 
tools and languages 

• Straightforward to 
add new tools (e.g. 
Prover support 
added in 4 days) 

• Apply “the right tool 
for the job” 

{ KIND } 

Model checking integrated with development 
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Application:  Certification Techniques for Advanced 
Flight Critical Systems (CerTA FCS) 

• AFRL program 

– Team:  Lockheed Martin + Rockwell Collins 

• Problem 

– The cost of software V&V for UAVs has been identified as the 
primary obstacle to their future development 

– These costs are expected to grow rapidly as sophisticated adaptive 
control systems are introduced (AAR, Sense & Avoid) 

• Measure cost and quality improvements using model checking 
for verification of UAV software 

– Use RC model-checking tools to verify LM Aero advanced flight 
control models 

– Quantify the cost and quality achieved by formal verification vs. 
test-based verification 

It’s a contest! 
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• LM and RC teams start with 
same set of requirements and 
software models 

• Both teams spent comparable 
effort to add enhancements to 
their verification framework 
(support for new blocks, 
graphical test case viewer, XML 
test case generation) 

• Measure effort to perform 
verification and diagnose 
results 

• [FMICS 2007] 
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That was nice but… 

• Here’s what I really want to be able to verify: 
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Inputs – 33 floating point inputs   

Outputs –6 floating point values 

Extensive use of matrix arithmetic 

166 Simulink subsystems 

2000+ Simulink blocks 

Operation Flight Program 

Including inner loop control 

Including adaptive control algorithms 

Including effector blender optimization 

Including dynamic inversion 
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Research Challenges 

• Floating point types 

• Non-linear arithmetic, non-linear functions 

• Complex requirements capture and formalization 

• Combined methods and tools approaches 

• Compositional verification 

• Analysis of system architecture models 

• And make it bigger 
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Summary 

• Model-based development is key to adoption of formal methods 

• Software is both solution and problem 

• Need to expand scope of systems/models that can be analyzed 

• It’s all about the money 


