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Abstract—Model checking by symbolic trajectory evaluation,
orchestrated in a flexible functional-programming framework,
is a well-established technology for correctness verification of
industrial-scale circuit designs. Most verifications in this domain
require decomposition into subproblems that symbolic trajectory
evaluation can handle, and deductive theorem proving has long
been proposed as a complement to symbolic trajectory evaluation
to enable such compositional reasoning. This paper describes an
approach to verification by symbolic simulation, called Relational
STE, that raises verification properties to the purely logical level
suitable for compositional reasoning in a theorem prover. We also
introduce a new deductive theorem prover, called Goaled, that
has been integrated into Intel’s Forte verification framework for
this purpose. We illustrate the effectiveness of this combination
of technologies by describing a general framework, accessible to
non-experts, that is widely used for verification and regression
validation of integer multipliers at Intel.

I. INTRODUCTION AND MOTIVATION

Forte [1] is a formal verification environment, based on sym-
bolic circuit simulation, that is well-established as an effective
solution to large-scale, datapath correctness verification at Intel
Corporation [2], [3], [4], [5], [6]. Two prominent successes
are the verification of the entire execution cluster of the Intel
Core 2 Duo [7] and Core i7 processors [8]. Some challenging
control-dominated designs have also been verified [9].

The foundation for verification of circuit properties in Forte
is symbolic trajectory evaluation [10]. Symbolic trajectory
evaluation (STE) is a model-checking method powered by
symbolic circuit simulation: it computes expressions for circuit
outputs in terms of variables that stand for inputs, and checks
that the circuit behaviours obtained satisfy temporal logic
formulas, computing the exact region of any disagreement.
These features give a seamless connection between simulation
and verification, as well as comprehensive feedback on failed
properties—two key elements of an effective methodology for
large-scale formal verification [1], [11].

To control complexity, STE adds a flexible mechanism for
partitioned abstraction [12], [13]. But, like any model checker,
STE still has limited capacity. Forte therefore complements
model checking with a higher-order logic theorem prover of
similar design to the HOL system [14]. Theorem proving
bridges the gap between big, industrially-important verifica-
tion tasks and tractable model checking problems. At Intel,
Forte is commonly used to provide assurance of functional
correctness—rather than ‘bug hunting’. (Other tools are used
for assertion-based verification.) The verifications tackled are
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therefore large and highly complex, and almost always require
some form of problem decomposition into tractable model-
checking cases. A typical high-level correctness statement may
decompose in complex ways into tens or even hundreds of
individual STE properties. Theorem proving helps assure the
verification engineer that these do indeed join up to imply
the overall correctness result. Problem decompositions also
commonly spin out side conditions that can’t be checked by
STE itself, but which yield to validation by theorem proving.

The Forte approach is to integrate model checking and
theorem proving within the single framework of a functional
programming language and its runtime system. A highly
engineered implementation of STE is built into the core of the
language, with numerous entry points into the internals of the
model-checking algorithm provided as user-visible functions.
Classically, verification in Forte has been viewed as program-
ming activity, in which the functional language is used directly
by verification engineers to orchestrate proofs and customize
the tools to meet complex verification challenges [1].

More recently, however, the focus at Intel has been shifting
to a higher level approach, enabled by two key technical
developments: a new theorem prover called Goaled and a
higher level formulation of property verification by symbolic
simulation called Relational STE. Goaled is a complete re-
placement for Forte’s original theorem prover, ThmTac [1],
[15]. Goaled has a much more complete logical basis than
ThmTac and is fully integrated with reFI€¢? [16], a principled
redesign and implementation of the system’s original func-
tional programming language. Relational STE liberates the
user from the low-level temporal logic of primitive STE. It
allows properties to be expressed in terms of purely logical
constraints, which are suitable for compositional reasoning
with the Goaled theorem prover.

In this paper, we give the first detailed account of Goaled
and Relational STE, and of the higher level approach to verifi-
cation enabled by these technical developments. We illustrate
the approach by describing a general framework for integer
multiplier verification that puts the power of Forte into the
hands of non-experts, and which is widely used for verification
and regression validation of multipliers at Intel.

Intel’s deployments of STE and Forte are among the most
substantial and sustained formal verification efforts in industry;
and, for some time, they were distinctive in general approach.
It is therefore encouraging to see the emergence of some
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impressive results obtained at Centaur Technology [17], [18]
using a framework, based around the ACL2 theorem prover,
that has many parallels with Forte—as well as some significant
differences. We discuss this work in some detail in Section V.

II. THE INTEGRATED GOALED THEOREM PROVER

Theorem proving as a complement to STE model-checking
has a long history. The combination was pioneered in the early
1990s in an academic predecessor of Forte called Voss [19];
this was followed by a series of systems that linked STE and
theorem proving, culminating in today’s mature integration
within Forte of the comparatively full-featured theorem prover
Goaled—an integrated combination that is seeing increasing
use in production verification projects.

HOL-Voss was a mathematically-principled hybrid of sym-
bolic trajectory evaluation and reasoning in the HOL theorem
prover [20], [21]. Formal definitions were made in HOL of
the mathematical entities of trajectory evaluation and some of
the functional programming constructs used in Voss to specify
data operations and circuit properties assertions. STE proofs
done by Voss could then generate HOL theorems framed in
this theory, and one could use HOL to construct higher-level
arguments from these. The circuit model remained external to
HOL and was represented by an uninterpreted logical constant.

At around the same time, Hazelhurst and Seger developed
a simple theorem prover within Voss itself for reasoning
in a sound and complete system of inference rules for the
temporal logic of STE [22]. The prover was augmented with
some ad-hoc ‘domain knowledge’, such as algebraic rules of
multiplication, and had some automatic proof heuristics. The
idea was to integrate—in a single framework this time—model
checking by symbolic simulation and deductive reasoning
about ‘deeply embedded’ assertions of the STE logic.

A step-change in integration came with the realisation that
one might unify the functional programming language for
scripting STE and the logical language within which reasoning
is done.! Lifted-FL [15] was a deep embedding of the underly-
ing term structure of Voss’s functional programming language,
called ‘FL’, within itself. This term structure is essentially the
typed A-calculus, the same as that of the higher-order logic in a
theorem prover, such as HOL, that uses Church’s formulation
of the logic [24]. The syntactic theorems of a theorem prover
implemented within Voss could now just be quoted fragments
of FL—i.e. functional program expressions, of Boolean type,
that are manipulated as data within the system. Moreover,
since logical formulas were now just program expressions,
FL’s native evaluator could (sometimes) be used to prove them.
This gave very fast proof by evaluation, as a complement to
more laborious deductive inference.

Two generations of a theorem prover called ThmTac [1],
[15] were built around this idea and used with STE to
verify several challenging industrial circuit designs for which
decomposition was essential [1], [25], [26]. This strongly

This idea had long been predated, of course, by the pioneering ACL2
theorem prover [23], which uses Applicative Common Lisp for both the
implementation and the logical languages.

98

validated the general approach, but the system still had some
shortcomings. The logical and programming languages didn’t
completely align—the most notable gap being pattern match-
ing, which was compiled away in the process of parsing quoted
FL expressions. The correct logical treatment of type defi-
nitions and recursive function definitions was largely passed
over. The core of the theorem prover consisted of a collection
of ‘trusted tactics’, so the logical basis was ad-hoc. More
seriously, this meant that theorem proving was biased towards
interactive, goal-directed proof [27], limiting its appeal to
non-experts. Finally, reasoning was still focussed on circuit
properties expressed in the primitive temporal logical of STE.

The next step was an extensive ‘rational reconstruction’ of
the programming language, FL. This was aimed, among other
things, at making the connection between the programming
and logical language much more principled. It also enabled a
host of engineering improvements to the system. The result
was reFIEC! [16], the language at the heart of the version
of Voss—by now renamed Forte—used today in production
formal verification projects at Intel.

ReFIECt was designed from the start with theorem proving in
mind. The aim was to have precisely the same A-calculus at the
core of both the logic and the programming language, and for
the theorem prover and the reFIEC! interpreter to use identical
internal data structures. This allows flexible (but, for logical
soundness, still carefully regulated) intermixture of deduction
in the theorem prover and evaluation in the interpreter, includ-
ing proof by evaluation. To gain confidence in the soundness
of this integration, a rather intricate reduction semantics for
the language was designed, the rules of which could then be
made primitive inference rules of the theorem prover. One
innovation was the introduction of function definitions by
pattern matching over quoted code, and a major challenge was
formulating the right reduction rules for this.

Goaled is a full-featured, but still lightweight, higher order
logic theorem prover built in reFI¢C! for reasoning about reFI¢Ct
programs. The system is heavily influenced by HOL and HOL
Light [28]; it can be seen as a reimplementation of these,
but with a radically extended A-calculus. Following the LCF
paradigm, it is built on a trusted core of primitive inference
rules, expressed in terms of new formulations of the usual pre-
logic primitives of a-equivalence, term matching, substitution,
and so on. The core includes a full basis for ordinary higher-
order logic, full rules for term reduction—including pattern
matching over quoted terms—and certain reflection rules for
moving between logic and native evaluation.

Function definitions and type definitions in the logic, in-
cluding quotient types, originate as programming language
definitions made at the reFIE¢? interpreter level. But, although
arbitrary definitions are permitted in the interpreter, definitions
are made visible in the logic only after surviving scrutiny.
This design choice is motivated by the reality of how reFIEC!
is used in practice. ReFEC? is used for hardware specification
and proof scripting, where formal proof is valuable or even
essential—but also for tool implementation and general pur-
pose programming, where proof is optional, if it is possible



at all. Quotient types are defined in reFIEC! by proposing an
equality-testing function, and are made visible in the logic
upon proof that the equality-testing function is an equivalence
relation. Functions that operate on quotient types are made
visible in the logic upon proof that they respect equality for
that type. Recursive function definitions that pass a syntactic
test for primitive recursion are admitted immediately, but
in general termination must be proved by exhibiting a well
founded relation R and supplying a proof that the arguments
to each recursive call decrease with respect to R.

Above this fundamental level, Goaled includes formalized
theories of Booleans, the option type, natural numbers, in-
tegers, rationals, functions, pairs, and lists. There are also
more hardware-oriented theories of fixed-width and variable-
length bitvector arithmetic. Proof automation, largely ported
from HOL, includes full-featured rewriting and simplification,
a meson first order solver, and a Fourier-Motzkin solver
for linear arithmetic over N, Z, and Q. Following common
practice in this domain, Goaled has sequent ‘tagging’ to enable
integration with external decision procedures.

All these capabilities were added to Goaled in response
to practical reasoning needs. In particular, they support the
features of reFI¢! commonly used in verification practice,
including overloading, records and quotient types. For the time
being, we have found this to be adequate for our domain and a
good characterization of ‘lightweight’ theorem proving in this
setting. We needed much more than originally envisaged when,
say, ThmTac was introduced. But it is still much less than
what mainstream theorem provers such as HOL, Coq [29], or
Isabelle/HOL [30] have. This is natural, because the activity
we support is more about reasoning about functional programs
than, say, doing proofs in algebraic mathematics or reasoning
about inductively-defined discrete structures.

III. RELATIONAL STE: FROM SIMULATION TO LOGIC

Symbolic trajectory evaluation (STE) is a model-checking
algorithm that proves properties of circuit behaviour using
ternary symbolic circuit simulation. The STE algorithm takes
as inputs a circuit and a pair of trajectory formulas, called
the antecedent and consequent, that together constitute the
property to be checked. Roughly speaking, the intuition is
that the antecedent determines certain bits in the initial state
and provides stimuli to selected circuit inputs at certain points
within a bounded period of time. The consequent specifies
the values expected to appear on selected circuit nodes as a
response, while the circuit model is simulated.

A successful run of STE establishes a trajectory assertion
saying that any execution of the circuit that conforms to the an-
tecedent also satisfies the consequent. In essence, STE checks
that circuit behaviour has simple stimulus-response properties,
framed within a finite window of time. In addition, there is
a mechanism for abstraction of circuit behaviour in which
circuit nodes can carry ‘unknown’ values. This is overlaid
by a symbolic representation for groups of properties that
allows relationships between values on different circuit nodes
to be expressed. Together, these provide a means by which

families of abstractions, each covering only part of the circuit’s
behaviour, can be checked simultaneously. This mechanism for
partitioned abstraction is called symbolic indexing [12] and can
sometimes achieve dramatic efficiency gains [13], [31].

In the classical formulation of STE, the antecedent and
consequent are written in a very simple linear-time temporal
logic. In Forte, these formulas are represented concretely by
lists of 5-tuples of the form

(guard, node, value, start, end)

where guard and value are formulas of propositional logic
(usually BDDs, but a non-canonical representation aimed at
SAT is supported too), node is a node name (a string), and
start and end are non-negative integers. The meaning is that
if guard holds, then node has value from simulation cycle
start up to but excluding simulation cycle end.

ThmTac and earlier theorem provers for STE provided
a specialised deductive system for compositional reasoning
about the trajectory assertions in the form just introduced.
In essence, lists of 5-tuples constituted a ‘deep embedding’
of a syntax of trajectory assertions; and rules were added to
higher order logic that constituted an axiomatic theory of the
embedded STE simulation logic. Consequently, the deductive
system for circuit properties was not well integrated with the
ordinary higher order logic of these theorem provers.?

A. Circuit Execution Semantics and STE Formulas

Let us introduce some basic definitions. A circuit is a well-
formed interconnection of combinational gates and sequential
elements, such as flip-flops and latches. An execution is a
function of type (string X num) — bool that assigns to each
circuit node, named by the string, a Boolean value at each
point in time, represented by a natural number. The behaviour
of a circuit is a predicate on executions—or, equivalently, a
set of executions.

We shall assume the existence of a function

[ckt] :: ((string x num) — bool) — bool

that gives us the behaviour of a circuit, i.e. a predicate
determining whether a given execution e is consistent with
the circuit. Analogously, we also write [[ant] for a predicate
specifying whether an execution e is consistent with the five-
tuple list ant. We are deliberately vague about how a circuit
is represented concretely, but note that if a representation is
chosen it is a relatively simple matter to define the function[[_]|
mathematically. In essence, one would use the classical ‘rela-
tional’ approach that is well-known from hardware modelling
in higher-order logic [32].

B. Relational STE

STE has proven to be an extremely useful verification
engine in practice, and has been the key enabler for most
of Intel’s formal verification success stories. Nevertheless, the

2Some bridges between the two levels were, however, provided by certain
quantifier rules and axioms about ‘parametric’ encoding of assumptions.
See Section VII of [1] for details.
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language of trajectory assertions severely limits the classes of
properties that can be expressed natively. In effect, trajectory
assertions require a specification to be functional: given inputs,
the specification dictates the values the outputs shall have,
potentially under some do-care conditions.

Many informal specifications occurring in practice do not
fall into this category, the simplest one being ‘nodes a and b
are mutually exclusive’. Such relational specifications become
especially important as the abstraction level of specifications
rises. For example, a natural specification of a scheduler might
say ‘an operation with its sources ready will be scheduled
for execution’, while intentionally leaving open the selection
between different ready operations. When verifying relational
specifications with STE, the established practice has been to
use STE as a symbolic simulation engine only, and to write ad
hoc FL code to compute the satisfaction of the specification
on the basis of simulation values queried from the STE trace.

Relational STE, or rSTE in short, has been crafted as a
systematic solution to the problem of expressing and verifying
general relational specifications, while retaining the use of STE
as the underlying symbolic simulation engine.

In what follows, we give an overview of the technical
underpinnings of rSTE. The notation we use is an idealization
of the Goaled higher order logic. As discussed in Section II,
phrases of this logic are simultaneously reFI€C! programs, so
we shall employ a mixture of functional programming and
logical notation. The reader is spared the concrete syntax of
the actual Forte implementation, which for historical reasons
is similar to that of the original ‘Edinburgh’ ML [33].

The basic building blocks for rSTE specifications are called
constraints. Conceptually, a constraint is simply a predicate
on circuit executions. Technically, a constraint ¢ consists of
three parts: name, predicate and signature, denoted by name c,
pred c and sig c, respectively. The name is simply a string
that is used to identify the constraint for user convenience, e.g
for informational messages. The predicate is a function

pred c :: ((string x num) — bool) — bool

and the signature is a list of string x num pairs. The predicate
refers to a finite collection of individually specified circuit
nodes and points of time, conceptually querying their values in
a circuit execution given to the predicate as an argument, and
computes a Boolean function of these values. The signature
lists all the nodes referred to by the predicate, and the times
at which their value is accessed.

For example, the constraint shown below could be used to
express the informal property that ‘circuit nodes a and b are
mutually exclusive at time point 2’.

CONSTR “ab_mutex”
(Ae.=((e(a, 2)) A (e(b, 2))))
[(a,2), (b, 2)]
We extend the predicate function pred to a constraint list
cl = e, ..., cy), implicitly considered conjuncted, by:

predlcle Lef (predcie) A...A(predcy,e)
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The user interface to rSTE is through a reFIE¢! function
rSTE ckt antc antv cin cout opts

The first two arguments to rSTE, the circuit ckt and the
constant antecedent antc, describe the ‘static’ aspects of the
verification task. Here antc is a five-tuple list, exactly as used
in classical STE; but it is used in rSTE only to set constant
value assignments, e.g. clock patterns, testability signals, etc.,
that are shared by all verification tasks on the circuit. In
classical STE, the antecedent is also used to assign symbolic
variables to circuit nodes; in rSTE this aspect is separated out
as a distinct variable binding antecedent antv, which allows
the user only to bind positive instances of distinct symbolic
variables to circuit nodes. Every circuit node is mentioned in
antc or antv or is assigned an unknown ‘X’ value at the start
of the simulation, so this covers the full state-space. For more
discussion on symbolic variable bindings, see [34].

The main logical content of an rSTE verification task is
described with the input and output constraint lists cin and
cout. The meaning is that if the input constraints cin hold,
then circuit behaviour under simulation will satisfy the output
constraints cout. In theory, the constraints could be combined
into an implication cin = cout. In practice, however, verifi-
cation of each element in cout may be carried out separately
to alleviate complexity. Separating out the constraints cin
can also allow some them to be injected into the symbolic
simulation using parametric substitution [26], futher improving
efficiency.

Finally the options list opts gives the user fine-grained
control over how rSTE carries out the verification task. For
example, the computation may require use of a parametric
representation of boolean functions [26], a specific circuit
abstraction method, or certain simulation or constraint satisfac-
tion engines: e.g. BDD-based analysis vs SAT-based analysis.
The user specifies all such choices through the rSTE options.

Internally, the reFIEC! function rSTE uses the constant and
variable binding antecedents antv and antc as well the user-
given options opts to construct a classical STE antecedent.
It then carries out symbolic simulation with STE using this
antecedent as stimulus. Following the symbolic simulation,
an execution é is available that ‘reads off’ symbolic values
on circuit nodes at any specified times. To establish truth or
falsehood of the rSTE assertion, the implication

(predl cin é) = (predl cout é)

is evaluated over é, either using BDDs or a SAT solver,
depending on user options.

The relational formulation of symbolic trajectory evalua-
tion preserves the power of the underlying STE algorithm
while enabling much richer specifications—in particular ones
describing relations between nodes values rather than just
functions. Since its introduction, rSTE has been the workhorse
of datapath verification at Intel; many thousands of individual
operations, from the very simple to the very complex, have
been verified in several microprocessor families and over the
course of several generations.



In the classical theory of STE, the ‘fundamental theorem’
relates a successful run of the symbolic simulator to the logical
property it establishes. For rSTE, the fundamental theorem has
a particularly elegant formulation:

Vckt antc antv cin cout opts .
rSTE ckt antc antv cin cout opts —>
Ve.[[ckt] e Allantc]] e =
(predl cin e) =
(predl cout e)

Most important for the purpose of this paper, the relational
formulation eliminates the need to use specialized STE infer-
ence rules and apparatus for temporal reasoning. The relational
formulation makes it ‘just’ higher order logic. Reasoning about
functional and temporal aspects of circuit behavior takes place
in a uniform framework: higher order logic. Indeed, rSTE
itself is a function that can be reasoned about in higher order
logic. In Section IV, we illustrate a practical application of
this: reasoning about automatically generated specifications
and automatically generated calls to rSTE.

Notice that the symbolic variables bound by antv do not
appear in the correctness property inferrable from a successful
run of rSTE. This is intentional: we use symbolic simulation
and computation only as a means to the end goal of verifying
universally quantified claims. The identity of the symbolic
variables and the precise bindings do not matter, as long as
distinct variables are bound to distinct circuit nodes and times,
which rSTE checks automatically.

IV. A FRAMEWORK FOR INTEGER MULTIPLICATION
Figure 1 shows a Booth multiplier. Its principles of opera-

tion are simple. First, one of the operands, S1 say, is Booth
encoded: N Booth coefficients BE;(S1) are computed such that

—2% < BE;(S1) < 2",

for 0 <i < N and k > 0. A given multiplicand S1 has many
valid Booth encodings, but the Booth coefficients are always
required to satisfy

N—1
S1= Y BE;(S1) x 2. (1)
1=0

The quantity 2* is called the radix.
Second, a set of N partial products is computed, one for
each Booth coefficient:

PP; = BEZ‘(S].) X 82 (2)

for 0 <i< N.
Finally, the N partial products are shifted and summed to
yield the product PROD:
N—1
PROD = »  PP; x 2 (3)
i=0
Automatic input-to-output verification of even a moderately-
sized multiplier is beyond the capacity of the BDD- and SAT-
based verification approaches commonly deployed in industry.

Sl s2

Booth
Encoder

BE, (S1)

Partial Products
Generation

PP, —

Wallace Tree Adder
Network

PROD

Fig. 1. A Booth Multiplier.

But verification of Equations (1), (2), and (3) is tractable and
can be done automatically using rSTE. Once these are estab-
lished it will require only straightforward algebraic reasoning
to prove, on paper or in Goaled, that

PROD = S1 x S2 4)

Consider now the task of verifying an actual circuit im-
plementation of a Booth multiplier. Typically, a circuit ex-
pects to receive a valid clock pattern and the assertion of
some interface control signals requesting the execution of a
multiplication operation. In rSTE verification, we would fix a
constant reference time for the start of the operation, and code
the expected clock and control signal patterns by a constant
antecedent antc. The circuit will read source data values on
designated signals at some fixed delay after the start of the
operation. Then, Booth encodings and partial products will be
computed, and partial products summed together to produce a
final product on designated result signals at some later time.

To map the conceptual proof stages above to an actual
circuit implementation, we need to first identify the circuit
signals for both sources S1 and S2, the partial products and
the final product, with the appropriate timing relative to the
fixed start of the operation, and code these as string X num
lists s1, s2, pp, and prod, respectively. The function s2i
interprets the values on such lists, relative to a given circuit
execution, as integers using two’s complement encoding.

We construct an rSTE constraint to check correctness of the
Booth coefficients using Equation (1) as specification:

N-1
eqni(x) EC - Z BE; (z) x 2~
=0

boothe ' CONSTR “boothOK”
(Me.eqnl (s2i e sl))

s1

As before, we use ordinary mathematical notation in defini-
tions; reFIEC! notation differs in style but not in substance.
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We now use rSTE to verify that the constraint boothc
holds for all executions of the circuit. We will use the variable
binding antecedent antv to assign distinct symbolic variables
to all the source data signals at the time the circuit is expected
to read their values, and execute the rSTE call

rSTE ckt antc antv [] [boothc] opts.

Success of this call allows us to conclude, via the fundamental
theorem, that

Ve. [[ckt] e AJlantc] e =
(predl [] ) = (predl [boothc] €)

By expanding the definition of predl and employing a few
of Goaled’s standard theorems about lists, this simplifies to

Ve. [[ckt] e Alantc] e = pred boothc e

Expanding the definitions of boothc and pred plus a little
more rewriting yields

Ve. [ckt] e Alantc] e => eqni(s2i e s1).

Finally, expanding the definition of the auxiliary function eqnl
yields a theorem asserting that the Booth coefficients bear the
correct relationship to the circuit nodes s1.

Ve. [[ckt] e AJlantc] e =

s2i esl =Y ' BE(s2i e s1) x 2¥.

In similar fashion, we define constraints corresponding to
Equations (2) and (3):

eqn2,(w;, x,y) = w; =BE;(z) Xy

ppc; = CONSTR “ppiOK”
(Me.eqn2 ( s2i epp;,
s2iesl,
s2ies2))

(s1 @s2 @ pp,)

N-1
eqn3(z,w) e = Z w; x 2K
i=0
prodc % CONSTR “prodOK”
(Me.eqn3( s2i eprod,
map (s21i¢) pp ))
(prod @ flat pp)

With these definitions in hand we execute the remaining rSTE
runs. There are N + 2 in all, one for boothc, one instance
of ppc,; for each of the N partial products, and one final
run to check prodc. For all except the final run we use the
variable binding antecedent to assign variables to the source
data signals; in the final run we use it to assign distinct
symbolic variables to the partial product signals.

Using a BDD variable ordering that aligns the bits in partial
products according to their position in the summation, we can
handle verification of most Wallace tree adders occurring in
Intel designs, up to extended precision floating point multipli-
ers. For a minority of designs, a further cut-point in the middle
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of the Wallace tree is needed to manage BDD complexity, and
Equation (3) is split into two obligations.

If all of these verification runs are successful, we can use
the fundamental theorem of rSTE and simple rewriting and
logical reasoning to conclude that

Ve. [ckt] e AJantc] e =
(s2iesl = Zfi_ol BE;(s2i e s1) x 2F) A
(/\figl s21i e pp;, = BE;(s2i e s1) X s2i € s2) A
(s2i e prod = SN *(s2i e pp;) x 2M)
From here, routine arithmetic reasoning yields a theorem
asserting the correctness of the multiplier implementation:

Ve. [ckt] e Afantc] e =
(s2i e prod) = (s2i e s1) X (s2i e s2)

Note that these results were obtained using only standard
logical reasoning, without the use of purpose-built inference
rules for STE. This is due to the direct representation of rSTE
constraints in the logic of Goaled, and our formulation of the
fundamental theorem of rSTE that directly exposes the logical
import of each successful rSTE run.

A. A General Framework for Multipliers

The method outlined above suffices to verify the correctness
of one multiplier. Wide deployment across a large corpora-
tion presents additional challenges. Surface details like signal
names and their timing vary from design to design, as do radix
and operand widths. Designs differ more fundamentally in how
they choose to encode Booth coefficients and partial products
and how they represent flags and exceptional conditions. Many
design-specific quirks are handled by customizing functions
like s2i that extract values from the circuit trace, allowing
us to view the circuit as if it was a vanilla design. If an
implementation feature cannot be ‘explained away’ like this,
the reference model is generalized to handle it. In addition,
each design organization has its own validation and regression
practices and software that supports them.

To address this diversity of designs and design environ-
ments, we have developed over the last decade a general
framework for multiplier verification. The notion of constraints
is generalized to allow predicates over arbitrary domains, with
the constraints over circuit executions described in Section
IIT being a special case. Abstraction mappings between con-
straints are used to separate the essence of the specifications
and proofs shown above from accidental details of particular
designs. The framework is designed to be configured and
used by non-experts, who are responsible for supplying design
details (signal names, representation of partial products, and so
on) and setting configuration parameters (for example, radix
and operand width). Behind the scenes, a sophisticated set of
reFIEC! scripts arranges for design-specific specifications to be
generated and orchestrates the necessary runs of rSTE.

Although the scripts are written with care, they are under
continual refinement—each new design and design environ-
ment introduces some wrinkle—making it impossible to prove
correctness of the scripts once and for all. There is a very real



risk that script errors will result in generation of incorrect
specifications or an incomplete set of rSTE runs. To verify
correct operation of the scripts, we have integrated Goaled
with our multiplier verification framework. During nightly
RTL regression, Goaled analyzes the scripts at source level
to determine what specifications are generated and what rSTE
runs are executed. A proof is programatically constructed,
along the lines shown above, that these specs and rSTE
runs are sufficient to ensure correctness of the circuit. This
capability is currently deployed in a ‘live’ CPU design project.

Goaled also plays a more traditional role in our multiplier
verification framework. Several side conditions arise in our
compositional proofs that would be difficult or impossible to
prove using BDDs or SAT. For example, this assumption is
required in the proof of the Wallace tree adder:

N-1
min{S152, 5182, 8182,5182} < »  PP; x 2V
=0

where ¥ (z) denotes the largest (smallest) value of the bitvector
z. A Goaled proof is immediate from Equations (1) and (2).

V. RELATED WORK

Integration of model-checking and theorem proving was
proposed as early as the mid 1990s [35], and many experi-
ments in combining the techologies have been reported. One of
these, ACL2SIX [36], integrates the ACL2 theorem prover and
IBM’s SixthSense verification tool. The combination was used
to verify a pipelined 53x43 bit multiplier, by a decomposition
strategy similar to the example presented in Section IV. Some
more general verification frameworks that effectively combine
two technologies have also been designed, two prominent
examples being Prosper [37] and SAL [38].

The published research on applied formal verification most
closely related to Forte is work on a verification toolflow used
at Centaur Technology to help ensure correctness of their
X86-compatible microprocessors [17], [18]. Developed and
deployed by a team of engineers and scientists at Centaur
and UT Austin, the framework integrates several reasoning
tools and is based around the well-established ACL2 theorem
prover [23]. As with Forte at Intel, a prominent application
is the verification of floating-point and integer arithmetic
hardware. Of course ACL2 itself, and its predecessor the
Boyer-Moore theorem prover, have a long history of successful
application to hardware verification [39], [40].

A notable feature of the Centaur framework is that it is
built on top of publicly-available software tools: ACL2 itself
and special-purpose tools such as the ZZ framework [41] and
ABC [42]. The impressive verification results cited in [17],
[18] and [43] show that a robust and practical toolflow of
considerable capacity can be built in this way. By contrast,
Forte is an in-house tool, highly engineered and optimised
through years of use on challenging problems at Intel.

The two frameworks have many features in common, at
least at a general level: symbolic circuit simulation is a central
technology for generating circuit properties; individual proper-
ties of a proof are composed together in a theorem prover, to

build up more complete verifications; and both systems are
embedded in a general purpose programming language, so
they can be extended and customised. Both tools can read
and give semantics to large circuit models at either gate or
transistor levels. Proof regression is a common verification
activity carried out with both frameworks.

A significant difference between Forte and the Centaur
framework is the depth of integration of circuit simulation.
In Forte, the symbolic simulation algorithm is built in to
reFIEC! and not exposed to reasoning at the level of the Goaled
theorem prover. There are reFIEC! functions that can be used
to explore and manipulate the structure of the circuit model,
and access its state-transition semantics. But for efficiency the
simulator itself is hard-coded into the internals of reFEC!.
Although the STE algorithm has been independently veri-
fied [44], there are no plans to verify the highly engineered
Forte internal simulator. In the Centaur system based on ACL2,
the symbolic circuit simulator is written in ACL2 itself. It is
hence available as a formal object about which proofs can be
done—and, indeed, has been verified correct [45].

The successful industrial deployment of two major verifi-
cation frameworks, Forte at Intel and the ACL2-based tools
at Centaur Technology, show that this idea has come of age
industrially. Moreover the parallels between the two systems,
each quite different from the other in numerous matters of
detail, strengthens the conclusion that this kind of architecture
represents a general solution in this important domain.

VI. SUMMARY AND PROSPECTS

This paper has described what we hope to be the basis
for a step-change in the exploitation of theorem proving as
a complement to symbolic simulation for compositional veri-
fication of circuit designs. Relational STE raises the level of
the properties obtained from symbolic trajectory evaluation to
pure logic. Compositional reasoning can then be done straight-
forwardly in higher-order logic, rather than with specialised
STE inference rules. A ‘lightweight’ theorem prover, Goaled,
has been designed for this purpose and tightly integrated
into Forte, the STE programming environment used at Intel.
The utility of this approach is exemplified by a general tool
for validation of integer multipliers that soundly automates
complex proof decompositions for non-expert users, entirely
‘hiding’ the theorem proving support for this.

Future work on Goaled includes development of a theory
of floating point operations at bit level. This is intended
for certification of conformance to IEEE Standard 754 of
‘reference models’ of floating point algorithms expressed as
reFIEC! programs. Valuable results of this kind been obtained
in the past using ThmTac [1]; it is hoped that a capability
for this in Goaled will aid in maintaining the certification of
reference algorithms as they become more complex over time.

Future work on Relational STE includes fully integrating
SAT-based symbolic trajectory evaluation into the framework,
alongside BDDs. This is largely a matter of engineering.
More challenging from a research perspective will be the
incorporation of symbolic indexing, a flexible and somewhat
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subtle mechanism for abstraction in STE, into the Relational
STE flow. This may leverage past work on abstraction trans-
formations [46] and automatic symbolic indexing [13].
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