> Sebastiaan J.C. Joosten Julien Schmaltz

RTL design

Our approach

(candidate) deadlock configurations

Our approach

- Sound for deadlock freedom / Complete for finding deadlocks
- Fast because:
 - abstract from queues (using Verilog module structure)
 - use off-the shelve SAT solvers
 - find static deadlock configurations (just one state!)

Encoding deadlocks = Encoding persistency

A dead queue is one that never releases its packet

$\bigcirc \Box (\neg \texttt{dequeue} \land \texttt{not_empty})$

Encoding persistency

• Persistency can be propagated over the network

Encoding persistency

• Persistency can be propagated over the network

Encoding persistency

Persistency can be propagated over the network

$\bigcirc \Box$ enqueue $\rightarrow \Diamond \Box$ not_empty

Find restrictions for compositional verification

RTL design

Our approach

automatic proof of deadlock freedom

Open Universiteit intel Deadlock Verification in Register Transfer Level Designs of Communication Fabrics This research is funded by NWO, Project 612.001.108 Effective Layered Verification of Networks-on-Chips

NWO

Sebastiaan J.C. Joosten sjj@ou.nl

Julien Schmaltz Julien.Schmaltz@ou.nl

Check out my poster

- Communication fabrics constitute a key component of multicore processors and systems-on-chip.
- O Detection of message dependent deadlocks in communication fabrics is a challenge due to the large number of queues and the distributed character of control.

Motivation

O Verification of deadlock freedom of Register Transfer Level designs of communication fabrics.

Contribution

- Reduce queues to an abstract entity
- Convert deadlock freedom to an SMT instance
- Implemented approach in ACL2
- Approach scales to large fabrics
- Sound but incomplete: false deadlocks may be found

Future work:

• Reduce generation time • Reduce false deadlocks by adding invariants

Instance	# q	# W	generation	solving	
2x2 mesh	20	1952	6 sec	1 sec	
4x4 mesh	80	5281	42 sec	3 sec	
6x6 mesh	180	13972	866 sec	4 sec	
8x8 mesh	320	24515	4618 sec	4 sec	
Experimental results for networks with deadlocks					

		generation	Joiving
28	940	3 sec	0 sec
112	4768	68 sec	1 sec
252	13380	1660 sec	7 sec
448	23872	9148 sec	11 sec
	20 112 252 448	28 940 112 4768 252 13380 448 23872	26 940 3 sec 112 4768 68 sec 252 13380 1660 sec 448 23872 9148 sec