Skipping Refinement

Mitesh Jain, Pete Manolios

Northeastern University, Boston

Example of a Reactive System: Microprocessor

Example of a Reactive System: Microprocessor

Instruction Set Architecture (ISA) Natural Specification

- add rd,ra,rb
- sub rd,ra,rb
- jnz imm
- . . .

First Generation Microprocessor

First Generation Microprocessor

 Show that all behaviors of the implementation are behaviors of the specification.

First Generation Microprocessor

- Show that all behaviors of the implementation are behaviors of the specification.
- Simulation Refinement [Milner and Park 1981]

Optimizations

• Pipelined Architecture: increase the throughput

 Simulation refinement does not account for unobservable steps (stuttering)

- Simulation refinement does not account for unobservable steps (stuttering)
- Show that all behaviors of the implementation are behaviors of the specification upto stuttering

- Simulation refinement does not account for unobservable steps (stuttering)
- Show that all behaviors of the implementation are behaviors of the specification upto stuttering
- Well-founded Stuttering Simulation [Manolios 2001]

Optimizations

- Pipelined Architecture
- Superscalar: increase number of instructions retired per cycle

IF	ID	ΕX	MEM	WB		
IF	ID	ΕX	MEM	WB		
	IF	ID	EX	MEM	WB	
	IF	ID	EX	MEM	WB	
		IF	ID	EX	MEM	WB
		IF	ID	EX	MEM	WB

IF	ID	EX	MEM	WB		
IF	ID	ΕX	MEM	WB		
	IF	ID	EX	MEM	WB	
	IF	ID	EX	MEM	WB	
		IF	ID	EX	MEM	WB
		IF	ID	EX	MEM	WB

• Can retire multiple instructions in a single step.

IF	ID	EX	MEM	WB		
IF	ID	ΕX	MEM	WB		
	IF	ID	EX	MEM	WB	
	IF	ID	EX	MEM	WB	
		IF	ID	EX	MEM	WB
		IF	ID	EX	MEM	WB

- Can retire multiple instructions in a single step.
- Existing notions do not account for "skipping" observable steps.

IF	ID	EX	MEM	WB		
IF	ID	EX	MEM	WB		
	IF	ID	EX	MEM	WB	
	IF	ID	EX	MEM	WB	
		IF	ID	ΕX	MEM	WB
		IF	ID	EX	MEM	WB

Skipping Refinement

• Show that all behaviors of the implementation are behaviors of the specification upto stuttering and finite skipping

IF	ID	EX	MEM	WB		
IF	ID	EX	MEM	WB		
	IF	ID	EX	MEM	WB	
	IF	ID	EX	MEM	WB	
		IF	ID	ΕX	MEM	WB
		IF	ID	EX	MEM	WB

Skipping Refinement

- Show that all behaviors of the implementation are behaviors of the specification upto stuttering and finite skipping
- Well-founded Skipping

IF	ID	EX	MEM	WB		
IF	ID	EX	MEM	WB		
	IF	ID	EX	MEM	WB	
	IF	ID	EX	MEM	WB	
		IF	ID	ΕX	MEM	WB
		IF	ID	EX	MEM	WB

Skipping Refinement

- Show that all behaviors of the implementation are behaviors of the specification upto stuttering and finite skipping
- Well-founded Skipping
 - Local Reasoning

IF	ID	ΕX	MEM	WB		
IF	ID	EX	MEM	WB		
	IF	ID	EX	MEM	WB	
	IF	ID	EX	MEM	WB	
		IF	ID	ΕX	MEM	WB
		IF	ID	EX	MEM	WB

Skipping Refinement

- Show that all behaviors of the implementation are behaviors of the specification upto stuttering and finite skipping
- Well-founded Skipping
 - Local Reasoning
 - Compositional

• Vectorizing compiler transformation

- Vectorizing compiler transformation
 - Transform a sequence of scalar instructions into vector instructions

- Vectorizing compiler transformation
 - Transform a sequence of scalar instructions into vector instructions
- Memory Controller

- Vectorizing compiler transformation
 - Transform a sequence of scalar instructions into vector instructions
- Memory Controller
 - Buffer reads/writes to the memory and update multiple locations in a page simultaneously.

Thank You