

Small Inductive Safe Invariants

Alexander Ivrii, Arie Gurfinkel, Anton Belov

Introduction

● Consider a verification problem (INIT, TR, P)

● In the case that P holds, a Model Checker may produce a proof in
terms of a safe inductive invariant

● A safe inductive invariant is a set of states G, satisfying:

– G contains all the initial
states

– All the transitions from G
lead back to G

– G is contained in the set
of states where P holds

INIT

P
G

Introduction

● Equivalently, a safe inductive invariant is a Boolean function G,
satisfying:

– INIT  G

– TR  G  G' (inductive)

– G  P (safe)

● Following IC3, a recent trend is to produce such an invariant as a
conjunction of many simple lemmas (such as clauses)

– G = C
1
  …  C

n

● A typical invariant may contain 10,000s of clauses

Introduction

● Our motivation is that smaller inductive invariants are more useful:

– They are relevant in the context of FAIR [Bradley et al. 2011]

● The cited paper introduces the problem and presents a
solution

– They produce better abstractions

● A state variable not in the invariant is irrelevant for correctness
– They increase user comprehension

– They improve regression verification

● In this work we minimize inductive invariants by removing clauses

– Look for minimal (or small) subsets

– “Minimal” does not mean “of minimum size” (the latter is harder)

Problem Statement

● Following the standard (abuse of) notation for CNFs, we denote the
conjunction of clauses as a set (and vice versa)

● Minimal Safe Inductive Invariants (MSIS): Given a safe inductive
invariant {C

1
, …, C

n
}, find a subset {C

i1
, …, C

ik
} of {C

1
, …, C

n
}, so that:

– {C
i1
, …, C

ik
} is also a safe inductive invariant

– {C
i1
, …, C

ik
} is minimal (no proper subset of {C

i1
, …, C

ik
} is safe

and inductive)

● We want the solution to be efficient (ideally the time to minimize a
safe inductive invariant should be much smaller than to compute it)

Why finding an MSIS is not simple

● Recall that in particular we need to make sure that

– TR  C
i1

…  C
ik

  C
i1
'

  …  C
ik
'

● This query is non-monotone: each clause appears both as a premise
and a conclusion

– With fewer clauses, we need to prove less, but we can also
assume less

● For example, it might be that:

– {C
1
, C

2
, C

3
, C

4
} is inductive,

– {C
1
, C

2
, C

3
} is not inductive,

– {C
1
, C

2
} is inductive

Basic MSIS algorithm

● First, we present the approach described in [Bradley et al. 2011]

● The main idea is to tentatively remove a clause, and then to iteratively
tentatively remove all no longer implied clauses, until:

– Either a smaller inductive invariant is obtained

● We can restrict to this smaller invariant

– Or the property itself is no longer implied

● We should restore all the tentatively removed clauses

● Repeat for every clause

Basic MSIS algorithm – Example

● Initially: {C
1
, C

2
, C

3
, C

4
, C

5
, C

6
} is a safe inductive invariant for P

● Remove C
1
: {C

2
, C

3
, C

4
, C

5
, C

6
}

– Suppose that C
2
' and C

4
' are no longer implied

● Remove C
2
 and C

4
 as well (as they cannot be part of any MSIS of

{C
2
, C

3
, C

4
, C

5
, C

6
}) : {C

3
, C

5
, C

6
}

– Suppose that C
5
' is no longer implied

● Remove C
5
 as well : {C

3
, C

6
}

– Suppose that C
6
 and P are no longer implied

● It follows that C
1
 cannot be removed (must be present in every MSIS

of {C
1
, C

2
, C

3
, C

4
, C

5
, C

6
})

● Restore all removed clauses

Basic MSIS algorithm – Example

● Currently:

– {C
1
, C

2
, C

3
, C

4
, C

5
, C

6
} is a safe inductive invariant for P

– C
1
 cannot be removed

● Remove C
2
: {C

1
, C

3
, C

4
, C

5
, C

6
}

– Suppose that C
3
' and C

6
' are no longer implied

● Remove C
3
and C

6
as well : {C

1
, C

4
, C

5
}

– Suppose that all remaining clauses and P are implied

● It follows that {C
1
, C

4
, C

5
} is a smaller safe inductive invariant

Basic MSIS algorithm – Example

● Currently:

– {C
1
, C

4
, C

5
} is a safe inductive invariant for P

– C
1
 cannot be removed

● Proceed with the remaining clauses in a similar fashion

Basic MSIS algorithm

● Denote by MaxInductiveSubset(S, P) the procedure that computes
the maximum inductive subset of S, aborting if it does not imply P

● Given a safe inductive invariant G for P, in the basic approach we

– Iteratively

● Choose a not-yet-considered clause C in G
● Compute X = MaxInductiveSubset(G\C, P)
● If X is safe (X implies P), then replace G by X

● Claim: the described algorithm computes an MSIS of G

● Unfortunately, this algorithm is not efficient

– A large number of SAT calls is required (~quadratic)

– Does repeated work

What can we do better?

● Efficiently under-approximate an MSIS

– Find clauses that must be present in any MSIS of G

● Efficiently over-approximate an MSIS

– Remove clauses that are not part of some MSIS of G

● Optimize the basic MSIS algorithm

– Minimizing the amount of wasted work

– Taking clause dependency into account

● Combine under- and over- approximations with the optimized MSIS
algorithm

● Given a safe inductive invariant G = {C
1
, …, C

n
}, we say that a clause

C
i
 is safe necessary if C

i
 is present in every MSIS of G.

● We exploit the following observations:

– Given a clause C in G, if (G \ C)  TR  P does not hold then C is
safe necessary

– Given a clause C in G and a safe necessary clause D (different
from C), if (G \ C)  TR  D' does not hold then C is safe
necessary

● The under-approximation algorithm iteratively applies the above two
observations until fix-point

● The algorithm can be implemented very efficiently using an
incremental SAT-solver

Under-Approximation

Under-Approximation – Example

● Initially:

– {C
1
, C

2
, C

3
, C

4
, C

5
, C

6
} is a safe inductive invariant for P

– No clauses are marked as necessary

● Check if there is an unmarked clause without which P is not implied

– Suppose that we find C
4

– Mark C
4
 as necessary

● Check if there is an unmarked clause without which P is not implied

– Suppose that we find C
5

– Mark C
5
 as necessary

● Check if there is an unmarked clause without which P is not implied

– Suppose that we find none

Under-Approximation – Example

● Check if there is an unmarked clause without which C
4
' is not implied

– Suppose that we find C
1

– Mark C
1
 as necessary

● Check if there is an unmarked clause without which C
4
' is not implied

– Suppose that we find none

● Check if there is an unmarked clause without which C
5
' is not implied

– Suppose that we find none

● Check if there is an unmarked clause without which C
1
' is not implied

– Suppose that we find none

● Therefore: C
1
, C

4
, C

5
 belong to every MSIS of {C

1
, C

2
, C

3
, C

4
, C

5
, C

6
}

● Claim: the described algorithm computes a set of clauses that must
be present in every MSIS of G

(however, it does not compute all such clauses)

● The algorithm makes only a linear number of SAT calls
(even in the size of the solution)

● The algorithm can be further improved if some clauses are initially
known to be necessary

● For IC3 proofs, the algorithm is very efficient and usually marks a
large number of clauses

Under-Approximation

● Given a safe inductive invariant G = {C
1
, …, C

n
} and two subsets A

and B of G, we say that A inductively supports B (or equivalently that
B is supported by A) if TR  A  B  B'

● Greedily compute a safe inductive subset of G as follows:

– Choose any minimal subset A
1
 of clauses needed to support P

(and any necessary clauses, if known)

– Choose any minimal subset A
2
 of clauses needed to inductively

support A
1

– Choose any minimal subset A
3
 of clauses needed to inductively

support A
2

...

– Stop when the last computed set is empty

● The over-approximation is the union of all the sets considered

Over-Approximation

● Claim: the described algorithm computes a safe inductive subset of G

(however, it is not guaranteed to be minimal)

● The algorithm makes only a linear number of MUS calls

● The quality and the run-time of the algorithm are greatly improved

– If we compute minimal supporting sets

– If we follow the presented recursive approach

● Instead of computing a global unsatisfiable core as suggested
in [Bradley et al. 2011]

– If we consider all the clauses of A
i
 together, rather than 1-by-1

– If some of the clauses are initially marked as necessary

Over-Approximation

● An immediate optimization to the basic MSIS algorithm consists of

– Marking necessary clauses as soon as they are discovered, and

– Aborting the computation as soon as one of the necessary
clauses becomes non-implied

● Given a safe inductive invariant G for P, in the optimized approach we

– Keep track of necessary clauses N

– Iteratively

● Choose a not-yet-considered clause C in G\N
● Compute X = MaxInductiveSubset(G\C, PN')
● If X is safe, then replace G by X
● Otherwise, add C to N

Optimized MSIS algorithm

Optimized MSIS algorithm – Example

● Consider the previous example:

– {C
1
, C

4
, C

5
} is a safe inductive invariant for P

– C
1
 cannot be removed

● Remove C
4
: {C

1
, C

5
}

– Suppose that C
1
' is no longer implied

– The basic algorithm removes C
1

– The optimized algorithm aborts immediately

● Remove C
5
 : {C

1
, C

4
}

– Suppose that C
4
' is no longer implied

– The basic algorithm removes C
4
 (and then possibly C

1
,

etc)

– The optimized algorithm aborts immediately

● The optimized algorithm is significantly better than the basic algorithm

● Moreover, the optimized algorithm is significantly improved when
some of the clauses are initially marked as necessary

● However, the optimized algorithm still requires a quadratic number of
SAT queries in the worst case:

– Queries of the form “which clauses become not implied if certain
other clauses are removed?”

– Each time that we remove a clause C
i
 from a safe inductive

invariant, might need to make a linear number of such queries

– Might need to process a linear number of clauses

Optimized MSIS algorithm

● The B.I.G. algorithm makes use the following observation: given a
safe inductive invariant G and a clause C

– Either G \ C remains a safe inductive invariant

– Or C is safe necessary for P or for some other clause in G

● The B.I.G. algorithm makes only a linear number of SAT queries

● The technique is inspired by the Binary Implication Graphs used in
SAT-solvers

● Purely by coincidence, B.I.G. also represents the authors' initials ;-)

B.I.G. MSIS algorithm

● Initially: {C
1
, C

2
, C

3
, C

4
, C

5
, C

6
} is a safe inductive invariant for P

● Remove C
1
: {C

2
, C

3
, C

4
, C

5
, C

6
}

– Suppose that C
4
' is no longer implied (and possibly other clauses)

– We infer: C
1
 is needed for C

4

● Equivalently: if C
4
 is in the invariant, then C

1
 is in the invariant

– Denote this graphically by {C
1
} → {C

4
}

● Restore C
1
 and remove C

4
: {C

1
, C

2
, C

3
, C

5
, C

6
}

– Suppose that C
5
' is no longer implied (and possibly other clauses)

– We infer: C
4
 is needed for C

5

– Denote this graphically by {C
1
} → {C

4
} → {C

5
} (note transitivity)

● Restore C
4
 and remove C

5

B.I.G. MSIS algorithm – Example

● Currently:

– C
5

is tentatively removed: {C
1
, C

2
, C

3
, C

4
, C

6
}

– Know: {C
1
} → {C

4
} → {C

5
}

● Case I: P and all remaining clauses are still implied

– In this case, can permanently remove the (last) clause C
5

– Know: {C
1
} → {C

4
}

– Make the query for C
4

B.I.G. MSIS algorithm – Example

● Currently:

– C
5

is tentatively removed: {C
1
, C

2
, C

3
, C

4
, C

6
}

– Know: {C
1
} → {C

4
} → {C

5
}

● Case II: P (or one of known necessary clauses) is not implied

– In this case, all of the clauses C
1
, C

4
, C

5
 are necessary

– Make the query for some new clause

B.I.G. MSIS algorithm – Example

● Currently:

– C
5

is tentatively removed: {C
1
, C

2
, C

3
, C

4
, C

6
}

– Know: {C
1
} → {C

4
} → {C

5
}

● Case III: A new clause (for example C
6
) is not implied

– Infer: C
5
 is needed for C

6

– Know: {C
1
} → {C

4
} → {C

5
} → {C

6
}

– Make the query for C
6

B.I.G. MSIS algorithm – Example

● Currently:

– C
5

is tentatively removed: {C
1
, C

2
, C

3
, C

4
, C

6
}

– Know: {C
1
} → {C

4
} → {C

5
}

● Case IV: A previous clause (for example C
4
) is not implied:

– Either

● All clauses between C
4
 and C

5
 are in the final invariant

● None of the clauses between C
4
 and C

5
 are in the invariant

– Know: {C
1
} → {C

4
,

C

5
}

– Make the query for {C
4
,

C

5
}

B.I.G. MSIS algorithm – Example

● Experimentally the following combination of the presented ideas
works the best

1) Run under-approximation

● About 70% of the final MSIS clauses are identified in this stage

2) Run over-approximation (with marked necessary clauses)

● After this stage over-approximates the final MSIS by only 4%

● In many cases already produces an MSIS

3) Run under-approximation (on the reduced invariant)

● About 90% of the final MSIS clauses are identified

4) Run Optimized MSIS or B.I.G. MSIS on the remaining clauses

● On average improves the basic MSIS algorithm by 10 to 1000 times

Combined MSIS algorithm

Overall Improvement in Run-Time

Thank You!

Reduction in the Number of Clauses

Under-Approximation – Implementation

● Introduce an auxiliary variable a
i
 for every clause C

i
 of G

● Load TR  (a
1
  C

1
)  ...  (a

n
  C

n
) into the solver

● Encode the constraint “at most one out of a
1
, …, a

n
 is true”

● Keep unprocessed elements in a queue Q, initially Q = {P}

● Iteratively:

– Consider the first element q in Q

– Solve, passing q as assumptions

– If SAT:

● Exactly one of the a
i
 evaluates to false

● Mark the corresponding C
i
 as necessary and set a

i
 = true

● Add C
i
' to Q

– If UNSAT:

● Proceed to the next element in Q

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

