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Introduction

● Consider a verification problem (INIT, TR, P)

● In the case that P holds, a Model Checker may produce a proof in 
terms of a safe inductive invariant

● A safe inductive invariant is a set of states G, satisfying:

– G contains all the initial
states

– All the transitions from G
lead back to G

– G is contained in the set
of states where P holds

INIT

P
G



  

Introduction

● Equivalently, a safe inductive invariant is a Boolean function G, 
satisfying:

– INIT  G

– TR  G  G'  (inductive)

– G  P  (safe)

● Following IC3, a recent trend is to produce such an invariant as a 
conjunction of many simple lemmas (such as clauses) 

– G = C
1
  …  C

n

● A typical invariant may contain 10,000s of clauses



  

Introduction

● Our motivation is that smaller inductive invariants are more useful:

– They are relevant in the context of FAIR  [Bradley et al. 2011]

● The cited paper introduces the problem and presents a 
solution

– They produce better abstractions

● A state variable not in the invariant is irrelevant for correctness
– They increase user comprehension 

– They improve regression verification

● In this work we minimize inductive invariants by removing clauses

– Look for minimal (or small) subsets 

– “Minimal” does not mean “of minimum size” (the latter is harder)



  

Problem Statement

● Following the standard (abuse of) notation for CNFs, we denote the 
conjunction of clauses as a set (and vice versa)

● Minimal Safe Inductive Invariants (MSIS): Given a safe inductive 
invariant {C

1
, …, C

n
}, find a subset {C

i1
, …, C

ik
} of {C

1
, …, C

n
}, so that:  

– {C
i1
, …, C

ik
} is also a safe inductive invariant

– {C
i1
, …, C

ik
} is minimal (no proper subset of {C

i1
, …, C

ik
} is safe 

and inductive)

● We want the solution to be efficient  (ideally the time to minimize a 
safe inductive invariant should be much smaller than to compute it)



  

Why finding an MSIS is not simple

● Recall that in particular we need to make sure that

– TR  C
i1  

…  C
ik 

  C
i1
'
 

  …  C
ik
'

● This query is non-monotone: each clause appears both as a premise 
and a conclusion

– With fewer clauses, we need to prove less, but we can also 
assume less 

● For example, it might be that:

– {C
1
, C

2
, C

3
, C

4
} is inductive,

– {C
1
, C

2
, C

3
} is not inductive, 

– {C
1
, C

2
} is inductive



  

Basic MSIS algorithm

● First, we present the approach described in [Bradley et al. 2011]

● The main idea is to tentatively remove a clause, and then to iteratively 
tentatively remove all no longer implied clauses, until:

– Either a smaller inductive invariant is obtained

● We can restrict to this smaller invariant

– Or the property itself is no longer implied

● We should restore all the tentatively removed clauses

● Repeat for every clause



  

Basic MSIS algorithm – Example

● Initially: {C
1
, C

2
, C

3
, C

4
, C

5
, C

6
} is  a safe inductive invariant for P

● Remove C
1 
: {C

2
, C

3
, C

4
, C

5
, C

6
}

– Suppose that C
2
' and C

4
' are no longer implied

● Remove C
2
 and C

4
 as well (as they cannot be part of any MSIS of 

{C
2
, C

3
, C

4
, C

5
, C

6
}) : {C

3
, C

5
, C

6
}

– Suppose that C
5
' is no longer implied

● Remove C
5
 as well : {C

3
, C

6
}

– Suppose that C
6
 and P are no longer implied

● It follows that C
1
 cannot be removed (must be present in every MSIS 

of {C
1
, C

2
, C

3
, C

4
, C

5
, C

6
}) 

● Restore all removed clauses



  

Basic MSIS algorithm – Example

● Currently: 

– {C
1
, C

2
, C

3
, C

4
, C

5
, C

6
} is a safe inductive invariant for P

– C
1
 cannot be removed

● Remove C
2 
: {C

1
, C

3
, C

4
, C

5
, C

6
}

– Suppose that C
3
' and C

6
' are no longer implied

● Remove C
3 
and C

6 
as well : {C

1
, C

4
, C

5
}

– Suppose that all remaining clauses and P are implied

● It follows that {C
1
, C

4
, C

5
} is a smaller safe inductive invariant



  

Basic MSIS algorithm – Example

● Currently: 

– {C
1
, C

4
, C

5
} is a safe inductive invariant for P

– C
1
 cannot be removed

● Proceed with the remaining clauses in a similar fashion



  

Basic MSIS algorithm

● Denote by MaxInductiveSubset(S, P) the procedure that computes 
the maximum inductive subset of S, aborting if it does not imply P

● Given a safe inductive invariant G for P, in the basic approach we

– Iteratively

● Choose a not-yet-considered clause C in G
● Compute X = MaxInductiveSubset(G\C, P)
● If X is safe (X implies P), then replace G by X   

● Claim: the described algorithm computes an MSIS of G

● Unfortunately, this algorithm is not efficient

– A large number of SAT calls is required (~quadratic)

– Does repeated work



  

What can we do better?

● Efficiently under-approximate an MSIS

– Find clauses that must be present in any MSIS of G

● Efficiently over-approximate an MSIS

– Remove clauses that are not part of some MSIS of G

● Optimize the basic MSIS algorithm

– Minimizing the amount of wasted work

– Taking clause dependency into account

● Combine under- and over- approximations with the optimized MSIS 
algorithm 



  

● Given a safe inductive invariant G = {C
1
, …, C

n
}, we say that a clause 

C
i
 is safe necessary if C

i
 is present in every MSIS of G. 

● We exploit the following observations:

– Given a clause C in G, if (G \ C)  TR  P does not hold then C is 
safe necessary

– Given a clause C in G and a safe necessary clause D (different 
from C), if (G \ C)  TR  D' does not hold then C is safe 
necessary

● The under-approximation algorithm iteratively applies the above two 
observations until fix-point

● The algorithm can be implemented very efficiently using an 
incremental SAT-solver

Under-Approximation



  

Under-Approximation – Example

● Initially: 

– {C
1
, C

2
, C

3
, C

4
, C

5
, C

6
} is  a safe inductive invariant for P 

– No clauses are marked as necessary

● Check if there is an unmarked clause without which P is not implied

– Suppose that we find C
4

– Mark C
4
 as necessary

● Check if there is an unmarked clause without which P is not implied

– Suppose that we find C
5

– Mark C
5
 as necessary

● Check if there is an unmarked clause without which P is not implied

– Suppose that we find none



  

Under-Approximation – Example

● Check if there is an unmarked clause without which C
4
' is not implied

– Suppose that we find C
1

– Mark C
1
 as necessary

● Check if there is an unmarked clause without which C
4
' is not implied

– Suppose that we find none

● Check if there is an unmarked clause without which C
5
' is not implied

– Suppose that we find none

● Check if there is an unmarked clause without which C
1
' is not implied

– Suppose that we find none

● Therefore: C
1
, C

4
, C

5
 belong to every MSIS of {C

1
, C

2
, C

3
, C

4
, C

5
, C

6
} 



  

● Claim: the described algorithm computes a set of clauses that must 
be present in every MSIS of G

(however, it does not compute all such clauses)

● The algorithm makes only a linear number of SAT calls
(even in the size of the solution) 

● The algorithm can be further improved if some clauses are initially 
known to be necessary 

● For IC3 proofs, the algorithm is very efficient and usually marks a 
large number of clauses

Under-Approximation



  

● Given a safe inductive invariant G = {C
1
, …, C

n
} and two subsets A 

and B of G, we say that A inductively supports B (or equivalently that 
B is supported by A) if TR  A  B  B' 

● Greedily compute a safe inductive subset of G as follows:

– Choose any minimal subset A
1
 of clauses needed to support P 

(and any necessary clauses, if known)

– Choose any minimal subset A
2
 of clauses needed to inductively 

support A
1

– Choose any minimal subset A
3
 of clauses needed to inductively 

support A
2 

...

– Stop when the last computed set is empty

● The over-approximation is the union of all the sets considered

Over-Approximation



  

● Claim: the described algorithm computes a safe inductive subset of G

(however, it is not guaranteed to be minimal)

● The algorithm makes only a linear number of MUS calls

● The quality and the run-time of the algorithm are greatly improved

– If we compute minimal supporting sets 

– If we follow the presented recursive approach 

● Instead of computing a global unsatisfiable core as suggested 
in [Bradley et al. 2011] 

– If we consider all the clauses of A
i
 together, rather than 1-by-1

– If some of the clauses are initially marked as necessary

Over-Approximation



  

● An immediate optimization to the basic MSIS algorithm consists of

– Marking necessary clauses as soon as they are discovered, and

– Aborting the computation as soon as one of the necessary 
clauses becomes non-implied

● Given a safe inductive invariant G for P, in the optimized approach we

– Keep track of necessary clauses N

– Iteratively

● Choose a not-yet-considered clause C in G\N
● Compute X = MaxInductiveSubset(G\C, PN')
● If X is safe, then replace G by X
● Otherwise, add C to N

Optimized MSIS algorithm



  

Optimized MSIS algorithm – Example

● Consider the previous example: 

– {C
1
, C

4
, C

5
} is a safe inductive invariant for P

– C
1
 cannot be removed

● Remove C
4 
: {C

1
, C

5
}

– Suppose that C
1
' is no longer implied

– The basic algorithm removes C
1

– The optimized algorithm aborts immediately

● Remove C
5
 : {C

1
, C

4
}

– Suppose that C
4
' is no longer implied

– The basic algorithm removes C
4
 (and then possibly C

1
,
 
etc)

– The optimized algorithm aborts immediately



  

● The optimized algorithm is significantly better than the basic algorithm

● Moreover, the optimized algorithm is significantly improved when 
some of the clauses are initially marked as necessary

● However, the optimized algorithm still requires a quadratic number of 
SAT queries in the worst case:

– Queries of the form “which clauses become not implied if certain 
other clauses are removed?”

– Each time that we remove a clause C
i
 from a safe inductive 

invariant, might need to make a linear number of such queries

– Might need to process a linear number of clauses

Optimized MSIS algorithm



  

● The B.I.G. algorithm makes use the following observation: given a 
safe inductive invariant G and a clause C

– Either G \ C remains a safe inductive invariant

– Or C is safe necessary for P or for some other clause in G

● The B.I.G. algorithm makes only a linear number of SAT queries

● The technique is inspired by the Binary Implication Graphs used in 
SAT-solvers

● Purely by coincidence, B.I.G. also represents the authors' initials ;-)

B.I.G. MSIS algorithm



  

● Initially: {C
1
, C

2
, C

3
, C

4
, C

5
, C

6
} is  a safe inductive invariant for P

● Remove C
1 
: {C

2
, C

3
, C

4
, C

5
, C

6
}

– Suppose that C
4
' is no longer implied (and possibly other clauses)

– We infer: C
1
 is needed for C

4

● Equivalently: if C
4
 is in the invariant, then C

1
 is in the invariant

– Denote this graphically by {C
1
} → {C

4
}

● Restore C
1
 and remove C

4 
: {C

1
, C

2
, C

3
, C

5
, C

6
}

– Suppose that C
5
' is no longer implied (and possibly other clauses)

– We infer: C
4
 is needed for C

5

– Denote this graphically by {C
1
} → {C

4
} → {C

5
} (note transitivity)

● Restore C
4
 and remove C

5 

B.I.G. MSIS algorithm – Example



  

● Currently:

– C
5  

is tentatively removed: {C
1
, C

2
, C

3
, C

4
, C

6
}

– Know: {C
1
} → {C

4
} → {C

5
}

● Case I: P and all remaining clauses are still implied

– In this case, can permanently remove the (last) clause C
5

– Know: {C
1
} → {C

4
}

– Make the query for C
4

B.I.G. MSIS algorithm – Example



  

● Currently:

– C
5  

is tentatively removed: {C
1
, C

2
, C

3
, C

4
, C

6
}

– Know: {C
1
} → {C

4
} → {C

5
}

● Case II: P (or one of known necessary clauses) is not implied

– In this case, all of the clauses C
1
, C

4
, C

5
 are necessary

– Make the query for some new clause 

B.I.G. MSIS algorithm – Example



  

● Currently:

– C
5  

is tentatively removed: {C
1
, C

2
, C

3
, C

4
, C

6
}

– Know: {C
1
} → {C

4
} → {C

5
}

● Case III: A new clause (for example C
6
) is not implied

– Infer: C
5
 is needed for C

6

– Know: {C
1
} → {C

4
} → {C

5
} → {C

6
}

– Make the query for C
6

B.I.G. MSIS algorithm – Example



  

● Currently:

– C
5  

is tentatively removed: {C
1
, C

2
, C

3
, C

4
, C

6
}

– Know: {C
1
} → {C

4
} → {C

5
}

● Case IV: A previous clause (for example C
4
) is not implied: 

– Either 

● All clauses between C
4
 and C

5
 are in the final invariant

● None of the clauses between C
4
 and C

5
 are in the invariant

– Know: {C
1
} → {C

4
,
 
C

5
}

– Make the query for {C
4
,
 
C

5
}

B.I.G. MSIS algorithm – Example



  

● Experimentally the following combination of the presented ideas 
works the best

1) Run under-approximation 

● About 70% of the final MSIS clauses are identified in this stage

2) Run over-approximation (with marked necessary clauses)

● After this stage over-approximates the final MSIS by only 4%

● In many cases already produces an MSIS

3) Run under-approximation (on the reduced invariant)

● About 90% of the final MSIS clauses are identified

4) Run Optimized MSIS or B.I.G. MSIS on the remaining clauses

● On average improves the basic MSIS algorithm by 10 to 1000 times

Combined MSIS algorithm



  

Overall Improvement in Run-Time



  

Thank You!



  

Reduction in the Number of Clauses 



  

Under-Approximation – Implementation

● Introduce an auxiliary variable a
i
 for every clause C

i
 of G

● Load TR  (a
1
  C

1
)  ...  (a

n
  C

n
) into the solver

● Encode the constraint “at most one out of a
1
, …, a

n
 is true”

● Keep unprocessed elements in a queue Q, initially Q = {P}

● Iteratively:

– Consider the first element q in Q 

– Solve, passing q as assumptions

– If SAT:

● Exactly one of the a
i
 evaluates to false

● Mark the corresponding C
i
 as necessary and set a

i
 = true

● Add C
i
' to Q

– If UNSAT:  

● Proceed to the next element in Q
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