Response property checking via distributed state space

exploration

Brad Bingham and Mark Greenstreet
{binghamb, mrg}@cs.ubc.ca

Department of Computer Science
University of British Columbia, Canada

October 24, 2014

FMCAD 2014

Motivation: Liveness + Explicit-State

High-Level Models: use Mury to describe a system
Liveness: nice to verify, but challenging in practice

Distributed Model Checking: memory and speed scalability

Explicit-State: easy to distribute/parallelize
o (Also outperforms symbolic methods for certain models)

Our Goal: Attack a practical liveness property called response with
distributed, explicit-state model checking

Bingham/Greenstreet (UBC) Response property checking October 24/2014 2/21

© Response and Fairness
© High Level Algorithm

© Our Implementation
@ Distributed MC for Safety
@ Adaptation for Response
@ One Optimization (of many)

@ Results

3/21

Bingham/Greenstreet (UBC) Response property checking October 24/2014

Response Properties

reachable

@ "“Will there always be a response?” = “Does every fair path from
each reachable p-state lead to a g-state?”
e p = “request issued”; g = "request granted”
o In LTL: fair = 0O(p — <q)
e Most common/simplest notion of liveness

Bingham/Greenstreet (UBC) Response property checking October 24/2014

Response Properties

reachable

@ "“Will there always be a response?” = “Does every fair path from
each reachable p-state lead to a g-state?”
e p = “request issued”; g = "request granted”
o In LTL: fair = 0O(p — <q)
e Most common/simplest notion of liveness

Bingham/Greenstreet (UBC) Response property checking October 24/2014

Response and Strongly Connected Components (SCCs)

reachable

o pending = “states where the request is outstanding”
@ The question fair = 0(p — <©q)? Is equivalent to asking “Is there a
fair SCC within pending?”
e Terminology: fair SCC = FSCC

Bingham/Greenstreet (UBC) Response property checking October 24/2014

Fairness

@ In practice, we use fairness assumptions that reflect the underlying
implementation

@ Excludes unrealistic counterexamples
@ We use action-based fairness:

e An action a is a set of system transitions

o ais called strongly-fair (aka compassionate; a € C) if
[a enabled oco-often] = [a fires oo-often]

o ais called weakly-fair (aka just; a € J) if
[a presistently enabled] = [a fires]

Bingham/Greenstreet (UBC) Response property checking October 24/2014

Fairness

@ In practice, we use fairness assumptions that reflect the underlying
implementation

@ Excludes unrealistic counterexamples
@ We use action-based fairness:

e An action a is a set of system transitions

o ais called strongly-fair (aka compassionate; a € C) if
[a enabled oco-often] = [a fires oo-often]

o ais called weakly-fair (aka just; a € J) if
[a presistently enabled] = [a fires]

e Note: verifying fair = 0O(p — <q) with standard Biichi automata
LTL MC approach will blow up

e i.e., property automata with size exponential in |C U 7|

Bingham/Greenstreet (UBC)

Response property checking

October 24/2014 6 /21

Outline

© High Level Algorithm

/Greenstreet (UBC) Response property checking October 24/2014

FSCCs

Both green actions and pink actions are strongly fair

Bingham/Greenstreet (UBC) Response property checking October 24/2014 8/21

Both green actions and pink actions are strongly fair

Bingham/Greenstreet (UBC) Response property checking October 24/2014

Algorithm Example

Both green actions and pink actions are strongly fair

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9/21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob = MaybeFair

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9/21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob = MaybeFair

Idea: find unfair states by looking at previous actions within (MaybeFair)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9/21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob = MaybeFair

Idea: find unfair states by looking at previous actions within (MaybeFair)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9/21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob = MaybeFair

Idea: find unfair states by looking at previous actions within (MaybeFair)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9/21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob = MaybeFair

Idea: find unfair states by looking at previous actions within (MaybeFair)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9/21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob = MaybeFair

Idea: find unfair states by looking at previous actions within (MaybeFair)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9/21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob = MaybeFair

Idea: find unfair states by looking at previous actions within (MaybeFair)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9/21

Definition: Predecessor Actions (PAs)

Suppose H C pending. Let (H) be the subgraph of the transition
graph induced by H
@ The Predecessor Actions for state s € H, are actions appearing on
some path that

@ is contained within (H); and

@ ends at s
@ Observe: If s lies on a FSCC in (H), then all enabled strongly-fair
actions at s are PAs

o Contrapositive: If there 3 a strongly-fair action enabled at s that
isn't a PA, then s does NOT lie on a FSCC in (H)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 10 / 21

Definition: Predecessor Actions (PAs)

Suppose H C pending. Let (H) be the subgraph of the transition
graph induced by H
@ The Predecessor Actions for state s € H, are actions appearing on
some path that

@ is contained within (H); and

@ ends at s
@ Observe: If s lies on a FSCC in (H), then all enabled strongly-fair
actions at s are PAs

o Contrapositive: If there 3 a strongly-fair action enabled at s that
isn't a PA, then s does NOT lie on a FSCC in (H)

...and ", remove s from consideration!

Bingham/Greenstreet (UBC) Response property checking October 24/2014 10 / 21

© Our Implementation
@ Distributed MC for Safety
@ Adaptation for Response
@ One Optimization (of many)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 1 /21

Distributed MC[SD97] Overview

@ Simple approach to distributing explicit-state model checking (for
safety)
e Use uniform random hash function owner : States — PIDs
o PID i only stores states s such that owner(s) = i.
@ Each PID maintains two data structures:
o V: Set of (owned) states visited so far
o WQ: List of states waiting to be expanded
@ Start: compute initial states and send to their owners
o lterate: state sucessors are sent to their respective owners
@ Termination: when each WQ is empty and no messages are in flight

Bingham/Greenstreet (UBC) Response property checking October 24/2014 12 /21

Message Flow

V: {s1,..., Sk}

. state s
(visited states)

where owner(s) = i

n
(]
(2]
n
(O]
(®)
o
et
o
—
(0]
=
=]
o
o
)
O
@]
=2
~
=
<
-

Message Flow

V: {s1,....,sc} U{s}

(visited states)

if s € V —+discard s

state s

where owner(s) =i

if s¢ V — add s to V

LAN/NoC to other Processes

Message Flow

V: {s1,....,sc} U{s}

(visited states)

if s € V —+discard s

state s

where owner(s) =i

if s¢ V — add s to V

compute sucessors of s

owner(sy), ..., owner(s})

LAN/NoC to other Processes

Bingham/Greenstreet (UBC) Response property checking October 24/2014 13 /21

Hash Table Considerations

o For safety: use a Murg hash table implementation that stores visited
states as 40-bit values
o Chance of a missed state, but typically it's a tiny chance (~ 10~10)
o Once a state is inserted, it can't be recovered from its hash value
@ For response: necessary to track extra information about states, for
example
e Is it a pending-state?
e Is it in MaybeFair?
o What are its predecessor actions, relative to (MaybeFair)?

o We use ~ 16 + |C U J| extra bits per state

Bingham/Greenstreet (UBC) Response property checking October 24/2014 14 /21

Tracking Predecessor Actions

Suppose C = {a1,...ax}

@ "“Tag"’ each hash table entry with PAs, which is a subset of C
o (plus a few other bookkeeping bits)
e For states in s € MaybeFair: initialize PA(s) to ()

Message Passing:
o Expand state s: if (s,s’) € a;, send msg [s', PA(s) U {a;}] to owner(s’)
o Receive msg [s', F]: PA(s') := PA(s’) U F; expand state s if PA(s')
changed.
e Continue until no further expansions.

Bingham/Greenstreet (UBC) Response property checking October 24/2014 15 /21

Tracking Predecessor Actions

Suppose C = {a1,...ax}
“Tag" each hash table entry with PAs, which is a subset of C
o (plus a few other bookkeeping bits)
For states in s € MaybeFair: initialize PA(s) to ()
Message Passing:
o Expand state s: if (s,s’) € a;, send msg [s', PA(s) U {a;}] to owner(s’)
o Receive msg [s', F]: PA(s') := PA(s’) U F; expand state s if PA(s')
changed.
e Continue until no further expansions.

@ (A similar idea works for weakly-fair actions)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 15 /21

PA Propagation Example

PA: {a1,a5}

@ a7 taken
s

PA: {as, a3, a5, a7} S

o

PA: {ag, a7}

o

e Strongly-fair actions C = {ay, ..., a7}

Response property checking October 24/2014

PA Propagation Example

Expand!

{ag, ar}

e Strongly-fair actions C = {ay, ..., a7}

Response property checking October 24/2014

PA Propagation Example

2
N {a1, a4, a5}

{ag, ar}

e Strongly-fair actions C = {ay, ..., a7}

Bingham/Greenstreet (UBC) Response property checking October 24/2014

PA Propagation Example

{a1,a5}

Expand! - L
a7 taken
]
{az, a3,a5,a7}
{as, a3, az, ar} & p.4 =
2
N {a1, a4, a5}
{ag, a7}

e Strongly-fair actions C = {ay, ..., a7}

Bingham/Greenstreet (UBC) Response property checking October 24/2014

PA Propagation Example

{a1,a5}

)
|—L
. {az, a3, a5,a7}

{as, a3, az, ar}
far,p a5}

@ {a1, az, ay, as, ar}

{ag, ar}

>
o
oN

e Strongly-fair actions C = {ay, ..., a7}

Bingham/Greenstreet (UBC) Response property checking October 24/2014

PA Propagation Example

{a1,a5}

—1=
@ {az, a3, a5, a7}

{a, az, az, a7}
{fll‘)@la}

Expand!
{a1, a2, a4, a5, a7}

Response property checking October 24/2014

PA Propagation Example

{a1, a5}
7

. No change,

no expand needed

NS xoN
D mp e

o .
& {a1, a2, a4, a5, a7}

{ag, ag, a5, ar}

{a2, a3, a5, a7}

{as, a7}

e Strongly-fair actions C = {ay, ..., a7}

Bingham/Greenstreet (UBC) Response property checking October 24/2014

PA Propagation Example

{a1, a5}
7

No change,
no expand needed
{a2,03,05,a7}

! (ﬂ\ {al.><r1,r,}
o

{a1, a2, a4, a5, a7}

{as, a7}

e Strongly-fair actions C = {ay, ..., a7}

@ (once PAs reach a fixpoint, remove unfair states from MaybeFair,
clear the PAs and compute them again)

Response property checking October 24/2014 16 / 21

Optimization: The “Kernel”

Idea: save set of states K to disk so that MaybeFair can be generated
through reachability starting with K

e Call K a kernel if MaybeFair C Reach(K)
e i.e., MaybeFair is reachable starting from K

@ Note: both initial states / and p-states are kernels for all subsets of
pending
@ To maintain K:
e Initialize K to p-states;
o If s € K is removed from MaybeFair, then
@ Remove s from K;
o Insert successors(s) N MaybeFair into K

Bingham/Greenstreet (UBC)

Response property checking October 24/2014

Kernel Optimization

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

MaybeFair

-

* —

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

MaybeFair

Bingham/Greenstreet (UBC) esponse property checking October 24/2014 18 / 21

Kernel Optimization

aybeFair

kerneI/'

4

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

MaybeFair

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

MaybeFair

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

.\QO’
&
Q

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Outline

@ Results

Response property checking Octobe

Performance

model runtime* | states’ | |pending|T | exp/state
germanb_sf 189 15.8 4.9 3.48
german6_sf 4253 | 316.5 95.3 3.33
peterson6_wf 820 13.8 12.1 12.91
peterson7_wf 26957 | 380.3 340.5 14.19
snoop2_sf 160 2.6 1.3 12.71
saw20_sf 323 0.3 0.3 44.06
ghn3_2_sf 369 12.8 7.9 6.44
swp4_2_sf 503 18.6 11.7 6.58
intelsmall_sf 285 0.5 0.3 6.36
intelmed_sf 1,015 2.7 1.9 8.59
intelbig_sf 13,872 51.8 29.9 11.92

@ *runtime is in seconds; Tstate counts in millions
@ Blue: 40 processes running on 20 Core i7 machines (UBC)

e Green: 16 processes running on Xeon machines (Intel)

Bingham/Greenstreet (UBC) Response property checking October 24/2014

Our Goal: Attack a practical liveness property called response with
distributed, explicit-state model checking
Result: An efficient implementation for response property verification,
applicable to very large state spaces

Bingham/Greenstreet (UBC) Response property checking October 24/2014 21 /21

Our Goal: Attack a practical liveness property called response with
distributed, explicit-state model checking
Result: An efficient implementation for response property verification,
applicable to very large state spaces
@ Our approach does well in practice — expands each state a small
number of times (modest overhead compared with safety ©@)
o (in the worst case, could expand each state O(mn?) times where m is
of fair rules and n number of states)
@ Optimizations improve the performance by more than a factor of 2 on
average

@ Our tool is massively scalable — can use on industrial problems

Bingham/Greenstreet (UBC) Response property checking October 24/2014 21 /21

Our Goal: Attack a practical liveness property called response with
distributed, explicit-state model checking
Result: An efficient implementation for response property verification,
applicable to very large state spaces
@ Our approach does well in practice — expands each state a small
number of times (modest overhead compared with safety ©@)
o (in the worst case, could expand each state O(mn?) times where m is
of fair rules and n number of states)
@ Optimizations improve the performance by more than a factor of 2 on
average

@ Our tool is massively scalable — can use on industrial problems

Thank-youl!

Bingham/Greenstreet (UBC) Response property checking October 24/2014 21 /21

Our Goal: Attack a practical liveness property called response with
distributed, explicit-state model checking
Result: An efficient implementation for response property verification,
applicable to very large state spaces
@ Our approach does well in practice — expands each state a small
number of times (modest overhead compared with safety ©@)
o (in the worst case, could expand each state O(mn?) times where m is
of fair rules and n number of states)
@ Optimizations improve the performance by more than a factor of 2 on
average

@ Our tool is massively scalable — can use on industrial problems

Thank-you! Questions?

Bingham/Greenstreet (UBC) Response property checking October 24/2014 21 /21

References |

[§ U. Stern and D. L. Dill, Parallelizing the murphi verifier, International
Conference on Computer Aided Verification, 1997, pp. 256-278.

Bingham/Greenstreet (UBC) Response property checking October 24/2014 22 /21

	Response and Fairness
	High Level Algorithm
	Our Implementation
	Distributed MC for Safety
	Adaptation for Response
	One Optimization (of many)

	Results
	Appendix

