Reducing CTL-Live Model Checking to First-Order Logic Validity Checking

Amirhossein Vakili and Nancy A. Day

Cheriton School of Computer Science

24 October 2014

Model Checking based on SAT/SMT Solving

- Focus on safety properties
- Iteratively calls the solver

Our Result: CTL-Live Model Checking as FOL Validity

- Focus on liveness properties
- Solved by first-order logic deduction techniques (e.g., SMT solvers)
- No need for abstraction or invariant generation

CTL-Live

CTL-Live includes CTL connectives that are defined using *the least fixpoint operator* of mu-calculus.

Temporal part		
φ	::=	$\pi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2$
	::=	$EXarphi \mid AXarphi \mid EFarphi \mid AFarphi \mid$
	::=	$arphi_1 E U arphi_2 \mid arphi_1 A U arphi_2$
Propositional part		
π	::=	$P \mid \neg \pi \mid \pi_1 \vee \pi_2$
	where P is a la	belling predicate.

CTL-Live

CTL-Live includes CTL connectives that are defined using *the least fixpoint operator* of mu-calculus.

In CTL-Live

- **AF** *P*
- $(\mathbf{EF} \neg P) \mathbf{AU} (\mathbf{AX} Q)$

CTL-Live

CTL-Live includes CTL connectives that are defined using *the least fixpoint operator* of mu-calculus.

Temporal part			
φ	::=	$\pi \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2$	
	::=	$EXarphi \mid AXarphi \mid EFarphi \mid AFarphi \mid$	
	::=	$arphi_1 E U arphi_2 \mid arphi_1 A U arphi_2$	
Propositional part			
π	::=	$P \mid \neg \pi \mid \pi_1 \vee \pi_2$	
where P is a labelling predicate.			

In CTL-Live

Not In CTL-Live

AF P

• ¬(**AF** *P*)

• $(EF \neg P) AU (AXQ)$

AG P

Symbolic Kripke Structures in FOL

Symbolic Kripke Structures in FOL

- $S = \{0, 1, 2, 3, ..\}$
- $S_0(c) \Leftrightarrow c = 0$
- $N(c,c') \Leftrightarrow c'=c+2 \lor c'=c+3$

state space

initial states

next-state relation

Symbolic Kripke Structures in FOL

•
$$S = \{0, 1, 2, 3, ..\}$$

•
$$S_0(c) \Leftrightarrow c = 0$$

•
$$N(c,c') \Leftrightarrow c'=c+2 \lor c'=c+3$$

state space

initial states

next-state relation

Notation

- symbolic(K) \models_c **AF** c > 3
- [AF c > 3] = {0, 1, 2, ...}

According to encoding of AF in mu-calculus, [AF P] is the **smallest** set Y that satisfies:

(1)
$$\forall s \bullet P(s) \Rightarrow Y(s)$$

(2) $\forall s \bullet (\forall s' \bullet N(s, s') \Rightarrow Y(s')) \Rightarrow Y(s)$

According to encoding of \mathbf{AF} in mu-calculus, $[\mathbf{AF}\ P]$ is the **smallest** set Y that satisfies:

(1)
$$\forall s \bullet P(s) \Rightarrow Y(s)$$

(2) $\forall s \bullet (\forall s' \bullet N(s, s') \Rightarrow Y(s')) \Rightarrow Y(s)$

J	State Space				

According to encoding of AF in mu-calculus, [AF P] is the **smallest** set Y that satisfies:

(1)
$$\forall s \bullet P(s) \Rightarrow Y(s)$$

(2) $\forall s \bullet (\forall s' \bullet N(s, s') \Rightarrow Y(s')) \Rightarrow Y(s)$

According to encoding of \mathbf{AF} in mu-calculus, $[\mathbf{AF}\ P]$ is the **smallest** set Y that satisfies:

(1)
$$\forall s \bullet P(s) \Rightarrow Y(s)$$

(2) $\forall s \bullet (\forall s' \bullet N(s, s') \Rightarrow Y(s')) \Rightarrow Y(s)$

According to encoding of \mathbf{AF} in mu-calculus, $[\mathbf{AF}\ P]$ is the **smallest** set Y that satisfies:

(1)
$$\forall s \bullet P(s) \Rightarrow Y(s)$$

(2) $\forall s \bullet (\forall s' \bullet N(s, s') \Rightarrow Y(s')) \Rightarrow Y(s)$

According to encoding of AF in mu-calculus, $[AF\ P]$ is the **smallest** set Y that satisfies:

(1)
$$\forall s \bullet P(s) \Rightarrow Y(s)$$

(2) $\forall s \bullet (\forall s' \bullet N(s, s') \Rightarrow Y(s')) \Rightarrow Y(s)$

6 / 10

According to encoding of AF in mu-calculus, [AF P] is the **smallest** set Y that satisfies:

(1)
$$\forall s \bullet P(s) \Rightarrow Y(s)$$

(2) $\forall s \bullet (\forall s' \bullet N(s, s') \Rightarrow Y(s')) \Rightarrow Y(s)$

$$[\mathbf{AF} \ P] = \bigcap_{Y \in \Theta} Y$$
 where $\Theta = \{Y \text{s satisfying (1), (2)}\}$

Model checking is about a subset relation, $S_0 \subseteq [\mathbf{AF} \ P]$:

$$S_0 \subseteq \bigcap_{Y \in \Theta} Y$$

7 / 10

Model checking is about a subset relation, $S_0 \subseteq [\mathbf{AF} \ P]$:

$$S_0 \subseteq \bigcap_{Y \in \Theta} Y$$
 iff $\forall Y \in \Theta \bullet S_0 \subseteq Y$

Model checking is about a subset relation, $S_0 \subseteq [AF \ P]$:

$$S_0 \subseteq \bigcap_{Y \in \Theta} Y \quad \text{iff} \quad \forall Y \in \Theta \quad \bullet \quad S_0 \subseteq Y$$

• Higher-order universal quantifier

Model checking is about a subset relation, $S_0 \subseteq [AF \ P]$:

$$S_0 \subseteq \bigcap_{Y \in \Theta} Y$$
 iff $\forall Y \in \Theta \bullet S_0 \subseteq Y$

- Higher-order universal quantifier
- First-order logic formula -

Model checking is about a subset relation, $S_0 \subseteq [AF P]$:

$$S_0 \subseteq \bigcap_{Y \in \Theta} Y \quad \text{iff} \quad \forall Y \in \Theta \quad \bullet \quad S_0 \subseteq Y$$

- Higher-order universal quantifier
- First-order logic formula

Definition (FOL Validity)

 $\Gamma \models \Phi$ iff every interpretation that satisfies Γ also satisfies Φ .

Model checking is about a subset relation, $S_0 \subseteq [AF \ P]$:

$$S_0 \subseteq \bigcap_{Y \in \Theta} Y$$
 iff $\forall Y \in \Theta$ \bullet $S_0 \subseteq Y$

- Higher-order universal quantifier
- First-order logic formula

Definition (FOL Validity)

 $\Gamma \models \Phi$ iff every interpretation that satisfies Γ also satisfies Φ .

Reduction Procedure:

INPUT:

symbolic(K): symbolic representation of a Kripke structure.

 φ : a CTL-Live formula.

OUTPUT:

 $symbolic(K) \bigcup \mathtt{CTLL2FOL}(\varphi) \models S_0 \subseteq \lceil \varphi \rceil$

Theorem (Reduction of CTL-Live Model Checking to FOL Validity)

$$symbolic(K) \models_{c} \varphi$$

iff

$$symbolic(K) \bigcup CTLL2FOL(\varphi) \models S_0 \subseteq \lceil \varphi \rceil$$

Reduction Procedure:

INPUT:

symbolic(K): symbolic representation of a Kripke structure. φ : a CTL-Live formula.

OUTPUT:

 $symbolic(K) \cup CTLL2FOL(\varphi) \models S_0 \subseteq \lceil \varphi \rceil$

Example:

$$\forall c \bullet S_0(c) \Leftrightarrow c = 0$$

$$\forall c, c' \bullet N(c, c') \Leftrightarrow c' = c + 2 \lor c' = c + 3$$

$$\forall c \bullet c > 3 \Rightarrow Y(c)$$

$$\forall c \bullet (\forall c' \bullet N(c, c') \Rightarrow Y(c')) \Rightarrow Y(c) \models S_0 \subseteq Y$$

Reduction Procedure:

INPUT:

symbolic(K): symbolic representation of a Kripke structure.

 φ : a CTL-Live formula.

OUTPUT:

$$symbolic(K) \bigcup CTLL2FOL(\varphi) \models S_0 \subseteq \lceil \varphi \rceil$$

Example:

$$\forall c \bullet S_0(c) \Leftrightarrow c = 0$$

$$\forall c, c' \bullet N(c, c') \Leftrightarrow c' = c + 2 \lor c' = c + 3$$

$$\forall c \bullet c > 3 \Rightarrow Y(c)$$

$$\forall c \bullet (\forall c' \bullet N(c, c') \Rightarrow Y(c')) \Rightarrow Y(c) \models S_0 \subseteq Y$$

Reduction Procedure:

INPUT:

symbolic(K): symbolic representation of a Kripke structure. φ : a CTL-Live formula.

OUTPUT:

 $symbolic(K) \bigcup CTLL2FOL(\varphi) \models S_0 \subseteq \lceil \varphi \rceil$

Example:

$$\forall c \bullet S_0(c) \Leftrightarrow c = 0$$

$$\forall c, c' \bullet N(c, c') \Leftrightarrow c' = c + 2 \lor c' = c + 3$$

$$\forall c \bullet c > 3 \Rightarrow Y(c)$$

$$\forall c \bullet (\forall c' \bullet N(c, c') \Rightarrow Y(c')) \Rightarrow Y(c) \models S_0 \subseteq Y$$

Current Progress: Infinite State Model Checking

- Based on this result, we used Z3 and CVC4 to model check CTL-Live properties of 4 infinite systems.
- Case studies were from different domains.
- SMT solvers are efficient in model checking CTL-Live properties.

Vakili and Day, "Verifying CTL-live Properties of Infinite State Models using SMT Solvers," To appear in the proceedings of FSE'14.

Conclusion

- Presented CTL-Live, a fragment of CTL such that its model checking is reducible to FOL validity.
 - No need for abstraction or invariant generation
 - ▶ Use state-of-the-art FOL reasoners for model checking
 - Only FOL reasoning is required for verification