Template-based Circuit Understanding

Adria Gascén! Pramod Subramanyan® Bruno Dutertre!

Ashish Tiwari® Dejan Jovanovi¢! Sharad Malik?

1SRI International

2Princeton University

Motivation

Verify /reverse-engineer a digital circuit
=
EXTRACT and UNDERSTAND subcomponents

v

v

v

v

Verify /reverse-engineer a digital circuit
=
EXTRACT and UNDERSTAND subcomponents

FSM extraction [Shi et. al]
Functional aggregation and matching [Subramanyan et. al]
Word identification and propagation [Li et. al.]

Identification of repeated structures [Hansen et. al.]

Verify /reverse-engineer a digital circuit
=
EXTRACT and UNDERSTAND subcomponents

v

FSM extraction [Shi et. al]
Functional aggregation and matching [Subramanyan et. al]

v

v

Word identification and propagation [Li et. al.]

v

Identification of repeated structures [Hansen et. al.]

Most of these techniques do not the find the right permutations in
word components

Verify /reverse-engineer a digital circuit
=
EXTRACT and UNDERSTAND subcomponents

What does it mean to understand a combinational circuit C?

» Find an equivalent higher-level definition
» Flatten verilog netlist — High-level Verilog
» Basic Boolean logic —
Boolean Logic + Words and operations on Words

What does it mean to understand a combinational circuit C?

» Find an equivalent higher-level definition

» Flatten verilog netlist — High-level Verilog
» Basic Boolean logic —
Boolean Logic + Words and operations on Words

Goal
Given purely Boolean Formula C, produce “equivalent” Formula F
over the theory of bitvectors.

A Combinational Boolean circuit C(/, O) is
(a) a list of input Boolean variables | = (xi, ..., x,) and

(b) alist O = (f1,...,fn) of single-output Boolean formulas
with inputs /.

For X € {0,1}",¥ € {0,1}™, by C(X,y) we denote that C produces
output y on input X

The library aproach

Check functional equivalence against a library of known
components.

> C((x1y. s Xn), (fye vy Tm))

> C/ib(<X1a R 7Xn>7 <g17 s ;gm>)
» Fixed permutations o, 0

Vief{l,..,m}xe{0,1}7:
fo(iy(o(X)) = &i(X)

The library aproach

Check functional equivalence against a library of known
components.

> C((x1y. s Xn), (fye vy Tm))

> C/ib(<X1a R 7Xn>7 <g17 s ;gm>)
» Fixed permutations o, 0

Vief{l,..,m}xe{0,1}7:
fo(iy(o(X)) = &i(X)

Limitation: Permutations o, 6 must be known.

Permutation-independent equivalence checking

> C({x1,- s Xn), (fy. oy)
> Ciin((x1,---,Xn), (815 -+ 8m))

» To be determined permutations o, 6

do, 0 :
Vie{l,..,m}, X e{0,1}":
fo(iy (0(X)) = &i(X)

Permutation-independent equivalence checking

> C({x1,- s Xn), (fy. oy)
> Ciin((x1,---,Xn), (815 -+ 8m))

» To be determined permutations o, 6

do, 0 :
Vie{l,..,m}, X e{0,1}":
fo(iy (0(X)) = &i(X)

Limitation: Still too restrictive.
1. C usually does not have a “standard” functionality.

2. C's functionality must be fully matched.

Template-based synthesis

Instead of a reference circuit, our approach requires a template of
a specific form.

Unsat
Template T Synthesis
Procedure

Specification S —
Instance of T

satisfying S

1
QBF solving

How do our templates look like?

A template T of a combinational circuit C(/, O) is:
» A subset O C O,
» a partition | = (Ic UUJ_;(W;)), and

> a conjuntion of guarded assignments of the form
ai + Yi(lc) = (0(07) = ¢i(a (W), 7(W,)))

where

> 1); is a to be determined assignment on /¢,

» 0,0, 7 are to be determined permutations, and

> ¢; is a binary function over words.
> i1,ip € {1,...,/7}.

W N

Circuit C(/, O)
Subset outputs := O
Partition / := control U inputsA U inputsB
Template with
(a) To be determined assignments v1, v2

(b) To be determined permutations p, q

(value vl control)
(:
outputs
(bv-add
(permute p inputsA)
(permute q inputsB)

(=>
(value v2 control)
(= outputs
(ite
(bv-slt
(permute p inputsA)
(permute q inputsB)
)
(mk-bv 32 1)
(mk-bv 32 0)

Circuit C(/, O)
Subset outputs := O

W=

Template with

Partition | := control U inputsA U inputsB

(a) To be determined assignments v1, v2

(b) To be determined permutations p, q

dp,q,vl,v2:
vx € {0,1}",y € {0,1}":
C(x,¥)= T(p,q,vl,v2, R,

—

y

)

(and
(=>
(value vl control)
(:
outputs
(bv-add
(permute p inputsA)
(permute q inputsB)

(=>
(value v2 control)
(= outputs
(ite
(bv-slt
(permute p inputsA)
(permute q inputsB)
)
(mk-bv 32 1)
(mk-bv 32 0)

Check validity of Boolean formulas over the theory of bit-vectors with
two levels of quantification (3V QF_BV):

X C(X) AVY : A(X,y)

1. High-level preprocessing and simplifications [Wintersteiger et. al.]

2. Counterexample-refinement loop, similar to the approach used in
2QBF solvers [Ranjan et. al., Janota et. al]

3. Functional signatures [Mohnke et. al.]

(1) Miniscoping:
IX:AVvB — IX:AV IX: B
VX :AANB — VX:AAVX:B
(2) Equality resolution:
3% CR AW (A = x) = B(7)
-

3% Ex)Avy |y = xD(B(7))

1

(3) Distinguishing signatures.

Distinguishing Signatures

An output signature sy,: is a function syt : B, — D such that, for
every function f and permutation 7:

Sout(F(X1, -y %n)) = Sout(F(7(x1),...,7(xn))))

Distinguishing Signatures

An output signature sy,: is a function syt : B, — D such that, for
every function f and permutation 7:

Sout(F(X1, -y %n)) = Sout(F(7(x1),...,7(xn))))

Jo, 6 :
Vie{l,..,m}xXe{0,1}7:
foiy(0(X)) = &i(X)

Distinguishing Signatures

An output signature sy,: is a function syt : B, — D such that, for
every function f and permutation 7:

Sout(F(X1, -y %n)) = Sout(F(7(x1),...,7(xn))))

do, 0 :
Vie{l,..,m}xXe{0,1}7:
fo(i (0(X)) = &i(X)

3x,y : Sout(fx) # sout(&y) = 0(y) #

Distinguishing Signatures

An output signature sy,: is a function syt : B, — D such that, for
every function f and permutation 7:

Sout(F(X1, -y %n)) = Sout(F(7(x1),...,7(xn))))

do, 0 :
Vie{l,..,m}Xe{0,1}7:
fo(iy(0(X)) = &i(X) A 0(y) # x

3x,y : Sout(fx) # Sout(&y) = 0(y) #

» We consider one input signature and one output signature.

» Input dependency
» Output dependency

» Signatures can be computed independently in the circuit and
the template.

| Unsat
Template T " Synthesis <
Circuit C —» Procecliure

i — Instance of T

‘equivalent' to S

1
Signature)
computation + — QBF solving
preprocessing

Benchmarks (40 Sat/40 Unsat): Experiments

> Reverse engineering benchmarks generated from high-level
(behavioral) Verilog using the Synopsys Compiler.

» From ISCAS, an academic processor implementation, and synthetic
examples.

» ALUs, multipliers, shifters, counters...

Tools:

> Yices (Yices format)

> 73 (SMT2 format)

> Bloqqger + DepQBF (QDimacs)

> Bloqqger + RareQs (QDimacs)

> Bloqgger + sKizzo (QDimacs)

» Cir-CEGAR (Mini-SAT) (QDimacs + top titeral)
Variants:

» Considered two simple encodings for permutations

> Studied effect of preprocessing, encodings, and signatures

Conclusion and further work

> Yices and Z3 are sensitive to the encoding of permutations

» Preprocessing and signatures are harmless and crucial in many
cases

» Benchmarks are available in SMT2, YICES, QBF and (soon)
QCIR

» Just putting together two SAT /SMT solvers is not enough
» QDIMACS encoding is not suitable for this kind of synthesis

> Integrate signature computation in the Exist-Forall loop

» Compare to other synthesis algorithms

Questions? Comments? Suggestions?

Number of instances solved

40 T

10707

15F e

e—e Y|CES_EF+PB
|—e Z3+

m—a Y|CES_EF-
—y 73-

+—¢ Cir-CEGAR+

e—a Cir-CEGAR-

10 10' 10

Time to solve (seconds)

10°

10

-+
o
—

i

o o - - -
[=} =) =] =) S
— = = = =]

(s) Buissadoudaid y3im aA|0S 03 awlL

1072 oo

10
107°

Time to solve without preprocessing (s)

LR RO VAP ST WS
P "
ki *
< R -
3 (]
Q e %
5] o
(5 soaeuts s owos & s
* g
* Ed
M o
1 *,
! b
R x4,
(5 smeusts m awos o 31
AUV R
o 5 H]
L h
> k4 * o

(5) saamieuBis i oA0s 01 ouiL

Time to solve without: signatures (s) Time to solve without signatures (s)

Time to solve without signatures (s)

