
Learning Linear Invariants using Decision Trees
Siddharth Krishna
New York University

Introduction
• Inferring invariants for loops is a fundamental
problem in program verification.

• Existing approaches (abstract interpretation,
predicate abstraction, etc) are limited or incur a
high complexity when it comes to inferring
invariants in the form of arbitrary boolean
combinations of linear inequalities.

• An invariant separates reachable states from states
that lead to an error. Thus, is nothing but a
binary classifier [Sharma et al. CAV’12].

• Thus, we can use Machine Learning.
• Our contribution: A fast, simple, and elegant
learning algorithm based on Decision Trees that
successfully learns invariants in the form of arbitrary
boolean combinations of linear inequalities.

Preliminaries
A Program:

x ← P ; /* precondition */
while x ∈ E do x ← F (x);
assert (x ∈ Q) ; /* postcondition */

Example:
x ← 9, y ← 0 ;
while y < 9 do x ← x −1, y ← y +1 ;
assert (x == 0)

States: values of variables at loop head.
Good states G are all states reachable from precondi-
tion P .

G = {(9, 0), (8, 1), (7, 2), . . . }

Bad states B are all states that can reach error state
¬Q.

B = {(1, 9), (0, 8), (−1, 9), . . . }

An invariant is I s.t.:
• Holds at loop entry: P ⊆ I

• Maintained by loop: F (I) ⊆ I

• Implies postcondition: I ∩ ¬E ⊆ Q

Thus, G ⊆ I and I ∩B = ∅.
Our example has the invariant (Figure 1):

x + y = 9 ∧ x ≥ 0

Figure 1: Good and bad states

Problem
Restrict programs to use linear operations. Invariant
must be a boolean combination of linear inequalities.
Problem: Given good and bad states as sets of points
in Zd, find a boolean combination of linear inequalities
I that separate them.

Algorithm

• Choose a set of candidate hyperplane slopes
H = { ~w1, ~w2, . . . }.

• Process data: new features are: zi = ~x · ~wi.
• Run a Decision Tree on processed data.
• Splitting zi at t corresponds to the linear inequality:

~x · ~wi ≤ t.
• A DT is thus a boolean combination of such linear
inequalities.

Figure 2: Decision Tree output for example program data from Fig-
ure 1. Converting this tree to a formula yields: x+y > 8.5∧x+y ≤
9.5 ∧ x >= 0

Evaluation

• We chose benchmarks that were reported to be
challenging to other tools such as ICE, MCMC,
CPAchecker, InvGen, and HOLA (Table 1).

• Note: some benchmarks require disjunctions of
conjunctions of inequalities, something that other
invariant generation tools find hard.

• Sampling:
• Good states: run program on different inputs satisfying
precondition.

• Bad states: for all points around good states, check if loop
exits and assert fails.

• Candidate hyperplanes: we used the commonly
used abstract domain of octagons : hyperplanes of
the form ±xi ± xj ≥ c.

• Correctness of invariant verified by theorem prover
(we used Boogie & Z3).

Results

• Our algorithm was able to successfully find
invariants for all the programs that we considered.
It also was faster on most benchmarks.

• We can handle larger candidate sets H and sample
sets as compared to similar ML based techniques,
due to small learning complexity.

Table 1: Comparison of running times in seconds.

Name ICE MCMC0 MCMC1 CPA InvGen DT
cegar2 4.86 17.30 30.66 1.97 X 0.01
ex23 X 0.01 0.02 19.77 0.02 0.12
fig1 0.38 5.13 13.19 1.75 X 14.95
fig6 0.30 0.00 0.01 1.68 0.01 0.01
fig9 0.33 0.00 0.00 1.73 0.01 0.01
gopan X TO TO 63.85 X 0.03
hola10 49.21 TO TO 2.03 X 0.04
hola15 X 0.04 TO X 0.02 0.52
hola18 TO 68.78 21.93 TO X 1.63
hola19 X TO TO X X 0.19
nested2 62.02 0.09 0.15 1.86 0.03 0.04
nested5 60.95 31.28 63.68 2.08 0.03 2.47
popl07 X TO TO 110.81 X 0.04
prog2 0.34 0.00 0.02 4.39 0.01 0.02
prog4 X 0.13 0.58 X X 2.34
sum1 1.32 39.81 29.04 X X 0.02
test1 0.39 TO TO 1.71 0.04 0.92

Examples

• Disjunction of conjunctions:

Figure 3: gopan

• Infinite reachable sets:

Figure 4: simple2

Ongoing & Future Work

• We have already extended our algorithm to handle
non-linear functions such as mod and quadratic
functions.

• Future: theoretical guarantees on convergence, make
use of implication counter-examples.

• We take a long time on some benchmarks mainly
due to our naive sampling.

• Future: combine with static analysis techniques to
make more robust.

Joint work with:
Christian Puhrsch and Thomas Wies.


