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Preface

The International Conference on Formal Methods in Computer-Aided Design (FMCAD) is a series of meetings presenting
groundbreaking results on the theory and application of rigorous formal techniques for the automated design of systems, in the
broadest sense of the word. FMCAD covers the spectrum of formal aspects of specification, verification, synthesis, and testing,
and is intended as a leading forum for researchers and practitioners in academia and industry alike. The fifteenth meeting in
the series was held in Austin/Texas, USA, September 27–30, 2015.

FMCAD 2015 featured a rich program. In addition to regular paper presentations, the conference offered a tutorial day (joint
with the SAT conference and the DIFTS workshop) on September 27. The tutorial topics included, in the order of appearance
in the program,

• “Proving Hybrid Systems”, by Andre Platzer (Carnegie Mellon University)
• “Formal Verification of Arithmetic Datapaths using Algebraic Geometry and Symbolic Computation”, by Priyank Kalla

(University of Utah)
• “Reactive Synthesis”, by Roderick Bloem (Graz University of Technology)
• “Abductive Inference and Its Application in Program Analysis, Verification, and Synthesis”, by Işil Dillig (University of

Texas at Austin)
FMCAD 2015 further featured three keynote talks, again in order of appearance:
• “Democratization of Formal Verification with Collective Intelligence”, by Ziyad Hanna (Cadence Design Systems)
• “Detecting Hardware Trojans: A Tale of Two Techniques”, by Sharad Malik (Princeton University)
• “The Genesis and Development of Model Checking: Fact vs. Fiction”, by Allen Emerson (University of Texas at Austin,

2007 ACM Turing Award winner)
FMCAD also offered the third (and so far annual) edition of the Student Forum (organized by Georg Weissenbacher [Vienna

University of Technology]; the Forum is described in more detail later in these proceedings); an industrial panel discussion on
”Formal Verification in the Industry – a 2020 Vision”, with participation of Per Bjesse (Synopsys), David Hardin (Rockwell
Collins), Roope Kaivola (Intel; organizer), Naren Narasimhan (Calypto), Vigyan Singhal (OSKI), and Daryl Stewart (ARM);
and finally a report on the 2015 Hardware Model Checking competition, organized and presented by Armin Biere (Johannes
Kepler University Linz/Austria).

Those still not exhausted by this program could take advantage of several co-located events, namely the conferences
MEMOCODE (Sept. 21-23) and SAT (Sept. 24-27), and the workshops DIFTS (Sept. 26-27) and ACL2 (Oct. 01-02).

FMCAD 2015 received about 75 abstracts at paper registration time, which materialized into 53 full submissions. Each full
submission was reviewed by at least four program committee members. For a few submissions we solicited extra reviews, from
within or outside the program committee. After the initial reviews were available, authors had the opportunity to respond to
them in writing (”rebuttal”), to point out misunderstandings or errors. This opportunity was taken by almost all authors. After
a thorough round of discussions among the program committee members, 21 submissions were selected for presentation at the
conference. The themes ranged from traditional software verification topics such as Invariant Generation, over the development
and use of SAT and SMT technology, to concurrency and protocol verification, and to circuit analysis and synthesis. Each
paper was presented in a 30min conference talk.

A conference with such a diverse program and audience as FMCAD relies on a large number of people supporting the
organization. The program committee members are too numerous to list individually; we thank each and every one of them for
their (spare) time, dedication to the purpose of FMCAD, their willingness to help the authors improve their manuscripts, and
their help with the selection of the various Best Paper Awards. Our sincere gratitude further goes out to the Publication Chair
Ruzica Piskac (Yale University; in charge of these proceedings), and the Tutorial Chairs Malay Ganai (Atrenta) and Chao Wang
(Virginia Tech). Georg Weissenbacher (Vienna University of Technology, Austria) took over the non-trivial task of serving
as Student Forum Chair; his engagement and enthusiasm for the process ensured an encouragingly large number of Student
Forum submissions. Special thanks goes to Shilpi Goel (University of Texas at Austin), formally the Local Arrangements
Chair & Webmaster, a title that does not do justice to the immense range of tasks that Shilpi took care of, from managing
the FMCAD website, to the organization of the Welcome Reception and the Banquet, and everything in between. Shilpi was
assisted by Lindy Aleshire, an Administrative Associate at the University of Texas (UT) at Austin, in setting up the logistics
within the UT venue. We are greatly indebted to Shilpi and Lindy for their help. As always, the FMCAD Steering Committee
was available with both guidance and encouragement whenever needed, and even when not. We thank Armin Biere (Johannes
Kepler University in Linz, Austria), Alan Hu (University of British Columbia, Canada), Warren A. Hunt, Jr. (University of
Texas at Austin), and Jason Baumgartner (IBM).

We would like to express our gratitude to our industrial sponsors ARM Ltd., Cadence Design Systems, Inc., Centaur
Technology, Inc., IBM Research, Intel Corporation, Mentor Graphics, Microsoft Research, and Real Intent, Inc. for their



continued financial support of the FMCAD community. The National Science Foundation and FMCAD Inc. provided generous
funds in support of the Student Forum, without which this event would simply not be possible.

FMCAD 2015 once again received in-cooperation status with ACM under the Special Interest Groups on Programming
Languages (SIGPLAN) and on Software Engineering (SIGSOFT). It also received technical sponsorship from the IEEE Council
on Electronic Design Automation. The FMCAD 2015 Proceedings are available through the ACM Digital Library, the IEEE
Xplore Digital Library, and are also available as a free download from the FMCAD Website.

Finally, at the heart of the conference are of course the accepted papers, the tutorials, and the keynotes; we thank all presenters
for their efforts to devote a significant portion of their time to FMCAD. We are grateful to all authors of submissions, accepted
or not, and all attendees of FMCAD 2015, for playing their part in making FMCAD a continued success story.

Roope Kaivola and Thomas Wahl
FMCAD 2015 Program Chairs
Austin/TX, September 2015
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Proving Hybrid Systems
André Platzer

Carnegie Mellon University

ABSTRACT OF TUTORIAL TALK

Cyber-physical systems (CPS) combine cyber aspects such as communication and computer control with physical aspects
such as movement in space, which arise frequently in many safety-critical application domains, including aviation, automotive,
railway, and robotics. But how can we ensure that these systems are guaranteed to meet their design goals, e.g., that an aircraft
will not crash into another one?

This tutorial focuses on the most elementary CPS model: hybrid systems, which are dynamical systems with interacting
discrete transitions and continuous evolutions along differential equations. It describes a compositional programming language
for hybrid systems and shows how to specify and verify correctness properties of hybrid systems in differential dynamic logic.
Extensions of this logic that support CPS models with more general dynamics will be surveyed briefly.

In addition to providing a strong theoretical foundation for CPS, differential dynamic logics have also been instrumental in
verifying many applications, including the Airborne Collision Avoidance System ACAS X, the European Train Control System
ETCS, several automotive systems, mobile robot navigation with the dynamic window algorithm, and a surgical robotic system
for skull-base surgery. The approach is implemented in the theorem prover KeYmaera X.
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Formal Verification of Arithmetic Datapaths using
Algebraic Geometry and Symbolic Computation

Priyank Kalla
University of Utah

ABSTRACT OF TUTORIAL TALK

Algebraic geometry is the study of the geometry of solutions to a system of multivariate polynomial equations. Modern
algebraic geometry does not explicitly solve the system of equations to enumerate the solutions, but rather reasons about the
presence, absence, dimensions or intersection properties of the solution-sets, etc. Abstract and computational algebra is often
used for this purpose – particularly the theory and technology of Gröbner bases, which provides a very powerful set of tools
to solve many polynomial decision problems. In this talk, I will present a tutorial on how some of these techniques from
algebraic geometry and commutative algebra can be used for formal verification of RTL datapaths and arithmetic circuits.

Datapath designs implement arithmetic computations over finite word-length operands, say, over k-bit vectors. These circuits
implement functions that are mappings over k-dimensional Boolean spaces f : Bk → Bk. Such functions can also be construed
as mappings over: i) finite integer rings of the type Z2k ≡ Z (mod 2k), i.e. as functions f : Z2k → Z2k ; or ii) as functions
over the Galois field of 2k elements, i.e. f : F2k → F2k . The designs can then be modeled as a system of polynomial functions
over Z2k or F2k , and Gröbner basis techniques can be applied for verification by reasoning about the solutions (functions) of
the polynomial systems (circuits). Given the arithmetic nature of the designs, such an approach provides a natural word-level
abstraction which can enable efficient verification.

While Gröbner basis techniques are very powerful, the computation suffers from high complexity. Therefore, the main focus
of the tutorial will be on how to overcome this complexity. I will describe:

• How to formulate various verification problems using ideal membership, Nullstellensatz, elimination theory and Gröbner
bases;

• How to exploit the number-theoretic properties of finite rings and fields to simplify the problems;
• How to analyze the structure/topology of the given circuits to get more theoretical insights into the corresponding

polynomial ideals, and use this information to improve the computation; and
• How to implement the aforementioned concepts using modern symbolic computation algorithms, e.g. Faugére’s F4-style

reductions, for practical datapath verification.
Arithmetic datapaths are usually custom designed, and they often exhibit some structure or symmetry in the implementations.

Gröbner bases can help identify this inherent symmetry. By exploiting this information, efficient symbolic computation
algorithms can then be devised for scalable verification.

The verification context will be motivated by applications such as elliptic curve cryptography, error correcting circuits,
polynomial signal processing, word-level RTL synthesis, etc. I will provide information on various resources – publications,
design benchmarks and the verification tools developed by us – so that interested participants can explore this exciting area
of work. I will conclude by describing important unsolved problems in this specific area, and the challenges that need to be
overcome to fully exploit the potential of the theory and technology.
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Reactive Synthesis
Roderick Bloem

Graz University of Technology

ABSTRACT OF TUTORIAL TALK

Synthesis is the question of how to construct a correct system from a specification. In recent years, synthesis has made
major steps from a theoretists dream towards a practical design tool. While synthesis from a language like LTL has very high
complexity, synthesis can be quite practical when we are willing to compromise on the specification formalism. Similarly, we
can take a pragmatic approach to synthesize small distributed systems, a problem that is in general undecidable.

3
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Abductive Inference and Its Applications in
Program Analysis, Verification, and Synthesis

Işil Dillig
The University of Texas at Austin

ABSTRACT OF TUTORIAL TALK

Abductive inference is a form of backwards logical reasoning that infers likely hypotheses from a given conclusion. In other
words, given an invalid implication of the form A => B, abduction asks the question “What formula C do we need to conjoin
with the antecedent A so that (i) A & C => B is logically valid and (ii) C is consistent with A?” Abductive reasoning has found
many applications in program verification and synthesis, particularly in modular program analysis, invariant generation, and
automated inference of missing program expressions. This tutorial will give an overview of logical abduction and algorithms
for performing abductive inference. We will also survey several use cases of abductive inference in the context of program
analysis, verification, and synthesis.

4

ISBN: 978-0-9835678-5-1. Copyright owned jointly by the authors and FMCAD, Inc.



Democratization of Formal Verification with
Collective Intelligence

Ziyad Hanna
Cadence Design Systems

ABSTRACT OF INVITED TALK

Formal verification has become an essential method for design, integration and verification of the emerging design IPs and
complex systems-on-chips. Despite the great success in proliferating formal in the industry and making it a great companion
to simulation and emulation methods, its full power has not been leveraged yet to address the larger spectrum of applications
by non-formal experts. To handle this challenge a major effort is still needed to boost its scalability and usability to cope with
the emerging complexity of design under verification. In this talk we discuss a new approach for boosting the productivity
of formal verification users using an expert system, which is powered by collective intelligence technology, human-machine
interface and self guiding and learning rules. Besides the emerging advancements in model checking and proof strategies,
expert system helps to break the formal verification complexity and scalability barriers, and make it affordable for a larger set
of users, for yet another major leap in the applications and productivity of formal.
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Detecting Hardware Trojans: A Tale of Two
Techniques

Sharad Malik
Princeton University

ABSTRACT OF INVITED TALK

Integrated Circuits (ICs) are designed and fabricated in a globalized multi-vendor environment making them vulnerable to
malicious design changes and the insertion of hardware Trojans/malware. In this talk I will cover two distinct techniques to
address the problem of detecting hardware Trojans. The first uses SAT and BDD-based functional analysis to reverse engineer
ICs. The goal here is to derive the higher- level function of IC through algorithmic analysis of its netlist to help expose the
Trojan logic. The second uses statistical analysis of chip simulation data in a clustering algorithm to isolate the Trojan logic.
I will discuss these techniques, their practical application on benchmark circuits and their complementary strengths.

This is joint work with Burcin Cakir and Pramod Subramanyan.
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The Genesis and Development of Model Checking:
Fact vs. Fiction

Allen Emerson
The University of Texas at Austin

ABSTRACT OF INVITED TALK

Clarke and Emerson are noted for the invention and development of model checking [1]. In this presentation, I will recall
the roles of the principals. I was responsible for the initial conception of model checking, as a spinoff of my work on
program synthesis. This entailed the checking of candidate models of a temporal specification algorithmically, and explains
the coining of the term model checking. Model checking plainly was a form of verification circumventing proofs. As a part of
some consulting work, Ed Clarke had been consulting on verification of protocols using temporal specifications and deductive
proofs. As I discussed model checking with Ed, he envisioned that it could be a really practical verification method, applicable
to protocols and more. Later, Ed commented that neither one of us could have achieved model checking without the other.

There are alternative perspectives on this history. In broad brush, these agree, but they vary in detail. I will elaborate with
additional crucial facts, and examine their impact on various apparent discrepancies. I would like to suggest the relevance of
Pnueli’s Principle here: The junior researcher lives in the problem, while the senior researcher lives in a constant stream of
interrupts. A Corollary is: The junior researcher will singlemindedly acquire a detailed memory concerning the problem and
its solution; The overburdened, timesharing senior researcher will lack sufficient focused attention, blocks of time, and depth
of understanding to have good recall.

REFERENCES

[1] Edmund M. Clarke and E. Allen Emerson: Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic. Logics of Programs,
Workshop, Yorktown Heights, New York, May 1981.
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The FMCAD 2015 Graduate Student Forum
Georg Weissenbacher

TU Wien, Austria

Abstract—The FMCAD Student Forum provides a platform for
graduate students at any career stage to introduce their research
to the wider Formal Methods community, and solicit feedback.
In 2015, the event took place in Austin, Texas, as integral part
of the FMCAD conference. Sixteen students were invited to give
a short talk and present a poster illustrating their work. The
presentations covered a broad range of topics in the field of
verification, such as automated reasoning, model checking of
hardware, software, as well as hybrid systems, verification of
concurrent programs, and checking of security properties.

Since 2013, the FMCAD conference features a Student
Forum, providing a platform for graduate students at any
career stage to introduce their research to the wider Formal
Methods community. The FMCAD 2015 Graduate Student
Forum follows the tradition of its predecessors, which took
place in Lausanne, Switzerland in 2014 [1] and in Portland,
Oregon, USA in 2013 [2].

Graduate students were invited to submit short reports
describing their ongoing research in the scope of the FMCAD
conference. We received 21 submissions, covering novel tech-
nical contributions and outlining future research planned by
the authors. The presentations covered a broad range of topics
in the field of verification, such as automated reasoning, model
checking of hardware, software, as well as hybrid systems,
verification of concurrent programs, and checking of security
properties. While all contributions were of high quality, the
limitations of the venue and conference schedule forced us to
reject some of the submissions. Based on the reviews provided
by members of the organizing committee as well as a number
of external reviewers, 16 submissions were finally accepted.
The reviews focused on the novelty of the work, the technical
maturity of the submission, and the quality and soundness
of the presentation. The following contributions have been
accepted:

• Konstantinos Athanasiou: A Constraint-Based Approach
to Multi-Threaded Program Location Reachability

• Peter Backeman and Aleksandar Zeljic: Approximations
for Deciding Quantified Floating-Point Constraints

• Cuong Chau: ACL2(r) Formalization of Fourier Series’
Properties

• Shaobo He: Towards Automated Differential Program
Verification For Approximate Computing

• Egor Karpenkov and David Monniaux: Program Analysis
with Local Policy Iteration

• Guy Katz and David Harel: Concurrency Idioms and their
Effect on Program Analysis

• Shou-Pon Lin and Nicholas Maxemchuk: Probabilistic
Model Checking of Systems with a Large State Space: A
Stratified Approach

• Rajdeep Mukherjee: How Efficient are Software Verifiers
for Hardwares?

• Luan Nguyen and Taylor T Johnson: Towards Bounded
Model Checking for Timed and Hybrid Automata with a
Quantified Encoding

• Daniel Poetzl: Efficient Checking of Thread Refinement
• Moritz Sinn: Bound Analysis of Heap-Manipulating Pro-

grams
• Pramod Subramanyan: Specification and Scalable Verifi-

cation of Security Properties in Contemporary SoCs
• Jiaqi Tan, Rajeev Gandhi and Priya Narasimhan: White-

box Software Isolation with Fully Automated Black-box
Proofs

• Danilo Vendraminetto: Exploiting Craig Interpolants in
Unbounded Model Checking of Hardware Designs

• Vadim Zaliva and Franz Franchetti: Formal Verification
of HCOL Rewriting

• Lu Zhang: Classifying Race Conditions in Web Applica-
tions

The 2015 student forum is also the first in the series to
feature a Best Contribution Award (based on the quality of
the submission, the poster, and the presentation), announced
during the conference and publicized on the FMCAD website.1

The Student Forum would not have been possible with-
out the excellent contributions of the student authors. The
generous support of the National Science Foundation and
FMCAD’s sponsors enabled us to subsidize the travel cost
of the participating students. The help and advice of Thomas
Wahl and Ruzica Piskac, who organized the first two student
forums, as well as Roope Kaivola and Shilpi Goel, who took
care of all local arrangements, was crucial to the success of
the event. We are also indebted to Ezio Bartocci and Vijay
D’Silva for their help with the reviews.
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Abstract—We address the problem of parameterized verifica-
tion of cache coherence protocols for hardware accelerated
transactional memories. In this setting, transactional memo-
ries leverage on the versioning capabilities of the underlying
cache coherence protocol. The length of the transactions, their
number, and the number of manipulated variables (i.e., cache
lines) are parameters of the verification problem. Caches in
such systems are finite-state automata communicating via
broadcasts and shared variables. We augment our system
with filters that restrict the set of possible executable traces
according to existing conflict resolution policies. We show that
the verification of coherence for parameterized cache protocols
with filters can be reduced to systems with only a finite number
of cache lines. For verification, we show how to account for the
effect of the adopted filters in a symbolic backward reachability
algorithm based on the framework of constrained monotonic
abstraction. We have implemented our method and used it to
verify transactional memory coherence protocols with respect
to different conflict resolution policies.

1. Introduction

The behavior of many types of systems can be described
using one or more parameters such as the number of
processes, or the number of variables that may be used
in a given run of the system. Parameterized systems are
ubiquitous and serve as natural models of mutual exclusion
algorithms, bus protocols, distributed algorithms, telecom-
munication protocols, and cache coherence protocols. The
goal of parameterized verification is to prove (or refute) the
correctness of the system for all values of the parameters.
For instance, in a cache coherence protocol, copies of a
variable may exists in an arbitrary number of caches. It is
then relevant to verify exclusive ownership of the cache line
regardless of the number of caches in a particular session
of the protocol. The state space of a such a system is
infinite since we are dealing with an unbounded number
of instances, namely one for each size.

Several techniques for the verification of parameterized
systems have been developed during the last two decades
[1], [2], [3], [4], [5]. One approach, related to this paper,

is monotonic abstraction [6]. It defines an abstraction that
allows to apply the framework of well quasi-ordered systems
(wqo for short) [7] and based on backward reachability anal-
ysis in order to perform parameterized verification. Mono-
tonic abstraction has been successfully applied to several
non-trivial examples of mutual exclusion, leader election,
and cache coherence protocols.

This paper addresses parameterized verification of trans-
actional memory cache coherence protocols. Such protocols
are not expected to guarantee coherence under arbitrary se-
quences of transitions. However, coherence should be guar-
anteed for all sequences that respect the transactional mem-
ory. Transactional memories usually make use of conflict
tables in order to track read/write and write/write conflicts
at a cache line granularity. Detected conflicts can be resolved
according to different policies. For instance, in an eager
policy, the conflict is resolved by aborting a transaction
as soon as the conflict is detected. In a lazy policy, the
resolution can wait until the commit before deciding on
which transaction to abort.

Since the numbers of transactions, caches and cache
lines are arbitrary, we need to consider systems that are
parameterized in multiple dimensions. Furthermore, conflict
policies can in general not be definable by finite-state au-
tomata since they quantify over the sets of threads and vari-
ables both of which are unbounded. Hence, parameterized
verification of such systems is beyond the applicability of
existing techniques. In this work, we present for the first
time a method for automatic verification of cache coherence
in the presence of transactional memories. We capture the
conflict resolution mechanism, one for each policy, using so
called filters, each of which is a set of forbidden “patterns”.
All traces of the system that do not match the patterns are
allowed to occur. For instance, an eager conflict resolution
will forbid traces where two different transactions continue
running although a write/write conflict has been detected.
Given a filter, we check reachability for the cache coherence
protocol under the constraints imposed by the filter. For
this we proceed in two steps. First, we give a small model
theorem establishing that if coherence is violated then it
is also violated using only a fixed small number of cache
lines. Then we perform backward reachability analysis by
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modifying classical monotonic abstraction by accounting for
information from the filters in order to exclude traces that
are eliminated by the conflict resolution mechanism. We
show that this is possible for the class of filters we use,
and establish termination of the analysis.

We have implemented our approach and managed to
show, for arbitrarily many caches on which arbitrary trans-
actions are repeatedly run, that transactional memories such
as FlexTM and DynTM with their proper cache coherence
protocol extensions cannot violate coherence.

Related Work. To the best of our knowledge, this is the
first work that considers parameterized verification of cache
protocols in the presence of conflict policies.

Regular model checking [8], [9] performs parameterized
verification by encoding the set of configurations using
finite-state automata. The method has been augmented with
techniques such as widening [10], [11], abstraction [12], and
acceleration [13].

There are numerous techniques less general than regular
model checking, but that are lighter and more dedicated
to the problem of parameterized verification. The idea of
counter abstraction is to keep track of the number of pro-
cesses which satisfy a certain property [14], [15], [16], [17].
In general, counter abstraction is designed for systems with
unstructured or clique architectures, but may be used for
systems with other topologies too [18].

Several works reduce parameterized verification to the
verification of finite-state models. Among these, the invisible
invariants method [19], [20] and the work of [21] exploit
cut-off properties to check invariants for mutual exclusion
protocols.

Monotonic abstraction [6], [22], [23] combines regular
model checking with abstraction in order to produce systems
that have monotonic behaviors wrt. a wqo on the state-space.

Methods relying on dynamic detection of cutoff condi-
tions are described in [1] and [24].

2. Motivating example

We use a hardware accelerated transactional memory
in order to describe the different steps we use to establish
coherence in the presence of execution filters.

An example of a hardware accelerated transactional
memories. FlexTM [25] is a hardware accelerated transac-
tional memory that orchestrates the execution of concurrent
transactions by only allowing a subset of the possible traces
(this subset includes the strictly serializable ones [26]). A
finite but arbitrary number of caches participate in such
executions. At most one transaction is run on each cache.
Transactions can access arbitrarily many cache lines. The
lines that do not fit in the caches are handled in software,
and hence do not affect the cache coherence. We assume, to
simplify the presentation, that the caches are large enough
to hold all lines accessed by the transactions. Each transac-
tion consists in some arbitrary sequence of read and write

instructions on an arbitrary number of cache lines1. At
any moment, transactions are either pending, committed or
aborted. FlexTM tracks all transactions and might decide to
abort a transaction based on some conflict resolution policy
(e.g., lazy or eager). A transaction can therefore be aborted
at any time, in which case a new arbitrary transaction might
be started.

Like other hardware accelerated transactional memories
[25], [27], FlexTM builds on the inherent versioning capabil-
ities of the underlying cache coherence protocol. In the case
of FlexTM, the MESI [28] protocol is extended. Schemati-
cally, FlexTM makes use of an extension of the MESI cache
protocol, called TMESI [25] in order to maintain tentative
versions of the accessed cache lines. In this protocol, a cache
line can be in one of the states in {I, S, E, M, TI, TMI}. The
four first states are the usual MESI states: Invalid, Shared,
Exclusive and Modified. The last two ones are FlexTM
additions. TMI and TI respectively correspond to a tentative
written copy or to a read copy that is threatened by a
tentative write by another transaction.

Table 1 depicts a run of two transactions reading and
writing to cache lines l and l′. In the first transition (t1), a
read instruction from an invalid cache line (state I) results
in an exclusive state E. We will say that the cache line
“takes” the transition and changes its state from I to E.
This transition is enabled if the state of the same line in all
other caches is I. This appears in the transition because we
forbid all other states using f [S, E, M, TI, TMI].

The second transition (t2) is also a read. Here, a cache
line that takes the transition moves from the invalid state to
the shared one. This transition requires that at least another
cache has the same line at a shared, exclusive, modified
or threatened state (hence the r[S, E, M, TI]). In addition, the
transition is not enabled if another cache associates the same
line to TMI (hence the forbid f [TMI]). If enabled, the transi-
tion t2 performs a broadcast where it moves all exclusive or
modified states to shared (hence the b[(E, S)(M, S)]). Except
for the line firing the transition, a broadcast keeps all non
mentioned lines unmodified. For instance, in this transition,
the states of all I lines remain unchanged.

Transitions t1, t2, t3, t4 are said to be horizontal tran-
sitions because they focus on a particular cache line in all
caches. More concretely, a cache line that “takes” such a
transition changes state if there is at least another cache
where the same line is at a state specified by the r[ ] part
and if none of the other caches associates the same line
to one of the states mentioned in f [ ]. In this case, the
line that takes the transition changes its state and moves the
state of the same line in all other caches as described in the
broadcast part b[ ].

Some transitions are said to be vertical transitions when
they focus on all the lines of the same cache (as opposed
to the same line in all caches). In FlexTM, commit and
aborts correspond to vertical transitions. When a transaction
is aborted (t5), all lines in the cache running the transaction

1. Of course, transactions read and write variables, but as far as the cache
protocol is concerned, these are tracked at a cache line granularity.
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t1 =

(
I

r[ ] f [S,E,M,TI,TMI] b[ ]−−−−−−−−−−−−−−→
read

E

)

t2 =

(
I

r[S,E,M,TI] f [TMI] b[(E,S)(M,S)]−−−−−−−−−−−−−−−−−−→
read

S

)

t3 =

(
I

r[ ] f [ ] b[(S,I)(E,I)(M,I)]−−−−−−−−−−−−−−−→
write

TMI

)

t4 =

(
I

r[TMI] f [ ] b[ ]−−−−−−−−−→
read

TI

)

t5 =

(
• b[(TMI,I)(TI,I)]−−−−−−−−−→

abort
•
)

t6 =

(
• b[(TMI,M)(TI,I)]−−−−−−−−−→

commit
•
)

ci cj
: :

l ·· I ·· I ··
l′ ·· I ·· I ··

: :
t1 ↓
: :

l ·· I ·· I ··
l′ ·· E ·· I ··

: :
t2 ↓

: :
l ·· I ·· I ··
l′ ·· S ·· S ··

: :
t3 ↓

: :
l ·· I ·· TMI ··
l′ ·· S ·· S ··

: :
t4 ↓
: :

l ·· TI ·· TMI ··
l′ ·· S ·· S ··

: :
t5 ↓
: :

l ·· I ·· TMI ··
l′ ·· I ·· S ··

: :
t6 ↓

: :
l ·· I ·· M ··
l′ ·· I ·· S ··

: :

TABLE 1: A possible FlexTM [25] run is depicted to the right. At least two transactions are running on the caches ci and
cj . In this execution, the ci transaction tmi reads line l′, the cj transaction tmj reads line l′ and writes line l, then tmi

reads l and is aborted by FlexTM before tmj commits. This results in the TMESI transitions t1, . . . t6 listed to the left.

that is to be aborted are invalidated. In a commit transition
(t6) all TMI lines are changed to M, and all TI lines are
invalidated.

Coherence for transactional memory cache protocols. It
turns out that cache coherence is violated if no restrictions
are imposed on the sequences of horizontal (i.e., read and
write) and vertical (i.e., abort and commit) transitions. For
instance, assume that two transactions start running on
caches c1 and c2 from a cache configuration where the line l
is mapped to I in both caches (written (I, I)). The sequence
(write, l, c1)(write, l, c2)(commit, c1)(commit, c2) where
both transactions write the same l line and commit would
result in executing transitions t3, t3, t6 and t6 by, respec-
tively, caches c1, c2, c1 and c2. This sequence translates, for
the l cache line, into the following states:

(I, I)
write,l,c1−−−−−−→ (TMI, I)

write,l,c2−−−−−−→ (TMI, TMI)

(TMI, TMI)
commit,c1−−−−−−−→ (M, TMI)

commit,c2−−−−−−−→ (M, M)

Coherence is violated in the last cache configuration.
This is because the same cache line is mapped to the
modified state M in two different caches. Intuitively, such
configurations are bad because it is not clear which version
to use if a transaction was to read a value as two possibly
different versions coexist.

As it happens, FlexTM forbids such bad traces, based
on some conflict resolution policy, by aborting transactions
if certain conflicts arise.

In this work, we aim to show coherence in the presence
of conflict resolution policies. Observe that the numbers of
transactions, caches and cache lines are arbitrary. In other
words, we are tackling coherence in the presence of conflict
resolution policies for systems that are parameterized in the
number of transactions, caches and cache lines.

Capturing transactional memory policies. FlexTM makes
use of conflict tables in order to track read write and write
write conflicts at a cache line granularity. Detected conflicts
can be resolved according to different policies. For instance,
in an eager policy, the conflict is resolved by aborting a
transaction as soon as the conflict is detected. In a lazy
policy, the resolution can wait until the commit before
deciding on which transaction to abort.

We are interested in cache coherence in this work. We
capture the conflict resolution mechanism using what we
call filters. These consist in simple “patterns” that are going
to be forbidden by the conflict resolution mechanisms. All
traces that do not match the patterns are allowed. There
will be simple patterns for each conflict resolution policy.
Soundness requires that the patterns we use do not eliminate
traces allowed by FlexTM. For instance, an eager conflict
resolution will forbid traces where two different transactions
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continue running although a write write conflict has been
detected.

Given such filters, we check reachability on the product
of the cache coherence protocol and the filter and establish
coherence for arbitrary transactions running on arbitrarily
many caches and involving arbitrarily many cache lines.

3. Preliminaries

Let N denote the set of natural numbers. Given two
natural numbers i, j ∈ N, we use [i, j] to denote the set
{k ∈ N | i ≤ k ≤ j}. For sets A and B, we use f : A 7→ B
to denote that f is a function that maps any element from
A to an element of B. Let [A 7→ B] denote the set of all
functions from A to B. For a ∈ A and b ∈ B, we use
f [a ← b] to denote the function f ′ where f ′(a) = b and
f ′(a′) = f(a′) for all a′ 6= a. For a set A′ ⊆ A, we use
f(A′) to denote the set {f(a) | a ∈ A′}.

For a set Σ, we use Σ∗ to denote the set of finite words
over Σ. We use ε to denote the empty word. For a word w ∈
Σ∗, we use |w| to denote its length (observe that |ε| = 0).
For 1 ≤ i ≤ |w|, we use w[i] to denote the letter at position
i in w.

Let Θ be a subset of Σ. Given two words w and w′,
we define w vΘ w′ to denote that there is a function h :
[1, |w|] 7→ [1, |w′|] such that: (1) for every i, j ∈ [1, |w|]
such that i < j, h(i) < h(j), (2) for every i ∈ [1, |w|],
w′[h(i)] = w[i], and (3) {i |w′[i] ∈ Θ} ⊆ h([1, |w|]).

4. Parameterized Cache Protocols with Filters

In this section, we introduce a formal model for pa-
rameterized cache protocols with filters, and define their
coverability problem.

4.1. Parameterized Cache Protocols

A parameterized cache protocol consists of an arbitrary
(but finite) number of caches. Each cache is a finite-state
system manipulating an arbitrary (but finite) set of cache
lines. Each cache can perform two kinds of operations: (1)
vertical actions that only affect the states of the lines of one
single cache, and (2) horizontal actions that affect the states
of the same line but for different caches.

Formally, a parameterized cache protocol P is a tuple
(Q,A,∆, qinit) where Q is a finite set of states, A is a
finite set of actions partitioned into two sets: the set of
vertical actions Aver and the set of horizontal actions Ahor,
qinit ∈ Q is the initial state, and ∆ is a finite set of
transitions. A transition can be of one of the following

two forms: (1) q
r[Q1] f [Q2] b[(q1,q′1),...,(qm,q

′
m)]

−−−−−−−−−−−−−−−−−−−−−→
ahor

q′ or (2)

•
b[(q1,q′1),...,(qm,q

′
m)]

−−−−−−−−−−−−−→
aver

• where: (i) q, q′ in Q are cache

line states, (ii) aver is a vertical action in Aver and ahor
is a horizontal action in Ahor, (iii) Q1 ⊆ Q is the set
of existentially required states, (iv) Q2 ⊆ Q is the set of

universally forbidden states, and (v) the sequence of pairs
(q1, q

′
1), . . . , (qm, q

′
m) ∈ Q × Q, such that qi 6= qj for all

i 6= j, corresponds to a broadcast.
Let C be a finite set of caches and L be a finite set

of cache lines. We write c to mean a cache in C and l to
mean a cache line in L. A configuration ν over (C,L) is a
mapping ν : C 7→ [L 7→ Q]. We write ν(C,L) to make the
sets of caches and lines explicit. We use cachesOf(ν(C,L))
and linesOf(ν(C,L)) to respectively mean C and L. Let
νinit(C,L) denote the configuration that associates qinit to all
cache lines, i.e., νinit(C,L)(c)(l) = qinit for all c ∈ C and
l ∈ L.

Let Aext
ver = (Aver × C) and Aext

hor = (Ahor × C × L)
respectively be the sets of extended vertical and horizontal
actions over (C,L). Let Aext = Aext

ver ∪ Aext
hor be the set of

extended actions. Given an extended action a of the form
(a, c, l) or (a, c), we let cacheOf(a) mean the associated
cache c.

Let ν and ν′ be two configurations over (C,L). Let a ∈
Aext be an extended action. We use ν a−→(C,L) ν

′ to denote
that one of the following cases holds:

Case 1: a = (a, c) for some vertical action a ∈ Aver and
cache c ∈ C, and there is a transition t ∈ ∆ of the form

•
b[(q1,q′1),...,(qm,q

′
m)]

−−−−−−−−−−−−−→
aver

• such that the following conditions
are satisfied:

• For every cache line l ∈ L such that ν(c)(l) = qi
for some i ∈ [1,m], we have ν′(c)(l) = q′i. This
corresponds to a transition resulting from a vertical
action that changes the state of each cache line at qi
to q′i.

• For every cache line l ∈ L such that ν(c)(l) 6∈
{qi|i ∈ [1,m]}, we have ν′(c)(l) = ν(c)(l), i.e., all
the remaining cache lines keep their states.

• For every cache c′ ∈ C such that c′ 6= c, we have
ν′(c′) = ν(c′), i.e., states of lines belonging to other
caches remain unchanged.

Case 2: a = (a, c, l) for some a ∈ Ahor, c ∈ C and
l ∈ L, and there are a transition t ∈ ∆ of the form

q
r[Q1] f [Q2] b[(q1,q′1),...,(qm,q

′
m)]

−−−−−−−−−−−−−−−−−−−−−→
a

q′, and a cache c′ ∈ C,
with c 6= c′, such that the following conditions are satisfied:

• ν(c)(l) = q and ν′(c) = ν(c)[l ← q′]. The state of
line l of the cache c changes from q to q′.

• ν(c′)(l) ∈ Q1. This condition corresponds to the
existential requirement. It states that the line l of at
least another cache c′ belongs to Q1.

• ν(c′′)(l) /∈ Q2 for all c′′ ∈ C\{c, c′}. This condition
corresponds to the universal requirement. It states
that none of the lines l belonging to any cache other
than c and c′ is in Q2.

• Any cache c′′ ∈ C \ {c} such that ν(c′′)(l) = qi for
some i ∈ [1,m], will change the state of l according
to ν′(c′′) = ν(c′′)[l ← q′i]. This corresponds to a
horizontal broadcast where the state of the line l in
any other cache is changed from qi to q′i.
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• All other lines remain unchanged. In other words,
for all caches c′′ ∈ C \ {c} with ν(c′′)(l) 6∈
{qi|i ∈ [1,m]} we have ν′(c′′) = ν(c′′).

A trace σ ∈ (Aext)∗ over (C,L) is a sequence of
extended actions. We use ν σ−→(C,L) ν

′ to denote that one of
the following two cases hold: (1) σ = ε and ν = ν′, or (2)
there is a sequence of configurations ν0, . . . , νn over (C,L)
such that ν0 = ν, νn = ν′, and for every i ∈ [0, n − 1],
we have νi

ai−−→(C,L) νi+1 with σ = a0a1 · · ·an−1. In this
case, we say that the configuration ν′ is reachable from ν.
Finally we say that the configuration ν′ is reachable if it is
reachable from νinit(C,L).

4.2. Filter Model

Let C be a finite set of caches and L be a finite set of
cache lines. A pattern π over (C,L) is a finite sequence in
(Aext)∗ of extended actions. We define a filter over (C,L)
to be a finite set of forbidden patterns over (C,L).

Let C ′ be a set of caches and L′ be a set of cache
lines. Let σ be a trace over (C ′, L′). Let us assume that
π = a1a2 · · ·an and σ = b1b2 · · ·bm. We say that the
pattern π appears in σ (denoted by σ |= π) if and only if
there are injective functions φ : C 7→ C ′, ψ : L 7→ L′ and
h : [1, n] 7→ [1,m] such that:

• For every i, j ∈ [1, n] such that i < j, h(i) < h(j).
• For every i ∈ [1, n], we have σ[h(i)] =

(ai, φ(ci), ψ(li)) if π[i] is of the form (ai, ci, li) and
σ[h(i)] = (ai, φ(ci)) if π[i] is of the form (ai, ci).

• For every i ∈ [1, n] such that ai is of the form
(ai, ci, li) and there is an index j such that i < j and
cacheOf(aj) = ci, we have bk /∈ (Aver×φ(ci)) for
all h(i) < k < h(j′) with j′ is the minimal index
such that i < j′ and cacheOf(aj′) = ci.

A filter F over (C,L) is a finite set of forbidden patterns
over (C,L). We say that a trace σ over (C ′, L′) is valid with
respect to a filter F if and only if σ 6|= π for all π ∈ F .

4.3. Coverability Problem

Let ν and ν′ be two configurations respectively over
(C,L) and (C ′, L′). Let φ : C 7→ C ′ and ψ : L 7→ L′

be two injective functions. We use ν �(φ,ψ) ν
′ to denote

that for every cache c ∈ C and every line l ∈ L, we
have ν′(φ(c))(ψ(l)) = ν(c)(l). We use ν � ν′ to denote
that there are two injective functions φ : C 7→ C ′ and
ψ : L 7→ L′ such that ν �(φ,ψ) ν

′. Intuitively, this means
that ν (modulo renaming of the caches and lines) is the
restriction of ν′ to the subsets of caches φ(C) ⊆ C ′ and
lines ψ(L) ⊆ L′.

Let P = (Q,A,∆, qinit) be a parameterized cache
coherence protocol and F be a filter over a set of caches C
and a set of lines L. The coverability problem for P with
respect to the filter F and a configuration ν over (C,L),
consists in checking whether there is a configuration ν′ over
(C ′, L′), with ν � ν′, such that νinit(C′,L′)

σ−→(C′,L′) ν
′ for

some trace σ over (C ′, L′) with σ 6|= π for any π ∈ F .

5. Small Model Theorem

In this section, we show that it is possible to restrict the
analysis of the coverability problem for parameterized cache
protocols to the subclass where only finite number of vari-
ables are used. Let P = (Q,A,∆, qinit) be a parameterized
cache protocol. We will first introduce some notations.

Notations. Let C and C ′ be two sets of caches and L and
L′ be two sets of cache lines. Given two injective functions
φ : C 7→ C ′ and ψ : L 7→ L′, we use σ[φ, ψ] to denote the
trace σ′ over (C ′, L′) such that |σ′| = |σ| and for every i ∈
[1, |σ′|], σ′[i] = (a, φ(c), ψ(l)) if σ[i] = (a, c, l), and σ′[i] =
(a, φ(c)) if σ[i] = (a, c). Given a trace τ over (C ′, L′) We
use τ [φ−, ψ−] to denote the set of traces τ ′ over (C,L) such
that τ ′[φ, ψ] v(Aver×φ(C)) τ . Intuitively, τ ′ corresponds to
some trace obtained from τ by only deleting some horizontal
actions and renaming caches and lines.

In the following, we will establish two closure properties
of the considered cache protocols.

Closure property of the cache protocol. Our first property
concerns the parameterized cache protocol. Intuitively, we
show that if a configuration ν′ is reachable and ν′ is larger
than a configuration ν (w.r.t. the ordering �) then ν is also
reachable.

Lemma 1. Let C and C ′ be two sets of caches such that
|C| = |C ′|. Let L and L′ be two sets of cache lines such
that |L| ≤ |L′|. Let ν be a configuration over (C,L) and
ν′ be a configuration over (C ′, L′). If νinit(C′,L′)

σ′−−→(C′,L′) ν
′

for some trace σ′ over (C ′, L′) and ν �(φ,ψ) ν
′ for some

injective functions φ : C 7→ C ′ and ψ : L 7→ L′, then
νinit(C,L)

σ−→(C,L) ν with σ ∈ σ′[φ−, ψ−].

Closure property of the filter. Our second property con-
cerns the filter. We show that if a trace σ′ is valid wrt. a
filter then any trace which is an extended-vertical-actions-
preserving-subword (modulo renaming of the caches) of σ′
is also valid wrt. the filter.

Lemma 2. Let C and C ′ be two sets of caches such that
|C| ≤ |C ′|. Let L and L′ be two sets of cache lines such
that |L| ≤ |L′|. Let φ : C 7→ C ′ and ψ : L 7→ L′ be two
injective functions. Let σ′ be a valid trace over (C ′, L′) with
respect to a given filter F . Then every trace σ ∈ σ′[φ−, ψ−]
is valid with respect to the filter F .

Bounding the number of cache lines. We are now ready to
state our main theorem which is a consequence of Lemma
1 and Lemma 2. Intuitively, we will show that checking the
coverability problem for parameterized cache protocols can
be restricted to instances where the number of cache lines
is bounded.

Theorem 3. Let F be a filter over a set of caches C and a
set of cache lines L. Let νbad be a configuration over (C,L).
Let C ′ be a set of caches and L′ be a set of cache lines. If
νinit(C′,L′)

σ′−−→(C′,L′) ν
′ for some valid trace σ′ with respect

to F and νbad � ν′, then there is a configuration ν over
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(C ′, L) such that νbad � ν and νinit(C′,L)
σ−→(C′,L) ν for some

valid trace σ w.r.t. F .

As an immediate consequence of Theorem 3, we can
restrict the coverability problem for parameterized cache
protocols where the set of cache lines is restricted to L.
More formally, we define the restricted coverability problem
as follows: The restricted coverability problem for P wrt. a
filter F and a configuration νbad over a set of caches C and
a set of cache lines L, consists in checking whether there is
a configuration ν over (C ′, L), such that: (1) νbad �(φ,ψ) ν
for some injective functions φ : C 7→ C ′ and ψ : L 7→ L
such that ψ(l) = l for all l ∈ L, and (2) νinit(C′,L)

σ−→(C′,L) ν
for some trace σ over (C ′, L) with σ 6|= π for any π ∈ F .
As a corollary of Theorem 3, we have:

Corollary 4. Let F be a filter over a set of caches C and a
set of cache lines L. Let νbad be a configuration over (C,L).
Then, the coverability problem for P wrt. F and νbad can
be reduced to the restricted coverability problem for P wrt.
F and νbad.

As a consequence of Corollary 4, we will use from now
on the term coverability problem to mean its restricted form.

6. Checking Trace Sensitive Coverability

Assume a cache protocol P = (Q,A,∆, qinit), a set
of forbidden patterns F and a configuration νbad capturing
some violation of cache coherence. Section 5 ensures that it
is enough to check for the existence or absence of F -valid
traces that cover νbad (i.e. violate coherence) on systems
with the same number of cache lines as the number of
lines in linesOf(νbad). Observe that the length of the
transactions and the number of caches (i.e. of concurrent
transactions) is still arbitrary.

In fact, state reachability for any given two counters
Minsky machine can be encoded using a parameterized
cache protocol with a single cache line. The idea is to
capture the value of each counter using the number of caches
having their line at some cache state. Tests for zero are
captured with the forbidding part of horizontal transitions.
Coverability is therefore undecidable even in the case of
a single cache line per cache. We use over-approximated
systems where the analysis is exact and terminates and we
refine the approximation in case of false positives.

The tail recursive procedure checkCov is used to check
coherence. It takes three arguments. A cache protocol P , a
filter F , a configuration νbad and a preorder E on pairs
of configurations and traces. All manipulated configura-
tions have L = linesOf(νbad) lines. The procedure is
invoked with checkCov(P, F, νbad,E0) where (ν, σ) E0

(ν′, σ′) iff there are renamings φ : cachesOf(ν) 7→
cachesOf(ν′) and ψ : L 7→ L such that ν �(φ,ψ) ν

′ and
truncateF (σ[φ, ψ]) v(Aver×φ(cachesOf(ν))) truncateF (σ′)
(see 3, 4.3). The result of truncateF (σ) is defined to be
the longest prefix of σ that does not contain more vertical in-
structions than the number of vertical instructions appearing
in any of the patterns in F . Observe that such a prefix can be

arbitrarily long. The idea is that the traces will be checked
against the filter incrementally while being constructed, so
we only need to check the “freshest” part of it. Intuitively,
(ν, σ) E0 (ν′, σ′) holds if, up to eliminating some caches,
ν and ν′ coincide and the truncateF (σ) sequence can
be obtained from the truncateF (σ′) sequence by deleting
the same caches and some horizontal (but not vertical)
instructions. The idea is that vertical instructions are not
deleted from larger traces because this would not preserve
F -validity. However, considering whole traces without ap-
plying truncateF (σ) would result in a non wqo E0 for
which there is no guarantee of termination even without
refinement [7].

Lemma 5. The preorder E0 is a wqo on{
(ν(C,L), truncateF (σ))|σ ∈ ((Aver × C) ∪ (Ahor × C × L))∗

}
.

Procedure checkCov checks whether an F -valid trace
σ can cover νbad. The procedure tracks pairs of the form
(ν, σ), where ν is a configuration and σ is a trace. Intuitively,
such a pair denotes all pairs (ν′, σ′) that are larger wrt.
the current ordering, i.e. an upward closed set wrt. the
current ordering E. The procedure is a classical working
list algorithm that maintains two sets of pairs, namely the
working set W of pairs that have not been treated yet, and the
visited set V of pairs that have been treated. The union of the
two sets is minimal in the sense that one cannot find a pair
of E-related pairs. Given a pair in W (i.e., that has not been
treated yet), the procedure computes the predecessor image
wrt. each action that would not violate, given the trace in the
pair, the filter F . For this reason, the trace σ that lead from
νbad to the current configuration ν is maintained in each
pair. Notice that the same configuration ν can participate
in two E-unrelated pairs (ν, σ) and (ν, σ′). The procedure

Input: A protocol P = (Q,A,∆, qinit), a filter F , a bad configuration
νbad and a wqo E on pairs of configurations and (Aext)∗

Output: uncoverable or an F -valid trace covering νbad

1 W, V :=
{

(νbad, ε)
}
, {};

2 while W is not empty do
3 remove a (ν, σ) from W and add it to V;
4 if (ν = νinitcachesOf(ν),linesOf(ν)) then
5 if σ is possible in P then return σ;
6 else return checkCov(P, F, νbad, strengthen(E, σ));
7 foreach c ∈ cachesOf(ν) ∪ newCache(cachesOf(ν)) do
8 Σ := {};
9 foreach a ∈ Ahor and l ∈ linesOf(νbad) do add (a, c, l) to Σ;

10 foreach a ∈ Aver do add (a, c) to Σ ;
11 foreach a ∈ Σ do
12 σ′ := aσ;
13 if σ′ |= π for some π ∈ F then continue;
14 Γ := minOfE(preOf(a, upOfE(ν)));
15 foreach ν′ ∈ Γ do
16 if (ν′′, σ′′) 6E (ν′, σ′) for each (ν′′, σ′′) ∈ W ∪ V then
17 remove from W ∪ V each (ν′′, σ′′) s.t. (ν′, σ′) E (ν′′, σ′′);
18 add (ν′, σ′) to W;
19 return uncoverable

Procedure checkCov(P, F, νbad,E)

makes use of the following operations:

1) at line 6, strengthen(E, σ) is invoked in case
the obtained trace σ is a false positive due to
the application of the upward closure. It returns
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a stronger ordering E′. The new ordering can be
chosen to be a wqo in case E is a wqo [29], [30].

2) at line 7, newCache(C) returns a singleton c that
is not in the set C of caches (i.e., c 6∈ C).

3) at line 14, upOfE(ν) is the upward closure of ν
wrt. the current ordering E.

4) at line 14, preOf(a,Γ) returns a representation of
the (possibly infinite) set of configurations that can
reach the upward set of configurations Γ in one step
with the action a.

5) at line 14, minOfE(Γ) returns a finite set of con-
figurations that are pairwise E unrelated and such
that each element in Γ is larger than some of them.

Lemma 6. The operations 1-5 are effectively computable.

Assume each E is a wqo and the operations are as stated
above. Termination of each non recursive call to checkCov
is obtained using a wqo argument. Intuitively each call to
checkCov terminates and results in uncoverable, an F -
valid trace, or in another call to checkCov with a stronger
ordering. Indeed, an infinite execution that involves only
a finite number of recursive calls would mean that there
is a call where W never gets empty. This means that we
keep on finding new pairs that cannot be eliminated by the
elements in W ∪ V in lines 15-18. This infinite sequence of
new elements contradicts that E is a wqo.

Lemma 7. Each infinite execution of checkCov contains an
infinite number of recursive calls where each call is made
with a preorder that is stronger than the orderings of the
previous calls.

Restriction to pairs corresponding to F -valid executions
is obtained because lines 12-13, together with the fact that E
is stronger than E0, ensure we discard actions and pairs that
violate the filter. Soundness is guaranteed by the fact that
line 14 computes an over-approximation of the predecessor
configurations, that we consider all actions and that we
eliminate pairs only if they denote less configurations and
stronger traces. Returned traces are valid by construction.

Theorem 8. If checkCov returns uncoverable, then none
of the F -valid executions from νinit cover νbad. If it returns
an F -valid trace σ, then νbad is coverable using σ.

7. Experimental Results

We have implemented our techniques from Section 6 as
an extension of the tool ZAAMA [30]. ZAAMA implements
constrained monotonic abstraction [29]. The tool can address
the parameterized verification problem for cache coherence
protocols (without any restriction on the input sequence of
traces). The input of our prototype includes the description
of the parameterized cache protocol, the set bad configura-
tions and the filter.

We have applied our prototype to a number of different
cache coherence protocols and filters. In fact, we have con-
sidered two cache protocols: The TMESI protocol [25] and
the UTCP protocol [27]. Both of them are adaptations of the

well-known MESI protocol [28] to the case of transactional
memories. TMESI is used in the hardware accelerated trans-
actional memory FlexTM [25], while UTCP in the hybrid
transactional memory DynTM [27].

These hardware accelerated transactional memories
come with conflict resolution policies describing the set
of forbidden traces. We model these policies using our
filter models. FlexTM admits two conflict resolution policies
which are the lazy and eager policies. In the lazy policy,
the resolution can wait until the commit before deciding
on which transaction to abort. While in the eager policy
the conflict is resolved by aborting a transaction as soon
as the conflict is detected. Therefore, FlexTM can be run
with different modes. On the other hand, DynTM allows
the eager and lazy modes to execute simultaneously. Fur-
thermore, we have also defined a new filter for the lazy
execution mode of FlexTM which allows the transactions
whose read instructions precede all the conflicting writing
instructions to survive when a conflicting transaction com-
mits. For instance, the transaction running on c1 would sur-
vive in (read, l, c1)(write, l, c2)(commit, c2)(commit, c1).
This behavior does not cause incoherent states and still
satisfies the strict serializability definition [31]. We have also
considered the filter allowing only strict serializable traces
[26], [31].

The results of our analyses can be seen in Table 2. Our
results show that TMESI (resp. UTCP) cannot violate coher-
ence when run together with its proper filters, namely lazy
FlexTM or eager FlexTM (resp. eager & lazy DynTM). To
the best of our knowledge, this is the first time that coher-
ence of such hardware accelerated transactional memories is
proven automatically. Our results show that coherence is still
preserved when TMESI is run together with the new lazy
filter in spite of the fact that it allows for more traces than
the ones allowed by the lazy FlexTM. Finally, our results
show that both TMESI and UTCP become incoherent when
considering only strict serializable traces.

All experiments were performed on a 2.9 Ghz Intel Core
i7 with 8GB of RAM.

8. Conclusion

In this paper, we have addressed for the first time the pa-
rameterized verification of cache coherence protocols in the
presence of transactional memories. We have first proposed
a formal model for this class of systems in order to capture
behaviours of parameterized cache coherence protocols as
restricted by filters to capture transactional memories con-
flict resolution policies. Our first contribution was a small
model theorem allowing us to restrict the analysis of such
systems to only a fixed number of cache lines. Our second
contribution was an non-trivial extension of the classical
framework of monotonic abstraction in order to exclude the
traces that are not allowed by our filter. Finally, we have im-
plemented a prototype that is able to successfully establish
or refute coherence for several challenging examples.
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Cache protocol (filter) #rules # bad states Reachable (Y/N) Execution time
TMESI (eager FlexTM) 92 36 N 48.7s
TMESI (lazy FlexTM) 48 34 N 12.7s

UTCP (eager & lazy DynTM) 128 137 N 236.8s
UTCP (serial. filter) 70 47 Y, bad state (M, M) 117.3s

TMESI (new lazy filter) 47 34 N 13.5s
TMESI (serial. filter) 42 38 Y, bad state (M, M) 35.8s

TABLE 2: Experimental Results. The columns “#rules” and “# bad” states give the number of rules and the number of bad
states used to model the cache coherence protocols, respectively. A “N” in the column “Reachable (Y/N)” means that the
parameterized cache protocol with filter is coherent. A “Y” in the column “Reachable (Y/N)” means that the parameterized
cache protocol with filter is not coherent and we provide the first reachable bad state. Finally, the column “Execution time”
gives the running time in seconds.

A direction for future work is to address the problem
of automatically synthesizing filters in order to ensure the
coherence of a given cache protocol.
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Abstract—Model checking has become a formal sign-off re-
quirement in the verification plans of many hardware designs.
For design sizes encountered in practice, compositional assume-
guarantee reasoning is often necessary to achieve satisfactory
results. However, many pitfalls exist that can create unsound
or unexpected results for users of commercial model checking
tools. Users need to watch out for circularity in properties, for
dead-ends getting trimmed by tools, as well as understand the
differences in proof composition for liveness and safety proper-
ties. We present many real design examples to illustrate these
points, as well as describe our experiences with compositional
reasoning in practice.

I. INTRODUCTION

Compositional proofs, while highly desirable, are some-
times tricky to apply correctly in practice. Compositional
reasoning is probably the most widely used form of assume-
guarantee reasoning. Assume-guarantee reasoning does not
necessarily cut out the guaranteeing logic, e.g. when estab-
lishing inductive invariants or helper lemmas that simplify the
proofs for some properties. Compositional reasoning focuses
on cutting out the guaranteeing logic when assuming the prop-
erty which has been guaranteed, thereby reducing complexity
by analyzing smaller chunks of logic. Cutting out logic is often
implemented by running model checkers on sub-modules or
by black boxing some sub-modules.

Compositional reasoning is naturally suited to hardware
designs, which are parallel compositions of thousands or
millions of processes. Adoption of compositional reasoning
is also driven by the existence of interfaces, which are natural
boundaries for contracts between the designers. The contracts
may or may not always be explicit, but there’s a good chance
that a well-designed hardware interface obeys some relatively
simple contracts, as would be consistent with following good
design principles like encapsulation. The designed interfaces
and protocols are intended to guarantee high-level properties
that are targets of verification for us. Using compositional
reasoning and relying on interfaces, we can verify higher-level
system properties, such as absence of system-level deadlocks.

Given the size of industrial designs, the system-level verifi-
cation problem is impractical to solve in a formal verification
setup using the entire chip system as the design-under-test
(DUT). Rather, one aims to find related proof obligations on
the logic of smaller sub-units (typically coded by one RTL
designer), which when taken together are sufficient to imply
that the original system properties hold. This is the most
practical way that model checkers are able to verify system

properties to the level of confidence desired. As a side benefit,
using assume-guarantee for properties on interfaces between
neighboring units, both of which have model checking setups,
can yield insight about design invariants and ultimately help
formalize the inter-designer contracts that may not have been
explicitly or precisely specified earlier.

However, as we discuss in this paper, it is important to
figure out the process to get compositional reasoning right.
There are plenty of pitfalls in this activity, and we would like
to publicize some of the gotchas.

Our discussion in this paper is based only on our practical
experience in a setting that is limited to applying commercial
model checking tools on synthesizable RTL designs while
verifying properties written in the popular SystemVerilog
Assertion (SVA) language [1].

In Section II, we describe some previous work on composi-
tional reasoning, and some challenges in using that in our set-
ting. In Section III, we describe how we apply compositional
reasoning. We need to watch out for false positives when tools
trim dead-ends silently (Section IV). In Section V, we caution
about changes in the SVA liveness syntax and go on to detail
an example of a missed deadlock bug when compositional
reasoning is applied for liveness properties without appropriate
care. We conclude in Section VI by pointing out some steps
end-users can take to avoid such pitfalls.

II. PRIOR RESULTS AND DISCUSSION

When applying compositional assume-guarantee reasoning,
it is important to be able to tell what may be safely inferred
about properties at the system level based on the results
seen at the unit level. To begin with, one may ask if it is
sound to conclude that some high-level property holds at the
system level if all unit level obligations are proven. This is a
reasonable question since one can encounter circularity in the
assume-guarantee argument, and circularity in the argument
could lead to unsoundness. For example, given two neigh-
boring modules A and B, property PA might be verified on
A assuming PB holds, and then PB might be verified on B
assuming PA holds, which is a form of circular argument.
To help address the issue of potential unsoundness in the
compositional reasoning arguments, there are many theoretical
results which characterize sound applications of compositional
reasoning. The work by McMillan [2] is widely known. A
good overview of compositional reasoning with a focus on
completeness and soundness is presented by Namjoshi and
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((p1 ∧ p4)⇒ p3)
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(p2 ∧ p4)

(p1 ∧ p3)
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(p1 ∧ p2 ∧ p3 ∧ p4)

Fig. 1. Example illustrating some concepts involved in applying McMillan’s
compositional rule for 4 properties p1, p2, p3, p4. The graph O is used to
order the properties. On the right are shown four target proof obligations that
are consistent with applying this rule.

Trefler [3]. An alternative scheme for compositional reasoning
is presented in follow up work by Amla et al. [4].

A. Terminology and Notation

We use SVA to write properties. SVA extends Linear
Temporal Logic (LTL) [5] with operations which increase
expressiveness1 and succinctness. An assertion written as
assert P indicates that property P is expected to be true
starting anywhere along the trace. If property P corresponds
to temporal logic formula p, assert P corresponds to the
temporal logic formula G(p). Similarly, an assumption written
as assume P requires that G(p) does not fail.

When discussing the soundness results, it is useful to know
the distinction between safety and liveness properties [6]. A
safety property is one whose failures can be witnessed by
finite traces. Once a safety property is witnessed to fail, no
further extension of the trace can make the property hold. A
liveness property is one whose failures cannot be witnessed by
finite traces. For a liveness property, every finite trace can be
extended such that the property does not fail, i.e. every failure
trace is of infinite length. Every property can be rewritten as
a conjunction of a safety property and a liveness property. In
this paper, we will assume that every property is written as
either a safety or liveness property.

The suggestive notation q B p (read as “q constrains p”) is
used below for consecution claims. qBp means that it is never
the case that p is false in cycle n and q is true in all prior
cycles. It is equivalent to ¬(qU¬p).

B. McMillan’s circular compositional reasoning rule

McMillan’s compositional reasoning result provides a suf-
ficient condition for concluding that G(

∧
pi) holds for the

design given that some local proof obligations are met. Each
proof obligation takes the form of a consecution claim, i.e.
something is claimed about cycle n of a trace if a related
claim applies during cycles 0 . . . (n− 1) of the trace. We will
consider only the case with a finite number of properties pi.

A key part of McMillan’s result involves partially ordering
the properties, or equivalently, viewing the properties as nodes
of some acyclic directed graph O.

The main result is that one can conclude that S |= G(
∧

pi)
if we establish for all i that Ai |= {∆i B ((

∧
p∈Ti

p)⇒ pi)},
where

1Unlike LTL, SVA has the expressive power of ω-regular languages.

i. S is the original design with its environment constraints
ii. Ai is a valid abstraction of S (typically obtained by

retaining the guaranteeing logic for pi and cutting out
unrelated logic, e.g. via black-boxing some modules)

iii. Ti ⊂ {p1, p2, . . . , pk} such that pj ∈ Ti implies that there
is a (nontrivial) path from pj to pi in the acyclic graph O

iv. ∆i is (
∧

p∈Di
p) with Di ⊆ {p1, p2, . . . , pk}

(An illustrative example showing an application of the rule
is in Fig. 1 for the case of 4 properties.)

In this result, the key part is the definition of Ti using
the ordering implied by O. This allows one to construct an
argument that

∧
pi is not false at cycle n assuming

∧
∆i is

not false at all prior cycles. This then allows one to conclude
that ∆i is not false at cycle n and enables the inductive step
for the next cycle.

The result applies irrespective of whether the pi’s are safety
or liveness properties. Since liveness properties do not fail on
finite traces, and all failures of safety properties are witnessed
by finite traces, the inductive argument may be somewhat
surprising! The potential for confusion arises because saying
“pi is not false at cycle n” is not the same as saying “pi does
not fail at cycle n”, especially when pi is not a combinational
property. Each property pi is itself a path formula which can be
evaluated as true or false for the path beginning in cycle
n. A (safety) property pi fails at cycle n if cycles m through
n of the trace form a bad prefix for pi for some m ≤ n.

For the case where all the pi are safety properties, the
induction argument can in fact be of the form that

∧
pi does

not fail at cycle n assuming
∧

∆i does not fail at any prior
cycle. Then ∆i does not fail at cycle n and enables the next
inductive step. In this case, the induction is over the length of
finite traces and we seek the shortest trace which witnesses a
failure of the safety properties involved.

C. Challenges applying McMillan’s result

Implementing McMillan’s compositional assume-guarantee
result as given above is not simple in practice:

i. For a large number of properties, providing and maintain-
ing a valid and effective ordering of the properties can get
unwieldy and burdensome for the end user.

ii. Writing the compositional proof obligations using SVA
can get complicated. For example, writing ¬(qU¬p) in
SVA naively as “assert property (not (q s_until
(not p)));” actually expresses G¬(qU¬p) which
evaluates the path formula ¬(qU¬p) at each cycle of the
trace. We wish to evaluate ¬(qU¬p) only at the first cycle.

In addition to the above issues which are specific to apply-
ing McMillan’s result, there is also the broader question of
how a particular compositional reasoning result applies when
restricted to finite traces. This is important because we fre-
quently reason about finite traces in practice. Which semantics
for finite traces are compatible with the result of a given
compositional reasoning theorem? (For example, the safety-
only variant of the argument above which uses the notion of
“pi does not fail in cycle k” has a dependency on the semantics
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p2: ##1 g

p1: (f)
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p3: (¬f ⇒ ¬g)

Fig. 2. Zero-delay loops

used for finite traces. The user needs to confirm that the
semantics SVA uses for finite words do not break the inductive
argument. Further, certain related tool settings/behaviors like
trimming dead-ends can break the inductive argument and lead
to unsound results when reasoning about finite traces.)

D. Another Compositional Reasoning Approach

Since McMillan’s rule can be challenging to apply, a simpler
compositional reasoning rule as described below is often used.

Model checking setups are created to check properties on
abstractions A1,A2, . . .Am. Each property pi is associated
with the abstraction it is intended to be checked on. Let Mk

be the set of all properties intended to be proven on Ak.
In order to claim that S |= G(

∧
pi), establish for all k that

Ak |= G(
∧

p/∈Mk
p)⇒ G(

∧
p∈Mk

p), where
i. S is the original design with its environment constraints

ii. Ak is a valid abstraction of S containing the guaranteeing
logic for all p ∈Mk

Unlike in McMillan’s rule, there is no longer any require-
ment to explicitly order the properties. Further, SVA can
express the proof obligations very simply. In the setup for
Ai, use assume P for all p /∈Mi and assert P for all p ∈Mi.

Unfortunately, this argument is not sound in general, as
summarized in detail in [4]. It is unsound for liveness prop-
erties. It can be used only with safety properties, but that too
has a few corner cases where it can yield unsound results.

The tradeoff is that the user now needs to be aware of the
assumptions under which this compositional reasoning claim
is valid and to have a way of knowing when these extra
assumptions are getting violated, in addition to the problem
of not accidentally using tool settings that interfere with the
induction argument.

Since the compositional reasoning argument for safety prop-
erties involves an inductive argument on the length of the
shortest trace which violates one of the safety properties, the
potential for unsoundness lies in either the base case or the
inductive step being spuriously claimed to hold.

One way the inductive step can spuriously be claimed to
hold occurs when there are zero-delay loops in the logic

/
/

e1 e2 . . . ek

A B

MONITOR

A_foo: assert P1;
B_bar: assert P2;

. . .

Fig. 3. Structure used for compositional reasoning about safety properties

involved. Fig. 2 pictorially depicts two ways a zero-delay loop
can occur in the logic.

In the first case shown in the upper half of Fig. 2, there is
a combinational loop going through modules A1 and B1, and
we are skipping the check in the cycle after reset. All tools
complain about such combinational loops, and so we need not
worry about this pitfall.

In the second case shown in the lower half of Fig. 2,
property p1 will get proven on A2 after assuming p2 and
p3, irrespective of the driving logic of f (assuming the base
case holds at reset), and properties p2 and p3 will get proven
on B2 assuming p1. This situation is due to a zero-delay
loop in the logic involving f getting reflected as g by B2

combined with the structure of the properties. In this case,
unfortunately, tools do not complain about the combinational
zero-cycle dependency, and the user needs to be careful that
the properties do not cause such a loop.

Further examples illustrating unsoundness are presented in
Section IV (safety case) and Section V-B (liveness case).
Section III briefly describes the methodology used in these
unsoundness examples.

III. OUR METHODOLOGY

The structure we use for compositional assume-guarantee
reasoning is illustrated in Fig. 3 for interconnected modules
A and B. It uses an SVA bind to hook a monitor module to
the interface between the modules. The model checking setup
for A black-boxes B and vice versa. Properties are written
in the monitor module using a naming convention where the
name of the property indicates which module is expected to
contain the guaranteeing logic for the property. When running
the setup with A as the DUT, the properties in the monitor with
A expected to be guaranteeing logic are used as SVA asserts,
while the properties expected to be guaranteed by B are used
as SVA assumes. For example, the property named A foo is
used as an assertion for A and an assumption for B. If the
properties asserted on A and B do not fail in their respective
setups, it is claimed (possibly unsoundly) that the properties
hold for the composed system up to the minimum bounded
proof depth achieved. This structure implements the approach
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described in Section II-D. It is unsound to use this structure
for composing liveness properties (refer to Section V-B).

Note that for reset, we (and tools) assume that the hardware
logic resets to a state consistent with 3-valued simulation. Our
SVA assumptions are disabled during the reset analysis phase.

IV. DEADENDS AND IMPACT OF TRIMMING DEADENDS

Writing constraints2 is often a challenging and time-
consuming endeavor. Over time, users of formal verification
tools have developed their own guidelines to converge on a
“good” set of constraints. Some different guidelines are:
• Begin with the environment as under-constrained as pos-

sible, so you avoid missing bugs by accidentally over-
constraining the setup.

• Begin with an over-constrained setup, to minimize false
failures and avoid inefficient use of designer debug time.

• Avoid writing constraints on the outputs or on internal
signals of the DUT.

• If possible, write constraints as implications with the
constrained input appearing in the consequent of the
implications.

• Avoid dead-ends.

A. Intentional dead-ends

Dead-ends are artifacts of using constraints. In any RTL
design, without any constraints, any sequence of input values is
permitted (and the design will produce some output, no matter
what the input sequence is). In the presence of constraints,
however, we can have permissible finite sequences of input
values that cannot be extended any further if every choice of
the next input value violates at least one constraint. Dead-ends
are recursively defined as states from which either no transition
is possible (0-cycle dead-ends), or the only transitions are to
states that are dead-ends (multi-cycle dead-ends).

The SystemVerilog standard [7] does not mandate what the
tools should do with dead-ends, and unfortunately, different
commercial tools treat dead-ends differently – some tools
never trim dead-ends (i.e. a finite trace is considered a legal
counter-example to a safety property even if it ends in a dead-
end) unless explicitly instructed by the user, whereas other
tools trim dead-ends, and sometimes they trim 0-cycle and
1-cycle dead-ends, but not other dead-ends!

The above-mentioned guideline of writing constraints care-
fully to avoid dead-ends, is religious, and different opinions
exist. Sometimes the process of avoiding dead-ends can make
the code less intuitive or less readable. Consider a design with
one input a, and where a should be constrained such that it is
never asserted in three consecutive cycles, nor deasserted in
three consecutive cycles. One popular method of implementing
constraint models is through state machines. The state machine
in Fig. 4 can be used to implement this constraint via the
following code:

2In the following sections, we will use the word constraints to refer to
assumptions, because the use of constraints as well as under-constraints and
over-constraints is more popular in commercial tools.

000start

101

001

110

010

111

a

¬a

a

¬a

a

¬aa

¬a

a ¬a

a ∨ ¬a

Fig. 4. Constraint implemented using a state machine

no_000_111_c: assume property(
@(posedge clk) disable iff(!rstn)

sm != 3’b111
);

The state 111, the error state, is a dead-end. Using the
code above, the user intends for the tool to remove any input
sequences that will cause the state machine to go to this error
state. Consider a 5-cycle long input sequence 0·1·0·0·0, which
violates the desired constraint that a should not be deasserted
for 3 consecutive cycles, causing the state machine to arrive in
state 111 in the 6-th cycle. If some design assertion fails on the
5-th cycle on this input sequence, the questions is whether that
failure is a legal counter-example or not. Likely, the author of
this constraint code considers that sequence illegal, and would
not be happy with the false failure. We think that might be
the reason why some tools trim dead-ends, perhaps in response
to such seemingly reasonable expectations. In fact, using the
same state machine, coding constraints to avoid any dead-ends
in the first place would require code like the following:

no_000_c: assume property(
@(posedge clk) disable iff(!rstn)

(sm == 3’b010) |-> a
);
no_111_c: assume property(

@(posedge clk) disable iff(!rstn)
(sm == 3’b110) |-> (!a)

);

This is more verbose than the previous code, and one can
imagine it being even more so, if there were more arcs to the
error state.

B. Compositional reasoning with dead-ends

Even though it might seem reasonable for tools to trim
dead-ends, we show a serious problem that can happen during
compositional reasoning due to this.

Consider modules A and B shown in Fig 5. B receives
packets sent by A, buffers them in a FIFO structure which
is 8 entries deep, and then sends the packets downstream.
A is responsible for making sure that it does not send more
packets than B can hold, while B is responsible for notifying A
when packets are being drained from the FIFO. The interface
signals depicted in the figure show a simplified view of the
flow control used in the actual design – A sets signal push
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push

data

pop

A B

8

Fig. 5. A sends packets to B. B buffers the packets in a FIFO of size 8.

when valid data is sent and B uses signal pop to indicate
when an entry has been dequeued from the FIFO.

The checks that the FIFO does not overflow or underflow
are implemented using a counter ctr in the interface monitor
as follows:

logic [3:0] ctr;
always @(posedge clk or negedge rstn)
begin

if (!rstn)
ctr <= 0;

else
ctr <= ctr + push - pop;

end

A_no_overflow: assert property(
@(posedge clk) disable iff(!rstn)

ctr + push <= 8
);

B_no_underflow: assert property(
@(posedge clk) disable iff(!rstn)

pop <= ctr
);

Since ctr is 4-bit wide, an underflow makes it wrap around
to 15. Suppose the design has a bug where B sends pop when
ctr is 0, but this bug can only happen when push is 0. When
this failure of B no underflow happens, ctr will have the value
15 in the next cycle and that will cause A no overflow to
fail. Since A no overflow is used as an assumption when
checking B no underflow on B, the failure of B no underflow
is witnessed only by 0-cycle dead-end traces.

If the user enables the tool setting to hide failure traces that
cannot be extended by at least one more cycle, or if the tool
trims dead-ends by default, then the tool will trim all failures
of B no underflow and report it as proven.

We recommend implementing constraints so dead-ends are
avoided altogether, even if that makes the code more verbose,
as in Section IV-A. For the current example, one way to avoid
the dead-ends is to rewrite the A no underflow property as:

A_no_overflow: assert property(
@(posedge clk) disable iff(!rstn)

(ctr == 8) |-> !push
);

The above approach to removing unintentional dead-ends is
reactive. We would instead like the tools to support a check
that the formal testbench permits no dead-ends, and if the
check fails, to produce a finite witness ending in a dead-end.

Write Address (AW)
Write Data (W)

Read Address (AR)

Write Response (B)
Read Data (R)

AXI4
Master

AXI4
Slave

Fig. 6. ARM AMBA AXI4 interface

V. COMPOSITIONAL PROOFS OF FORWARD PROGRESS

We describe a system we have seen where a deadlock
may be missed in the process of compositional proofs, if the
properties are expressed as liveness properties.

A. Liveness syntax and semantics in SystemVerilog 2009

Before going on to describe the missed deadlock, we want
to alert the reader that the SystemVerilog semantics adopted
in 2009 (IEEE Standard 1800-2009 [7]) significantly change
the meaning of property expressions like the one below:

a |-> ##[0:$] b

Before 2009, this syntax was used to express the property
that if a is true, eventually b must be true [1]. However, with
the change in the standard, the property expression written
above is equivalent to true, even if a and b are primary
inputs with no constraints on them! This was a surprise to the
authors, and given that tools do not typically warn the users
that such property expressions are very likely not doing what
the user intended, we consider this very dangerous.

In contrast, the tools do error out on a property expression
like the one below which is deemed illegal:

a |-> eventually b

The safer way to express liveness in SystemVerilog 2009 is
using syntax like the following:

a |-> s_eventually b

B. AXI4 deadlock missed while composing liveness properties

This design3, a simplified version of a real-system design,
is based on the popular ARM AMBA AXI4 on-chip interface
standard [8]. The AXI4 standard connects a master to a slave
via five asynchronous channels (Fig. 6): Write Address (AW),
Write Data (W), Read Address (AR), Write Response (B) and
Read Data (R). The standard assumes a synchronous clock
ACLK.

The Write Address and Write Data transactions are re-
sponded by a single-beat Write Response (B) that indicates
whether the write succeeded without errors, or not. Two
important signals in this B channel are BVALID and BREADY.
BVALID indicates that the slave is sending the write response
on this cycle, and BVALID stays asserted until the master

3The RTL of our simplified design is available at
http://www.oskitechnology.com/wp-content/uploads/2015/09/fmcad15.tar.gz
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acknowledges the response with BREADY. Similarly, the Read
Data (R) channel is used to send the read response, which
includes the read data. Besides the read data itself, three
important signals in the R channel are RVALID, RLAST and
RREADY. RVALID is asserted on each cycle the slave is
sending the read data, and since the read could be a burst
read, RLAST is used to indicate whether the current beat of
data is the last beat. Like with the B channel, the ready signal
RREADY is used by the master to indicate to the slave that it
has accepted the current beat – until that happens, the slave is
required to hold it values of RVALID, RLAST and read data.

To describe the deadlock situation, it is convenient to
assume that each read is either 1 or 2 beats, no longer. We
will only need to look at the B and R channels. Two AXI4
properties will participate in this deadlock, one master property
(M) and one slave property (S):

1) master property M: once the master receives BVALID,
eventually it must assert BREADY

2) slave property S: once the slave sends RVALID with
RLAST deasserted (i.e. not for the last beat) and it is
accepted by the master which asserts RREADY, eventually
the slave must send RVALID with RLAST asserted

These two properties can be implemented in SystemVerilog
2009 as the following liveness properties:

property master_liveness_bready;
@(posedge aclk) disable iff (!aresetn)

(bvalid && !bready) |->
s_eventually bready;

endproperty

property slave_liveness_rlast;
@(posedge aclk) disable iff (!aresetn)

(rvalid && !rlast && rready) |->
s_eventually (rvalid && rlast);

endproperty

The AXI4 protocol allows the B and R channels to be
completely decoupled from each other. However, to optimize
resources or area, some master or slave may choose to share
a FIFO for both the B and R responses. We will call such a
device a serializing device.

The deadlock happened because a serializing master was
connected to a serializing agent. This deadlock scenario is
depicted in Fig. 7. In the simplified version of the deadlock, the
serializing master has a 2-deep FIFO that stores the B and R
responses. For the R responses, the master needs to receive the
entire read response (whether it is 1 beat or 2 beats), before it
dequeues the read response from the queue. For design-specific
reasons, the master processes the requests in order – so if a B
response arrives later than a previous R response, the prior R
response must be processed before the B response is accepted
by asserting BREADY. Similarly, the serializing slave also has
a 2-deep FIFO that stores the B and R responses that are
queued up to be sent to the master. For the deadlock to happen,
we have three transactions: a Read Response R1 composed of
two beats R1.F and R1.L, and two Write Responses B1 and
B2. The slave decides to send R1.F, followed by B1, followed

RREADY
RLAST

RVALID

BREADY
BVALID

AXI4
Master

R1.F head

B1 tail

AXI4
Slave

B2 head

R1.L tail

Fig. 7. AXI4 system deadlock

t0 t1 t2 t3 t4

aclk

bvalid

bready

rvalid

rlast

rready

Fig. 8. Deadlock failure in the composed design (last 1 cycle loops forever)

by B2, followed by R1.L. This results in a deadlock shown in
Fig. 7: the master does not assert BREADY for B2, because it
is waiting for R1.L. The slave will not send R1.L, until B2 is
dequeued first, causing the deadlock.

In fact, if the model checking setup has the DUT as the
entire system containing both the master and the slave RTL,
each of the two liveness properties fails, with infinite-length
counter-examples showing the deadlock (Fig. 8 shows one of
these two failures). The reader may observe that the deadlock
can be avoided by forcing either the master or the slave to be
non-serializing, and in that sense, it is arguable if the deadlock
is due to a bug in the master or in the slave!

However, the situation becomes interesting when we use
compositional reasoning. In the real system, the master and
slave modules were large enough (and designed by different
RTL designers) that it was important to verify the modules sep-
arately. We wanted to prove the property M on the master, and
the property S on the slave. Since each module is serializing,
and depends on fairness constraints from the other, it seems
natural to want to prove M on the master while assuming S;
and conversely, to prove S on the slave while assuming M. The
methodology described in Section III was used to carry out this
compositional argument. An expert reader may realize at this
point that each of these liveness checks may now actually pass.
In fact, that is exactly what happens! A naive user might then
incorrectly conclude that M and S are true on the composed
system and miss the deadlock bug.

When using the methodology of Section III, the proof
decomposition attempted is to prove G(M) ⇒ G(S) on the
slave and G(S) ⇒ G(M) on the master. Suppose it happens
that whenever S is false for the slave, property M must
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also necessarily be false somewhere further along the same
trace. Then if we assume G(M) when proving G(S), we will
no longer see any failures for G(S).

Suppose we had instead tried to prove G(M ⇒ S) on the
slave and G(S ⇒M) on the master. This proof decomposition
would be equivalent to checking true B (M ⇒ S) on
the slave and true B (S ⇒ M) on the master. For this
decomposition, we cannot use McMillan’s rule to infer that
G(M∧S) holds for the composed design, because the implied

ordering graph would be cyclic M S

(Note that trueB p is equivalent to ¬(trueU¬p) which
can be rewritten as ¬(F¬p) and then as Gp.)

C. Using liveness properties safely with McMillan’s rule

To confirm that we cannot miss the deadlock when apply-
ing McMillan’s circular compositional rule with the liveness
properties M and S, we ran the four checks listed below:

i. on the master, check (M ∧ S) B S
ii. on the master, check (M ∧ S) B (M ⇒ S)

iii. on the slave, check (M ∧ S) B S
iv. on the slave, check (M ∧ S) B (M ⇒ S)

All the above checks fail, implying that all attempts to apply
McMillan’s circular compositional rule to infer G(M∧S) will
involve a failing check. Hence, the user will not be led to the
incorrect conclusion that there is no deadlock.

For reference, the SVA implementation is shown below:

wire mlhs = (bvalid && (!bready));
wire mrhs = bready;
wire slhs = (rvalid && (!rlast) && rready);
wire srhs = (rvalid && rlast);
reg aresetn_d;
always @(posedge aclk) begin

aresetn_d <= aresetn;
end

property m;
(mlhs |=> s_eventually mrhs);

endproperty

property s;
(slhs |=> s_eventually srhs);

endproperty

property T(e);
@(posedge aclk) disable iff (!aresetn)

e;
endproperty

property F(p);
!aresetn_d |-> (p);

endproperty

property K(l,r);
not ((l) s_until (not (r)));

endproperty

chk0_s: // most constrained check
assert property (

T(F(K(m and s,s)))
);

t0 t1 t2

aclk

aresetn d

mlhs

mrhs

slhs

srhs

Fig. 9. Failure for chk0 s on the slave (last 1 cycle loops forever). The same
trace also shows chk0 m s failing.

chk0_m_s: // most constrained check
assert property (

T(F(K(m and s,m implies s)))
);

The failure trace for chk0 s on the slave is shown in Fig. 9
and shows the property s is false in the first cycle. Since
property m is true in the first cycle, the same trace is also a
failure trace for chk0 m s on the slave.

For sake of completeness, it may be noted that the only
checks that do not fail (and get proven) are the following:

i. on the master, check (M ∧ S) BM
ii. on the master, check (M ∧ S) B (S ⇒M)

iii. on the master, check S BM
iv. on the master, check S B (S ⇒M)

D. Using safety properties to express forward progress

Next, we explore the use of safety properties for compo-
sitional reasoning about forward progress properties. Users
are often divided about their preference for using liveness
versus safety properties to prove forward progress or absence
of deadlocks [9]. Liveness is usually more elegant, although
it may require some iterations to identify appropriate fairness
constraints. Safety properties can be used by picking a design-
specific constant to require the consequent to be satisfied
within this constant number of cycles, but it may need some
iterations to figure out the value of the constant.

For the example as described previously, the master and
slave properties can be written as the following safety variants:

property master_safety_bready;
@(posedge aclk) disable iff (!aresetn)

(bvalid && (!bready)) |->
##[1:‘B_TIMEOUT] bready;

endproperty

property slave_safety_rlast;
@(posedge aclk) disable iff (!aresetn)

(rvalid && (!rlast) && rready) |->
##[1:‘R_TIMEOUT] (rvalid && rlast);

endproperty

Of course, the two defined constants B TIMEOUT and
R TIMEOUT must be selected to be large enough that
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Fig. 10. Slave failure (B TIMEOUT=8; R TIMEOUT=8)
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Fig. 11. Master failure (B TIMEOUT=8; R TIMEOUT=12)

desirable design behaviors are not flagged as errors. When
these properties are checked on a system composed of the
master and slave, a value of 8 for each of the two constants
shows the deadlock scenario. The counter-example trace is
very similar to that in Fig. 8, except that instead of the lasso
at the end, the trace is stretched to about 8 extra cycles.

Further, as discussed in Section V-B, for this to work
in practice on real-sized designs, we need to prove these
two properties separately on the master and slave RTL mod-
ules. Choosing constant values of B TIMEOUT = 8 and
R TIMEOUT = 8, if we assume slave safety rlast, the
master property master safety bready passes on the master
RTL module. However, doing the reverse, while assuming
master safety bready , the slave property slave safety rlast
fails with the waveform in Fig. 10.

The root cause of the failure appears to be that the
master might be responsible for this since it is not accept-
ing the second BVALID in the trace with a corresponding
BREADY. So, the user is tempted to re-run by increasing
R TIMEOUT relative to B TIMEOUT. Choosing constant
values of B TIMEOUT = 8 and R TIMEOUT = 12,
indeed, the slave property slave safety rlast passes while
assuming master safety bready. However, now the master
property master safety bready fails on the master RTL with
the waveform in Fig. 11.

In fact, one can try all possible values of B TIMEOUT
and R TIMEOUT , and observe that no matter which val-
ues are chosen, either the master RTL or the slave RTL
or both show a failure. Table I shows the results for

TABLE I
ASSUME-GUARANTEE RESULTS WITH SAFETY PROPERTIES

master slave
B TIMEOUT R TIMEOUT result result

8 ≤ 9 Pass Fail
8 10 or 11 Fail Fail
8 ≥ 12 Fail Pass

B TIMEOUT = 8, and similar results are seen for other
values of B TIMEOUT . This is a good result, because unlike
the liveness situation (Section V-B), a naive user does not have
to take on the burden of avoiding the circularity pitfall.

VI. CONCLUSION

While doing compositional reasoning, users need to be
careful about avoiding circularity. They need to be careful
that the properties combined with the hardware design do not
create zero-delay loops. If tools trim dead-ends, compositional
proofs may not work, unless constraints are written in a
specific coding style. Liveness properties with compositional
reasoning are dangerous unless users have taken care to order
properties, or otherwise use McMillan’s method accurately.

We hope the examples and our experiences are useful for
other users practicing formal verification on hardware designs.
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Abstract—In the simplest setting, one represents a boolean
function using expressions over variables, where each variable
corresponds to a function input. So-called parametric represen-
tations, used to represent a function in some restricted subspace
of its domain, break this correspondence by allowing inputs to
be associated with functions. This can lead to more succinct
representations, for example when using binary decision dia-
grams (BDDs). Here we introduce Universal Boolean Functional
Vectors (UBFVs), which also break the correspondence, but done
so such that all input vectors are accounted for. Intelligent
choice of a UBFV can have a dramatic impact on BDD size;
for instance we show how the hidden weighted bit function can
be efficiently represented using UBFVs, whereas without UBFVs
BDDs are known to be exponential for any variable order. We
show several industrial examples where the UBFV approach has
a huge impact on proof performance, the “killer app” being
floating point addition, wherein the wide case-split used in the
state-of-the-art approach is entirely done away with, resulting
in 70-fold reduction in proof runtime. We give other theoretical
and experimental results, and also provide two approaches to
verifying the crucial “universality” aspect of a proposed UBFV.
Finally, we suggest several interesting avenues of future research
stemming from this program.

I. INTRODUCTION

Binary Decision Diagram (BDD) techniques for formal
verification (FV) have fallen out of fashion as a research topic
in the past decade. Nevertheless, the data structure is still
widely used in industry to solve real-world hardware verifi-
cation problems, for example at companies such as Intel [23],
IBM [24], [29], and Centaur [28]. Furthermore, contemporary
commercial FV tools also include BDDs in their spectrum
of technologies. Perhaps one of the most successful domains
for these techniques is FV of arithmetic data-path hardware
designs. The efficacy of BDDs stems from the fact that they
constitute a canonical representation of boolean functions, and
for many functions of practical importance, the BDDs are of
tractable size. It is well-known that the variable order can
drastically influence the size of a BDD. Unfortunately, there
are many functions, both artificial and practical, that have
been shown to have exponentially large BDDs regardless of
the ordering. To combat these roadblocks, techniques such as
case-splitting and proof decomposition have been explored.

In this paper, we propose an orthogonal approach to avoid-
ing blow up. Typically, one constructs a BDD for a function
f in a setting wherein BDD variables and the inputs of f
are in one-to-one correspondence. This correspondence can
be broken when using parametric substitutions [3] to perform
case-splitting; there, (not necessarily variable) functions are
associated with f ’s inputs, with the goal of restricting the space

in which f is represented. Our approach, called Universal
Boolean Functional Vectors (UBFV) is similar to parametric
substitutions in that functions are associated with f ’s inputs,
however, unlike parametric substitutions, a UBFV representa-
tion of f does not restrict the space of representation (ergo,
“universal”). In other words, all assignments to f ’s inputs are
implicitly represented in the UBFV representation.

To illustrate this concept, consider the function
f(v1, v2, v3) = v1 ∨ v2v3. Suppose we perform the
substitution (v1, v2, v3) 7→ (a ∨ b, d, bc), where a, b, c,
and d are fresh variables. Applying this substitution to f
yields a new function f ′ = a ∨ b ∨ dc. Even though f ′

bears no syntactic resemblance to f , the former completely
characterizes the latter in the sense that one can evaluate f
for any input using only f ′ and the substitution. The complete
characterization is possible only because (a ∨ b, d, bc) is
universal in the sense that all 23 of the possible boolean
assignments to (v1, v2, v3) can be realized via assignments to
(a, b, c, d); such a substitution is what we call a UBFV.

But what advantage can be achieved by performing these
UBFV substitutions? We show that there exists functions,
both theoretical examples and those arising in practical FV,
with BDD representations being exponentially more compact
when one selects an appropriate UBFV substitution. For the
practical FV problems, this approach has a profound impact on
proof runtime requirements. This is because where the current
solution to avoid the exponential blow up involves performing
many case-splits, by employing UBFVs we can reduce the
number of cases drastically, often eliminating the need for
case-splitting altogether. We also give a practical example
where using UBFVs removes the need for proof decomposition
– this can reduce proof development effort.

Our contributions are as follows. We lay down the ground-
work for the theory of universal boolean functional vectors.
and prove a key result (Theorem 2) showing that those func-
tions that have small partitioned BDDs [22] also have UBFV
representations with small BDDs. As a corollary, we prove
that the hidden weighted bit function [5] has a cubic BDD
for an appropriate UBFV. Deciding if a given substitution
constitutes a UBFV is NP-hard. However we provide a BDD-
based algorithm that is sufficient for the UBFV for the hidden
weighted bit function and for our industrial examples, and
also a user-assisted approach with low complexity. Finally,
we report very encouraging performance speed-ups for real
industrial proofs, namely floating point (FP) addition (FADD)
and FP fused-multiply add (FMA) instructions.
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II. RELATED WORK

The idea of using parametric representations of boolean
functions (what we term BFVs) goes back to the early
1970s [6], [9]. Such a representation, generated by the gener-
alized co-factor operation (GCF) (a.k.a. constrain) was intro-
duced in the setting of hardware model checking by Coudert
and Madre [11]. Later, Jones et al. [3], [18] proposed a
specialized variation of GCF called param, for use in symbolic
simulation, e.g. STE [26]. Similar to us, Jain and Gopalakr-
ishnan [17] employ problem-specific recipes (rather than use
a generic algorithm) to create parametric representations for
hardware verification. However, a common theme in these
works is the restriction of the space of a boolean function
to simplify its representation (often BDDs); we believe ours
is the first published approach that strives to simplify the
representation without a space restriction.1

The industrial example where our approach is extremely
effective is the verification of FADD. Published FADD
proofs [10], [3], and those solving the related problem of FMA
verification [16], [21], [27] require wide case-splitting, which
we altogether eliminate (or at least drastically reduce, in the
case of FMA).

A good introduction to the use of BDDs in hardware FV is
the paper by Hu [14].

III. MATHEMATICAL FOUNDATIONS

A. Boolean Functions

Let B be the boolean constants {0, 1} and let V be a
finite set of boolean variables. A V -assignment (or simply
assignment if V is understood) is a function α : V → B.
A (boolean) function (over V ) is a function f taking V -
assignments to B, i.e. f : (V → B) → B. An assignment
α is said to satisfy f if f(α) = 1; f is said to be satisfiable
(resp. tautological) if f is satisfied by some (resp. by all)
assignments. We denote a tautological function as 1 and
an unsatisfiable function by 0. We will employ overbar for
boolean negation, juxtaposition or ∧ for conjunction, ∨ for
disjunction, and ↔ for boolean equality. As is well known,
any function over V can be represented as a formula using
these operators and V . We will often leave α implicit, for
instance xy ∨ z represents the function f over {x, y, z} such
that f(α) = α(x)α(y) ∨ α(z). Also, if V ⊆ V ′, and f is
defined to be a function over V , we can freely employ f as
a function over V ′ in the obvious way.Finally, we say the
function f over V is a variable if there exists v ∈ V such that
f(α) = α(v) for all assignments α.

Much of what follows involves placing a total order � on
sets of variables; if the set of variables is subscripted with
integers, we say the natural order is the ordering that simply
applies ≤ to the subscripts.

1Anecdotes within the walls of Intel recall similar ad-hoc trickery done in
the past [15], though the idea was not explored thoroughly as we do in this
paper, nor was the application to FADD/FMA known.

B. (Universal) Boolean Functional Vectors

A common operation on boolean functions is that of sub-
stitution, in which functions are substituted for the variables
of another function. In this paper, the objects that describe
substitutions are called boolean functional vectors (BFV) [13].
Given (not necessarily disjoint) sets of variables V and V ′, a
BFV over (V, V ′) is a function ψ : V → ((V ′ → B) → B)
that takes the variables V to boolean functions over the other
set of variables V ′. We transpose the arguments of ψ to obtain
the function ψ∗ : (V ′ → B) → (V → B) defined by
ψ∗(α′)(v) = ψ(v)(α′). Now applying a BFV ψ over (V, V ′)
as a substitution against any function f over V is achieved via
the composition

f ◦ ψ∗ : (V ′ → B)→ B

Aside from being employable as a substitution for functions
over V , a BFV ψ is also characterized by a particular V -
function c. We say that c is the characteristic of the BFV ψ if
for all V -assignments α we have that α satisfies c if and only
if there exists a V ′-assignment α′ such that α = ψ∗(α′). Said
another way, as we range across all possible V ′-assignments
α′, ψ∗(α′) ranges across exactly the set of V -assignments
that satisfy c. When necessary to distinguish between the two
variable sets V and V ′, we will respectively refer to them as
the primary and the secondary variables.

Now we may define the central concept of this paper: a
universal BFV (UBFV) is simply a BFV that has as the
characteristic the tautological function 1. Equivalently, ψ is
universal iff ψ∗ is surjective. The key observation about
UBFVs is that when one is used as a substitution against a
function f , the result incurs no loss of information regarding
f . This is formalized by the following lemma.

Lemma 1. Let ψ be a UBFV over (V, V ′) and let f be a
function over V . Then for any α : V → B, there exists α′ :
V ′ → B such that α = ψ∗(α′) and thus (f ◦ ψ∗)(α′) = f(α)
.

Proof. Follows from the fact that ψ is a UBFV; note however
that α′ is not necessarily unique.

Lemma 1 says that f ◦ ψ∗ is a legitimate representation
of f ; given only f ◦ ψ∗ and ψ, we can evaluate f for any
V -assignment. Since BFV substitution commutes with any
boolean connective, we can apply boolean connectives in the
“domain” of a UBFV ψ, for instance for two functions f1 and
f2 and a boolean connective �, we have

(f1 ◦ ψ∗)� (f2 ◦ ψ∗) = (f1 � f2) ◦ ψ∗

It follows from Lemma 1, importantly, that we can check for
function equality in this domain as well — f1 and f2 are
identical functions iff f1 ◦ ψ∗ and f2 ◦ ψ∗ are also identical.

C. Binary Decision Diagrams

A branching program (BP) [4] is an acyclic, labelled,
directed graph with labelling function ` : N → (V ∪ {1, 0}),
where N is a set of nodes and V is a set of boolean variables.
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A BP has exactly one source node, called the root. The
labelling function is such that `(σ) ∈ {1, 0} if and only if σ is
a sink; the sinks are called terminal nodes. Each non-terminal
node σ has exactly two direct successors, called lo(σ) and
hi(σ). Given a V -assignment α and non-terminal node σ, the
active child of σ is lo(σ) if α(`(σ)) = 0 and hi(σ) otherwise.
A BP represents the boolean function f over V defined so that
f(α) is the label of the terminal node found by starting at the
root, and following the path of active children according to α.
The number of non-terminal nodes in a BP is called its size.

We now introduce two sub-classes of BPs that involve
placing a total order � on V . A �-ordered binary decision
diagram (�-OBDD, or OBDD if � is understood) is a BP
such that for all non-terminal nodes σ and σ′ where σ′ is a
successor of σ, we have that `(σ) 6= `(σ′) and `(σ) � `(σ′).
In other words, all paths from the root to a sink respect �.
The sub-OBDD rooted at a node σ is the OBDD formed by
deleting all nodes other than σ and its descendants. We say two
BPs are isomorphic if they are isomorphic in the traditional
graph theoretic sense, and the isomorphism preserves `, lo,
and hi . A reduced OBDD, which we simply call a BDD, is
an OBDD such that no two sub-OBDDs are isomorphic, and
no node σ has lo(σ) = hi(σ).

Theorem 1 (Bryant [7]). For any function f and �, there
exists a �-BDD that represents f and it is unique up to
isomorphism.

Thanks to Theorem 1, we can refer to a �-BDD that
represents f as the �-BDD for f ; we denote the size of this
BDD by SZ(f,�). For many functions that arise in practice,
the BDD provides a compact representation. Also it is well-
known that the choice of � can often make the difference
between having an exponentially- or compactly-sized BDD.
Furthermore, there are some practical functions that have been
proven to have exponentially sized BDDs for any choice of
�. The middle bit of the output of an integer multiplier is
a standard such example [8], as too is the so-called hidden
weighted bit function [5], which we define in Sect. IV-C.

It is well-known that BDDs are the most compact OBDDs:

Lemma 2. For any function f and �, SZ(f,�) is not greater
than the size of any �-OBDD for f .

D. Generalized Cofactor

Given a total order � over a set of indexed variables
{x1, . . . , xn}, the permutation induced by� is the permutation
π on {1, . . . , n} defined by π(i) = j iff xj is the ith
element in the order �, thus xπ(1) � · · · � xπ(n). Given
functions f and h over {x1, . . . , xn}, and a variable order
�, the generalized cofactor [11] of f and h is the function
defined by GCF(f, h,�)(α1) = f(α2), where α2 is the unique
assignment such that h(α2) = 1, and the following distance d
between α1 and α2 is minimized. Here π is the permutation
induced by �, and ⊕ is exclusive-OR.

d(α1, α2) =

n∑
i=1

2n−i(α1(xπ(i))⊕ α2(xπ(i))) (1)

The intuition behind (1) is that differences between α1 and
α2 are weighted greater for variables that are smaller in �.
Although d depends on π and thus �, we leave this implicit.

There are many papers that employ the generalized cofactor
operation, but we could not find an explicit statement of the
following lemma (that we use):

Lemma 3. SZ(GCF(f, h,�),�) ≤ SZ(f,�)SZ(h,�)

Proof. By inspection of the pseudo-code for gcf (f, h) of
Franco and Weaver [12], we see that a new node is generated
at most once per recursive call to gcf (f ′, h′). A recursive call
is done at most once on each pair of nodes (f ′, h′) where f ′

is a node of f and h′ is a node of h; the result follows.

As noted by Jones [18], the Param operation [3] can be
synthesized using GCF. We will be effectively using Param
on several occasions, but will express it using GCF and hence
not mention Param explicitly.

IV. PARTITIONED BDD AND UBFV SIZE COMPLEXITY

A partitioned BDD for a function f is a set of functions
that each characterize f in a subspace of assignments, and
each subspace can use a different variable order. This free-
dom can result in smaller BDDs than a “monolithic” BDD
representation. In this section we show that if f has a compact
representation as a partitioned BDD, then there exists a UBFV
ψ for f such that ψ(v) has a compact BDD for each v, and so
too does f ◦ψ∗. Hence, we needn’t exploit disparate variable
orderings as afforded by partitioned BDDs; UBFVs allow for
compact representations using a single order. Consequently,
whereas techniques for using partitioned BDDs in proofs
effectively involve doing the proof once for each partition, we
need only run the proof once using an UBFV representation.

As just stated, our result is almost obvious: one could create
a per-partition copy of each primary variable, and construct
the UBFV representation using an order that preserves each
partition’s ordering on its copy. This would totally elimi-
nate the possibility of inter-partition sharing of sub-BDDs,
and provide no interesting advantage over doing per-partition
proofs. On the contrary, we use the same set of variables
for each partition in the UBFV representation, which allows
us to prove our result while only introducing a logarithmic
increase in the number of secondary variables. Though this
enables our per-partition sub-BDDs to share BDD nodes, our
upper-bound result assumes no sharing. However, we show in
Sect. V empirically and by example that sharing can have a
profound effect; this is also evident in our experimental results
of Sect. VII.

A. Partitioned BDDs

We now formalize partitioned BDDs, more or less fol-
lowing Narayan et al. [22], with one material difference.2

2The difference being that [22] requires fj = wjf while we use the
weaker condition wjfj = wjf . We effectively give fi the freedom to behave
arbitrarily in the “don’t care” space wi. This allows Theorem 2 to potentially
yield tighter bounds than if we used the definitions from [22] verbatim.
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A partitioned BDD for V -function f is a set of triples
{(wj , fj ,�j) : 1 ≤ j ≤ k} where

1) each wj and fj are boolean functions over V such that
wjfj = wjf and wj 6= 0

2) each �j is a V -order
3) w1 ∨ · · · ∨ wk = 1

Typically, partitioned BDDs are of interest when f does not
have a sufficiently small BDD representation, but each wj and
fj do have compact �j-BDDs.

B. UBFV Construction

Suppose we have a partitioned BDD for f as in Sect. IV-A,
over the variables V = {v1, . . . , vn}. Our construction of a
corresponding UBFV representation involves secondary vari-
ables C = {clog(k), . . . , c0} that, when assigned to, uniquely
select a partition. Two key insights come into play:

1) We employ secondary variables Y = {y1, . . . , yn} such
that, once we have selected partition j, the variable yi
represents the ith element of the V -order �j . In other
words, the variable vq represented by yi differs according
to the selected partition. This trickery allows us to use
the same order on Y across all partitions and preserve
the BDD sizes in the partitioned BDD.

2) Our UBFV is constructed so that once we select partition
j, the V -assignment that is induced satisfies wj . To
achieve this we utilize the generalized co-factor operation,
explained in Sect. III-D.

Formalizing this, we define the repartitioned BFV γ. Let
c[j] denote the condition that clog(k) . . . c0, as a binary number,
is equal to j. Let πj be the permutation induced by �j , and
in a slight abuse, for any V -function h we let πj(h) be the
Y -function formed by substituting yπj(i) for vi, 1 ≤ i ≤ n, in
h. Letting � be the natural order over Y , γ is the BFV over
(V,C ∪ Y ) defined by

γ(vi) =
k∨
j=1

c[j]GCF(πj(vi), πj(wj),�) (2)

The above expression integrates both of our key insights. The
use of πj to turn V -functions vi and wj into Y -functions is
the manifestation of the first insight, while the use of GCF is
that of the second. Lemma 4 below, which is proven in the
appendix of the web version [1] asserts that the repartitioned
BFV γ is in fact universal, and also gives an expression for
f ◦ γ∗.

Lemma 4. γ is a universal BFV, and furthermore

f ◦ γ∗ =
k∨
j=1

c[j]GCF(πj(fj), πj(wj),�) (3)

Lemma 4 is instrumental in proving our upper bound result
Theorem 2 below. The BDD for f ◦ γ∗ described in the proof
is shown in Figure 1.

Theorem 2. Suppose f is a function over V with a partitioned
BDD {(w1, f1,�1), . . . , (wk, fk,�k)}. Then there exists a

0 1

𝑐log 𝑘

⋮
𝑐1
𝑐0

𝑦1
𝑦2
𝑦3
⋮
𝑦𝑛

𝑐[1] 𝑐[2] 𝑐[𝑘]

𝑓′1 𝑓′2 𝑓′𝑘
…

…

Fig. 1. The OBDD for f ◦ γ∗ described in the proof of Theorem 2. The
variable order is shown on the left; the triangular part at the top of the OBDD
is the incomplete OBDD that determines which c[j] holds. Each f ′j is the BDD
for GCF(πj(fj), πj(wj),�), which is the GCF of fj with respect to wj ,
but with variables renamed according to πj . Thus each f ′j has the exact same
structure as the �j -BDD of GCF(fj , wj ,�j). The overlap between f ′1 and
f ′2 emphasizes that sub-BDD sharing is possible between all the f ′j ’s.

UBFV ψ for f with secondary variables V ′ and total order
� on V ′ such that

(a) For all v ∈ V , SZ(ψ(v),�) = O
(∑k

j=1 SZ(wj ,�j)
)

(b) SZ(f ◦ ψ∗,�) = O
(∑k

j=1 SZ(wj ,�j)SZ(fj ,�j)
)

(c) |V ′| = dlog2 ke+ |V |

Proof. (Sketch) We choose the repartitioned BFV γ to serve as
the witness. Thanks to Lemma 4, we have that γ is universal;
Also condition (c) holds of γ by definition. To prove conditions
(a) and (b), let us employ the notion of an incomplete OBDD
as an OBDD wherein some sink nodes are not terminal nodes,
but rather unlabelled placeholders; by appropriately plugging
in other OBDDs at placeholders, an incomplete OBDD can be
turned into an OBDD.

For each vi, an �-OBDD for γ(vi) (2) can be constructed
as follows. Start with an incomplete OBDD over variables
C with k placeholder nodes, such that the path to the jth
placeholder is active when c[j] holds of an assignment.
Note that this incomplete OBDD has size O(k). For each
1 ≤ j ≤ k, at the jth placeholder we insert the �-BDD of
GCF(πj(vi), πj(wj),�). From Lemma 3 and the fact that the
size of a variable function is 1, the size of this BDD is bounded
by SZ(πj(wj),�) = SZ(wj ,�j); condition (a) follows.

We build an �-OBDD for f ◦ γ∗ by starting with the same
incomplete OBDD as above. At the jth placeholder, we insert
the �-BDD of GCF(πj(fj), πj(wj),�). Again appealing to
Lemma 3 we find that size of this OBDD to be bounded by

SZ(πj(fj),�)SZ(πj(wj),�) = SZ(fj ,�j)SZ(wj ,�j)
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Fig. 2. Computed BDD sizes for the hidden weighted bit function using
UBFVs (log-log scale). Data points are for k = 2e − 1 with 2 ≤ e ≤ 9.
“UBFV max” is the largest BDD in the UBFV ψ, while “HWBF” is the size
of HWBk◦ψ∗. The curves k3 and k2 are plotted for comparison, from which
it seems evident that the BDDs grow only quadratically, an improvement over
our proven cubic bounds.

C. Application to Hidden Weighted Bit Function

As a corollary to Theorem 2, we can prove the existence
of a good UBFV representation for the hidden weighted bit
function. For any k ≥ 1, HWBk is the function over the
k variables {x1, . . . , xk} defined by HWBk = xw, where
w = WEIGHT({x1, . . . , xk}) and WEIGHT counts the number
of variables assigned to 1 in its argument. For the case that
w = 0, we set HWBk = 0.

Corollary 1. For k ≥ 1 there exists a UBFV ψ for HWBk and
secondary variable ordering � such that for each 1 ≤ i ≤ k,
SZ(ψ(xi),�) = O(k3), and SZ(HWBk ◦ ψ∗,�) = O(k3).

Proof. Let {(w0, f0,�), . . . , (wk, fk,�)} be the partitioned
BDD for HWBk such that
• wj = 1 iff j = WEIGHT(xk, . . . , x1)
• f0 = 0 and fj = xj for 1 ≤ j ≤ k
• � is any ordering.

Since each wj is a totally symmetric function, SZ(wj ,�) =
O(k2) [7], and clearly SZ(fj ,�) = O(1). The result then
follows by Theorem 2.

V. DISCUSSION

In practice, due to the reduction and sharing inherent in
BDDs, the bounds afforded by Theorem 2 can be quite
loose. For example, empirically we observe quadratically sized
UBFV representations for HWBk, as plotted in Figure V. Here
we give a couple other arm-chair constructions that illustrate
the versatility afforded by UBFVs.

A. Inverting an Adder

In this section we give an example of a UBFV that does not
resemble the repartitioned UBFV of Sect. IV-B and demon-
strates how counter-intuitive some UBFV representations can
be. Consider an unsigned modulo-2n adder; in our formalism,
this is a list of n functions ADD = ADDn−1, . . . ,ADD0 over
X ∪Y , where X = {xn−1, . . . , x0} and Y = {yn−1, . . . , y0}.

An assignment α encodes a binary number on X and Y , when
we evaluate the functions of ADD at α we obtain a binary
encoding of (X+Y ) mod 2n. It is well-known that by using
a variable ordering that interleaves X and Y , the BDDs of
ADD are of linear size. However, one can formulate a UBFV
representation of ADD with constant size simply by exploiting
the fact that modulo addition is invertible.

Letting Z = {zn−1, . . . , z0} be fresh variables, we create
a BFV ψ over (X ∪ Y,Z ∪ Y ) such that ψ(yi) = yi for
each yi ∈ Y , and ψ(xi) is the function representing the ith
bit of the binary number Z − Y mod 2n. Universality of ψ
follows from the fact that given any naturals x, y < 2n, there
exists a natural z < 2n such that x = z − y mod 2n. More
interestingly, consider ADD◦ψ∗ (by which we mean ψ applied
to each element of ADD piecemeal). Now, slightly abusing
notation, ADD = X + Y mod 2n, hence

ADD ◦ ψ∗ = (X ◦ ψ∗) + (Y ◦ ψ∗) mod 2n

= (Z − Y + Y ) mod 2n

= Z

Hence the ith bit of ADD ◦ ψ∗ is simply the variable zi.
This is rather surprising; we claim that a non-trivial arith-

metic function is represented simply by a vector of unique
variables. But we must keep in mind that ADD ◦ ψ∗ only
represents ADD when we know what ψ is. And in a sense, we
have simply transposed complexity from the outputs of ADD
to (half of) its inputs.3

B. Disguising a Function as a Variable

Sect. V-A showed how in a particular case we can construct
a UBFV that reduces a list of functions to a list of unique
variables. In general this is not always possible, but when we
consider the output of a single function, we have the following
result.

Theorem 3. Let f be a function that is not identically 1 or
0. Then there exists a UBFV ψ for f such that f ◦ ψ∗ is a
variable.

Proof. (Sketch) Let V = {v1, . . . , vn} be the variables of f ,
let � be the natural V -order, and let y be a fresh variable. For
all 1 ≤ i ≤ n we define

ψ(vi) = (y ∧ GCF(vi, f,�)) ∨
(
y ∧ GCF(vi, f ,�)

)
It can be seen that ψ is a UBFV, and that f ◦ ψ∗ = y; the
condition that f is not 1 or 0 is necessary since the generalized
co-factor cannot be taken of 0.

Of course Theorem 3 does not directly save us any BDD
complexity since the largest BDD in ψ is the same size as
the BDD for f ; the UBFV ψ simply moves the complexity
of the “output” to the “inputs”. However, if f is actually an
intermediate function involved in symbolically simulating a

3The result is not quite so elegant if we use a non-modulo adder, i.e. one
with an (n+1)th bit of output. In this case we can construct a similar UBFV
such that the UBFV representation of bit i of the output will again be zi,
except when i = n, in which case it is a nontrivial function.
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specification and/or implementation, and having a nontrivial
BDD on f leads to downstream blow-up, it an UBFV along
the lines of Theorem 3 could be a remedy.

VI. CHECKING BFV UNIVERSALITY

So far we have ignored a crucial question: given a BFV
ψ, how does one verify that it is a universal BFV? This is
an important problem to solve; we propose to allow users to
concoct intricate, problem-specific UBFVs, and soundness of
any proof involving UBFVs hinges on them being universal,
hence we require a way to certify BFV universality. This
issue is not merely theoretical — when experimenting with
UBFVs for the case studies of this paper, on more than one
occasion the author ended up with a BFV that subtly failed to
be universal. In this section we give several solutions to this
problem, varying in automation.

A. Algorithmic Approach

Let us denote the elements of V and V ′ respectively by
{v1, . . . , vn} and {u1, . . . , um}, and for this section we will
consider V and V ′ to be disjoint. The V -function that is the
characteristic of ψ can be expressed as:

∃u1, . . . , um.
n∧
i=1

(vi ↔ ψ(vi)) (4)

This is simply a logical expression of the set represented
by a BFV from Goel and Bryant’s paper [13]. It follows
that ψ is a UBFV iff (4) is the function 1. This can be
checked using BDD techniques, although we have found that
often computing the BDD for the n-way conjunction or the
subsequent existential quantification caused BDD blow-up.

B. Semi-automatic Inverse Approach

A non-automatic, but computationally less demanding ap-
proach to checking universality can use BDDs or SAT-solving
as a propositional engine. The user provides a proof of univer-
sality; the engine then checks the proof via computations that
are much simpler than a direct computation of (4). The proof
takes the form of an inverse ψ−1 : V ′ → ((V → B) → B)
of ψ. We say “an inverse” since ψ−1 is usually not unique.
The idea is that for each v′ ∈ V ′ and V -assignment α, the
V ′-assignment α′ defined by α′(v′) = ψ−1(v′)(α) is such that
α = ψ∗(α′) . In this way, ψ−1 maps α to a “witness” α′ such
that α = ψ∗(α′), the existence of such a witness for each α
is tantamount to universality of ψ.

Expounding on this, we employ ψ−1 to simplify (4) by
using it to pick values for the existentially quantified variables
of V ′, which allows us to strip off the quantifier:

n∧
i=1

(
vi ↔ (ψ(vi) ◦ ψ−1

∗
)
)

(5)

Since we aspire to prove that (5) is tautological, which is the
case iff each conjunct is tautological, this reduces to checking
tautology of each vi ↔ ψ(vi) ◦ ψ−1

∗ individually.
Recollecting the example in the introduction of this paper,

suppose we have V = {v1, v2, v3}, V ′ = {a, b, c, d}, and

instruction case-splits runtime memory
classic UBFV classic UBFV classic UBFV

SP FADD 113 1 22.1 0.2 2.5 2.4
DP FADD 231 1 51.5 0.5 2.6 6.7
SP FMA 173 5 40.1 2.6 12.8 11.7
DP FMA 2374 28 497.6 47.4 10.3 37.5
PCMPISTRI 82 1 0.7 1.3 2.0 17.1
SP FDIV Pre 335 16 17.2 0.9 4.1 4.1

TABLE I
RESULTS COMPARING OUR UBFV APPROACH TO THE CLASSICAL

APPROACH. TIMES ARE IN HOURS AND MEMORY USAGE IS THE MAXIMUM
NUMBER OF GB USED BY ANY CASE-SPLIT.

ψ = {v1 7→ a ∨ b, v2 7→ d, v3 7→ bc}. Then a suitable inverse
is ψ−1 = {a 7→ v1, b 7→ 0, c 7→ v3, d 7→ v2}; the reader can
check that (5) holds.

VII. CASE STUDIES

In this section we report on application of the UBFV ap-
proach to the problem of verifying hardware implementations
of several instructions in recent CPU designs done at Intel.
All examples use symbolic simulation with BDDs, specifically
using the rSTE symbolic simulator [23] and the underlying
forte [25] tool. We contrast our results against the “classic”
proofs, which use the same tool suite and were done by Intel
FV experts other than the author.4 The results are summarized
in Table VII; note that all results involving a case-split include
the time taken to prove that the cases are exhaustive. Note that
the UBFVs for these case studies were developed manually
prior to the theory of Sect. IV, and thus do not explicitly use
the repartitioned BFV construction of that section.

A. Floating Point Addition

Floating Point Addition (FADD) is a family of instructions
that perform addition of FP numbers. BDDs for the outputs
of integer addition are linear in the bit-width of the operands,
using the variable order that simply interleaves the operand
variables. For FADD, however, the BDDs are exponential.
This is because the input mantissas must be aligned, according
to the exponent difference expdiff , prior to performing the
(integral) addition [10], [3], which means there is no good
ordering that covers all values of expdiff at once. The current
state of the art thus involves case-splitting based on expdiff .
For double precision (DP), there are roughly 212 possible
expdiff ’s, however it is common practice to reduce this signif-
icantly by bucketing near-by and extremal expdiff ’s into the
same case. For example, the classic DP proof ran 4 consecutive
expdiff ’s per case, yielding 231 cases total.

We constructed a UBFV for FADD where the mantissa of
the second operand m is effectively symbolically shifted by
the exponent difference, except in the opposite direction as
the FADD alignment. This UBFV pre-shifting has the result
(in both the hardware and the specification code) that after

4It should be noted that the classic proofs might not be as optimized with
regard to case-splitting as possible — as the work was done under project
schedule constraints, when the verification engineer achieves a reasonable
proof configuration, he or she moves on to other work. Nevertheless, they
provide a meaningful benchmark against which to compare our approach.
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alignment, the i bit of m collapses to a relatively simple BDD
involving just a variable mi and variables from the exponents.
We can think of mi as representing the bit of m that is
weighted the same as the ith bit of the first operand, after
alignment. Thus, when the symbolic addition is performed and
we use an interleaving variable order, the exponential blow-
up one faces in the classic proof (without case-splitting) is
avoided. Table VII shows the incredible impact this has; for
double precision, the 231-way case-split that takes 38 hours
is reduced to a single case that takes but half an hour.

B. Fused Multiply-Add

Fused Multiply-Add (FMA) is a three operand FP instruction
that computes x+yz in one fell-swoop, incurring only a single
rounding error. FVing an FMA design with symbolic simula-
tion requires both the decomposition involving in verifying a
multiplier [20], and the wide case-split for FADD discussed
above. Our FMA proofs generally follow the decomposition
described by Slobodová [27], the final stage of which uses a
cut-point at the product p of the mantissas of y and z, and
proves that p is added to x and rounded correctly, given the
exponents and signs of x, y, and z. This looks more or less like
an FADD, with the exception that p is roughly twice as wide
as the input mantissa width, which increases BDD complexity
and doubles the number of (non-extremal) expdiff ’s. Thus the
case-splitting is more extensive than for FADD.

An aspect of our FMA hardware that proved to be a
challenge is the support for denormal FP inputs. As a result,
the product p can too be denormal in the sense that its
leading one can be in any position. We have yet to pin down
why this constituted a challenge for our UBVF approach,
especially since our FADD examples also supported denormals
but they weren’t problematic. As a result we needed to employ
some case-splitting on top of the UBVF; 5-way for SP and
28-way for DP. This case-splitting involved the conditions
expdiff < −1, expdiff ∈ {−1, 0}, 0 < expdiff , as well
as additional splitting based on the position of the leading
one when p is denormal. Nevertheless, we find our results
extremely encouraging — even with dozens of machines on
which to concurrently run these cases, the classic DP FMA
proof still took several days to run, and would often fail due
to a machine going down or infrastructure issues. Reducing
to under 2 days of compute time is a huge win; the 28 cases
with 12 concurrent worker threads only took 6.5 hours of real
time. Also, further splitting could reduce the memory footprint
significantly; although the maximum memory was 37.5 GB,
the average across all 28 cases was only 17.3 GB5

Apart from the using the expdiff pre-shifting discussed in
Sect. VII-A, our FMA study employed a second trick afforded
by the UBFV framework. The mantissa product p, from the
specification’s point of view, is a (binary encoding of) a single
positive integer. However, this number is never calculated

5For the classic FMA approach, we were unable to compile definitive data
on maximum memory usage; the given numbers are the memory footprint of
the case-split that involved the most BDD nodes, which isn’t necessarily the
one that used the most memory. Hence they are lower bounds.

explicitly in most hardware designs; but rather appears as a
sum/carry pair of values. A verification engineer constructs a
mapping that appropriately sums these two vectors; the result
of which serves as the p input to the specification. Using a
trick very similar to that of Sect. V-A, our UBFV was set up so
after summing, p collapses to more or less a vector of unique
variables, hence simplifying the downstream computations in
the specification and the design as well.

C. SSE4 String Instruction

Our third case study is an example string processing instruc-
tion from Intel’s SSE4 instruction set [2] called PCMPISTRI.
Logically6, this instruction takes two arrays s1 and s2, each
having 8 entries, and each entry being a 16-bit word, and
returns ind ∈ {0, . . . , 8}. Let len1 (resp. len2 ) be the smallest
i < 8 such that the s1[i] = 0 (resp. s2[i] = 0), or 8 if no such
i exists. Then the returned value ind is the smallest such that
ind < len1 and s1[ind ] = s2[j] for some 0 ≤ j < len2 , or
ind = 8 if no such ind exists.

The classic proof we looked at involves a decomposition
point; there is an internal 8-bit vector IntRes1 that is cal-
culated such that IntRes1 [i] = 1 iff s1[i] = s2[j] for some
0 ≤ j < len2 and i ≤ len1 . Once IntRes1 is computed,
the return value ind is simply the index of the lowest set
bit of IntRes1 , or ind = 8 if it is all 0s. The first stage
of the decomposition uses an 81-way case-split, according to
the possible values of (len1 , len2 ). Referring to Table VII,
we note that although the classic proof was a bit faster and
used significantly less memory, we still see this result as a
“win” for the UBFV approach; we have eliminated the need
to decompose the proof, which introduces lots of human effort
into the proof (decomposing the specification, mapping to the
cut-point in the RTL, etc). Finally, to show that the UBFV win
was not simply an artifact of it using more memory, we ran
the class proof for the case (len1 , len2 ) = (8, 8) but without
decomposition – the memory footprint grew to 100 GB after
20 hours of runtime and we killed the process.

D. Floating Point Division

FP Division (FDIV) proofs are highly decomposed [19].
One part of this decomposition involves proving that a pre-
processing step (Pre), prior to the main iterative algorithm, is
correct. The Pre proof originally required holding 4 bits of
the mantissa to constants, yielding 16 cases. In a subsequent
chip, support for denormal inputs was added. To perform the
analogous case-split for denormals, a second level of case-
splitting based on the position of the leading one in the
denormal mantissa was needed, resulting in roughly 22×16 ad-
ditional cases. We employed a pre-shifted UBFV that allowed
us to handle both normal and denormal inputs using only the
original 16 cases. This pre-shifting was based on a vector of
secondary variables that point to the leading-one position.

We originally deemed UBFV to be overkill for this problem
since one can play pre-shifting trickery when crafting the

6Actually what we describe here is how the instruction behaves when the
immediate bits are set appropriately.
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case-split. However, doing this lead to non-trivial BDDs on
the non-constant mantissa bits, which incurred BDD blow up.
Using our UBFV, these BDDs involve only a single mantissa
variable, which makes the BDDs behave very similarly to the
purely normal cases. Finally we mention that the same UBFV
approach also had a dramatic impact on double precision FDIV
Pre, however we were not able to compile data for Table VII
in time for this submission.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed Universal Functional Boolean Vectors as
a means of alleviating BDD complexity and demonstrated a
profound impact of this approach on difficult hardware data-
path FV problems. Though concocting a good UBFV requires
human insight, like a BDD variable order, the recipe is often
specification specific (rather than implementation specific) —
thus the effort is amortized over many generations of hardware
designs. Here we now ponder directions for future work.

One of our case studies showed that it is possible to
use UBFVs to make it unnecessary to decompose a proof,
for a rather esoteric string processing instruction. But what
about classically complex arithmetic functions, for instance
multiplication? We conjecture that there does not exist a
polynomial-sized UBFV that would elicit a polynomial-sized
representation for the list of functions that define the output
of integer multiplication, but can this be proven?

The focus here has been on BDD-representations. The
other propositional reasoning workhorse is the SAT solver
– can UBFV representations be employed to alleviate time
complexity in this domain? Are there algorithms and heuristics
for generating good UBFVs? Finally, are their applications in
other domains, for instance fix-point BDD model checking?
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Abstract—We present an automated compositional program
verification technique for safety properties based on conditional
inductive invariants. For a given program part (e.g., a single
loop) and a postcondition ϕ, we show how to, using a Max-SMT
solver, an inductive invariant together with a precondition can be
synthesized so that the precondition ensures the validity of the
invariant and that the invariant implies ϕ. From this, we build
a bottom-up program verification framework that propagates
preconditions of small program parts as postconditions for
preceding program parts. The method recovers from failures
to prove the validity of a precondition, using the obtained
intermediate results to restrict the search space for further proof
attempts.

As only small program parts need to be handled at a time,
our method is scalable and distributable. The derived conditions
can be viewed as implicit contracts between different parts of
the program, and thus enable an incremental program analysis.

I. INTRODUCTION

To have impact on everyday software development, a verifi-
cation engine needs to be able to process the millions of lines of
code often encountered in mature software projects. At the same
time, the analysis should be repeated every time developers
commit a change, and should report feedback in the course of
minutes, so that fixes can be applied promptly. Consequently,
a central theme in recent research on automated program
verification has been scalability. As a natural solution to this
problem, compositional program analyses [1]–[3] have been
proposed. They analyze program parts (semi-)independently
and then combine the results to obtain a whole-program proof.

For this, a compositional analysis has to predict likely
intermediate assertions that allow us to break whole-program
reasoning into many instances of local reasoning. This strategy
simplifies the individual reasoning steps and allows distributing
the analysis [4]. The disadvantage of compositional analyses has
traditionally been their precision: local analyses must blindly
choose the intermediate assertions. While in some domains (e.g.
heap) some heuristics have been found [2], effective strategies
for guessing and/or refining useful intermediate assertions or
summaries in arithmetic domains remains an open problem.

In this paper we introduce a new method for predicting and
refining intermediate arithmetic assertions for compositional
reasoning about sequential programs. A key component in our
approach is Max-SMT solving. Max-SMT solvers can deal with
hard and soft constraints, where hard constraints are mandatory,

This work has been supported by Spanish MINECO under the grant TIN2013-
45732-C4-3-P (project DAMAS) and the FPI grant BES-2011-044621 (Larraz).

and soft constraints are those that we would like to hold, but
are not required to. Hard constraints express what is needed
for the soundness of our analysis, while soft ones favor the
solutions that are more useful for our technique. More precisely,
we use Max-SMT to iteratively infer conditional inductive
invariants1, which prove the validity of a property, given that
a precondition holds. Hence, if the precondition holds, the
program is proved safe. Otherwise, thanks to a novel program
transformation technique we call narrowing2, we exploit the
failing conditional invariants to focus on what is missing in the
safety proof of the program. Then new conditional invariants
are sought, and the process is repeated until the safety proof is
finally completed. Based on this, we introduce a new bottom-up
program analysis procedure that infers conditional invariants in
a goal-directed manner, starting from a property that we wish
to prove for the program. Our approach makes distributing
analysis tasks as simple as in other bottom-up analyses, but
also enjoys the precision of CEGAR-based provers.

II. ILLUSTRATION OF THE METHOD

In this section, we illustrate the core concepts of our approach
by using some small examples. We will give the formal
definition of the used methods in Sect. IV.

We handle programs by considering one strongly connected
component (SCC) C of the control-flow graph at a time, together
with the sequential parts of the program leading to C, either
from initial states or other SCCs.

Instead of program invariants, for each SCC we synthesize
conditional inductive invariants. These are inductive properties
such that they may not always hold whenever the SCC is
reached, but once they hold, then they are always satisfied.

while i > 0 do
x := x + 5;
i := i− 1;

done
assert(x ≥ 0);

Fig. 1.

a) Conditional Inductive Invariants:
As an example, consider the program
snippet in Fig. 1, where we do not as-
sume any knowledge about the rest of
the program. To prove the assertion, we
need an inductive property Q for the loop
such that Q together with the negation of
the loop condition i > 0 implies the assertion. Using our
constraint-solving based method CondSafe (cf. Sect. IV-A),
we find Q1 = x + 5 · i ≥ 0. The property Q1 can be seen as a
precondition at the loop entry for the validity of the assertion.

1This concept was previously introduced with the name “quasi-invariant”
in [5] in the different context of proving program non-termination.

2This narrowing is inspired by the narrowing in term rewrite systems, and
is unrelated to the notion with the same name used in abstract interpretation.
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b) Combining Conditional Inductive Invariants: Once
we have found a conditional inductive invariant for an SCC,
we use the generated preconditions as postconditions for its
preceding SCCs in the program.

while j > 0 do
j := j− 1;
i := i + 1;

done
Fig. 2.

As an example, assume that the loop
from Fig. 1 is directly preceded by the
loop in Fig. 2. We now use the precon-
dition Q1 we obtained earlier as input to
our conditional invariant synthesis method,
similarly to the assertion in Fig. 1. Thus,

we now look for an inductive property Q2 that, together with
¬(j > 0), implies Q1. In this case we obtain the conditional
invariant Q2 = j ≥ 0∧ x+ 5 · (i+ j) ≥ 0 for the loop. As with
Q1, now we can see Q2 as a precondition at the loop entry,
and propagate Q2 up to the preceding SCCs in the program.

c) Recovering from Failures: When we cannot prove
that a precondition always holds, we try to recover and find
an alternative precondition. In this process, we make use of
the results obtained so far, and narrow the program using our
intermediate results. As an example, consider the loop in Fig. 3.

while unknown() do
assert(x 6= y);
x := x + 1;
y := y + 1;

done
Fig. 3.

We again apply our method
CondSafe to find a conditional in-
variant for this loop which, together
with the loop condition, implies the
assertion in the loop body. As it
can only synthesize conjunctions of
linear inequalities, it produces the
conditional invariant Q3 = x > y for the loop. However,
assume that the precondition Q3 could not be proven to always
hold in the context of our example. In that case, we use
the obtained information to narrow the program and look for
another precondition. if ¬(x>y) then

while ¬(x>y) do
assert(x 6= y);
x := x + 1;
y := y + 1;

done
fi

Fig. 4.

Intuitively, our program narrowing
reflects that states represented by the
conditional invariant found earlier
are already proven to be safe. Hence,
we only need to consider states for
which the negation of the conditional
invariant holds, i.e., we can add its
negation as an assumption to the
program. In our example, this yields the modified version
of Fig. 3 displayed in Fig. 4. Another call to CondSafe then
yields the conditional invariant Q′3 = x < y for the loop. This
means that we can ensure the validity of the assertion if before
the conditional statement we satisfy that ¬(x > y)⇒ x < y,
or equivalently, x 6= y. In general, this narrowing allows us to
find (some) disjunctive invariants.

III. PRELIMINARIES

1) SAT, Max-SAT, and Max-SMT: Let P be a fixed set
of propositional variables. For p ∈ P , p and ¬p are literals.
A clause is a disjunction of literals l1 ∨ · · · ∨ ln. A (CNF)
propositional formula is a conjunction of clauses C1∧· · ·∧Cm.
The problem of propositional satisfiability (SAT) is to determine
whether a propositional formula is satisfiable. An extension
of SAT is satisfiability modulo theories (SMT) [6], where

satisfiability of a formula with literals from a given background
theory is checked. We will use the theory of quantifier-free
integer (non-)linear arithmetic, where literals are inequalities
of linear (resp. polynomial) arithmetic expressions.

Another extension of SAT is Max-SAT [6], which generalizes
SAT to finding an assignment such that the number of satisfied
clauses in a given formula F is maximized. Finally, Max-SMT
combines Max-SAT and SMT. A (weighted partial) Max-SMT
problem is a formula of the form H1∧. . .∧Hn∧[S1, ω1]∧. . .∧
[Sm, ωm], where the hard clauses Hi and the soft clauses Sj

(with weight ωj) are disjunctions of literals over a background
theory, and the aim is to find a model of the hard clauses that
maximizes the sum of the weights of the satisfied soft clauses.

2) Programs and States: We make heavy use of the program
structure and hence represent programs as graphs. For this,
we fix a set of (integer) program variables V = {v1, . . . , vn}
and denote by F(V) the formulas consisting of conjunctions
of linear inequalities over the variables V . Let L be the
set of program locations, which contains a canonical start
location `0. Program transitions T are tuples (`, τ, `′), where
` and `′ ∈ L represent the pre- and post-location respectively,
and τ ∈ F(V ∪V ′) describes its transition relation. Here
V ′ = {v′1, . . . , v′n} are the post-variables, i.e., the values of
the variables after the transition.3 A transition is initial if its
source location is `0. A program is a set of transitions. We view
a program P = (L, T ) as a directed graph (the control-flow
graph, CFG), in which edges are the transitions T and nodes
are the locations L.4

A state s = (`,v) consists of a location ` ∈ L and a
valuation v : V → Z. A state (`,v) is initial if ` = `0.
We denote an evaluation step with transition t = (`, τ, `′)
by (`,v) →t (`′,v′), where the valuations v, v′ satisfy the
formula τ of t. We use→P if we do not care about the executed
transition, and →∗P to denote the transitive-reflexive closure
of →P . We say that a state s is reachable if there exists an
initial state s0 such that s0 →∗P s.

3) Safety and Invariants: An assertion (t, ϕ) is a pair of a
transition t ∈ T and a formula ϕ ∈ F(V). A program P is
safe for the assertion (t, ϕ) if for every evaluation (`0,v0)→∗P
◦ →t (`,v), we have that v |= ϕ holds.5 Note that proving
that a formula ϕ always holds at a location ` can be handled
in this setting by adding an extra location `∗ and an extra
transition t∗ = (`, true, `∗) and checking safety for (t∗, ϕ).

We call a map I : L → F(V) a program invariant (or
often just invariant) if for all reachable states (`,v), we have
v |= I(`) holds. An important class of program invariants are
inductive invariants. An invariant I is inductive if the following
conditions hold:

Initiation: > |= I(`0)
Consecution: For (`, τ, `′) ∈ P: I(`) ∧ τ |= I(`′)′

3For ϕ ∈ F(V), ϕ′∈F(V ′) is the version of ϕ using primed variables.
4Since we label transitions only with conjunctions of linear inequalities,

disjunctive conditions are represented using several transitions with the same
pre- and post-location. Thus, P is actually a multigraph.

5Here, →∗P ◦ →t denotes arbitrary program evaluations that end with an
evaluation step using t.
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4) Constraint Solving for Verification: Inductive invariants
can be generated using a constraint-based approach [7], [8].
The idea is to consider templates for candidate invariant
properties, such as (conjunctions of) linear inequalities. These
templates contain both the program variables V as well as
template variables VT , whose values have to be determined to
ensure the required properties. To this end, the conditions on
inductive invariants are expressed by means of constraints of
the form ∃VT .∀V . . . .. Any solution to these constraints then
yields an invariant. In the case of linear arithmetic, Farkas’
Lemma [9] is often used to handle the quantifier alternation in
the generated constraints. Intuitively, it allows one to transform
∃∀ problems encountered in invariant synthesis into ∃ problems.
In the general case, an SMT problem over non-linear arithmetic
is obtained, for which effective SMT solvers exist [10], [11].
By assigning weights to the different conditions, invariant
generation can be cast as an optimization problem in the Max-
SMT framework [5], [12].

IV. PROVING SAFETY

Most automated techniques for proving program safety
iteratively construct inductive program invariants as over-
approximations of the reachable state space. Starting from the
known set of initial states, a process to discover more reachable
states and refine the approximation is iterated, until it finally
reaches a fixed point (i.e., the invariant is inductive) and is
strong enough to imply program safety. However, this requires
taking the whole program into account, which is sometimes
infeasible or undesirable in practice.

In contrast to this, our method starts with the known unsafe
states, and iteratively constructs an under-approximation of the
set of safe states, with the goal of showing that all initial states
are contained in that set. For this, we introduce the notion of
conditional safety. Intuitively, when proving that a program is
(t̃, ϕ̃)-conditionally safe for the assertion (t, ϕ) we consider
evaluations starting after a →t̃ (˜̀, ṽ) step, where ṽ satisfies ϕ̃,
instead of evaluations starting at an initial state. In particular,
a program that is (t0,>)-conditionally safe for (t, ϕ) for all
initial transitions t0 is (unconditionally) safe for (t, ϕ).

Definition 1 (Conditional safety). Let P be a program, t, t̃
transitions and ϕ, ϕ̃ ∈ F(V). The program P is (t̃, ϕ̃)-
conditionally safe for the assertion (t, ϕ) if for any evaluation
that contains →t̃ (˜̀, ṽ)→∗P (¯̀, v̄)→t (`,v), we have ṽ |= ϕ̃
implies that v |= ϕ. In that case we say that the assertion
(t̃, ϕ̃) is a precondition for the postcondition (t, ϕ).

Conditional safety is “transitive” in the sense that if a set
of transitions E = {t̃1, . . . , t̃m} dominates t,6 and for all i =
1, . . . ,m we have P is (t̃i, ϕ̃i)-conditionally safe for (t, ϕ) and
P is safe for (t̃i, ϕ̃i), then P is also safe for (t, ϕ). In what
follows we exploit this observation to prove program safety by
means of conditional safety.

A program component C of a program P is an SCC of
the control-flow graph, and its entry transitions (or entries)

6We say a set of transitions E dominates transition t if every path in the
CFG from `0 that contains t must also contain some t̃ ∈ E .

xxxxxx

. . .
while i > 0 do
x := x + 5;
i := i− 1;

done
assert(x ≥ 50)

xxxxxxxx

`1

`2

i ≤ 0
∧ x′ = x
∧ i′ = i

i > 0
∧ x′ = x+ 5
∧ i′ = i− 1

Fig. 5. Source code of program snippet and its CFG.

EC are those transitions t = (`, τ, `′) such that t 6∈ C but
`′ appears in C. By considering each component as a single
node, we can obtain from P a DAG of SCCs, whose edges
are the entry transitions. Our technique analyzes components
independently, and communicates the results of these analyses
to other components along entry transitions.

Given a component C and an assertion (t, ϕ) such that
t 6∈ C but the source node of t appears in C, we call t an
exit transition of C. For such exit transitions, we compute a
sufficient condition ψt̃ for each entry transition t̃ ∈ EC such
that C ∪ {t} is (t̃, ψt̃)-conditionally safe for (t, ϕ). Then we
continue reasoning backwards following the DAG and try to
prove that P is safe for each (t̃, ψt̃). If we succeed, following
the argument above we will have proved P safe for (t, ϕ).

In the following, we first discuss how to prove conditional
safety of single program components in Sect. IV-A, and then
present the algorithm that combines these local analyses to
construct a global safety proof in Sect. IV-B.

A. Synthesizing Local Conditions

Here we restrict ourselves to a program component C and
its entry transitions EC , and assume we are given an assertion
(texit, ϕ), where texit = (˜̀

exit, τexit, `exit) is an exit transition
of C (i.e., texit 6∈ C and ˜̀

exit appears in C). We show how
a precondition (t, ψ) for (texit, ϕ) can be obtained for each
t ∈ EC . Here we only consider the case of ϕ being a single
clause (i.e., a disjunction of literals); if ϕ is in CNF, each
conjunct is handled separately. The preconditions on the entry
transitions will be determined by a conditional inductive
invariant, which like a standard invariant is inductive, but not
necessarily initiated in all program runs. Indeed, this initiation
condition is what we will extract as precondition and propagate
backwards to preceding program components in the DAG.

Definition 2 (Conditional Inductive Invariant). We say a map
Q : L → F(V) is a conditional (inductive) invariant for a
program (component) P if for all (`,v)→P (`′,v′), we have
v |= Q(`) implies v′ |= Q(`′).

Conditional invariants are convenient tools to express condi-
tions for safety proving, allowing reasoning in the style of “if
the condition for Q holds, then the assertion (t, ϕ) holds”.

Example 1. Consider the program snippet in Fig. 5. A con-
ditional inductive invariant supporting safety of this program
part is Q5(`1) ≡ x+ 5 · i ≥ 50, Q5(`2) ≡ x ≥ 50. In fact, any
conditional invariant Qm(`1) ≡ x+m · i ≥ 50 with 0 ≤ m ≤ 5
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would be a conditional inductive invariant that, together with
the negation of the loop condition i ≤ 0, implies x ≥ 50.

We use a Max-SMT-based constraint-solving approach to
generate conditional inductive invariants. Unlike in [5], to
use information about the initialization of variables before a
program component, we take into account the entry transitions
EC . The precondition for each entry transition is the conditional
invariant that has been synthesized at its target location.

To find conditional invariants, we construct a constraint
system. For each location ` in C we create a template
I`,k(V) ≡ ∧1≤j≤k I`,j,k(V) which is a conjunction of k linear
inequations7 of the form I`,j,k(V) ≡ i`,j +

∑
v∈V i`,j,v · v ≤ 0,

where the i`,j , i`,j,v are fresh variables from the set of template
variables VT . We then transform the conditions for a conditional
invariant proving safety for the assertion (texit, ϕ) to the
constraints in Fig. 6. Here, e.g., I ′`′,k refers to the variant
of I`′,k using primed versions of the program variables V , but
unprimed template variables VT .

In the overall constraint system, we mark the Consecution
and Safety constraints as hard requirements. Thus, any solution
to these constraints is a conditional inductive invariant implying
our assertion. However, as we mark the Initiation constraints
as soft, the found conditional invariants may depend on
preconditions not implied by the direct context of the considered
component. On the other hand, the Max-SMT solver prefers
solutions that require fewer preconditions. Overall, we create
the following Max-SMT formula

Fk
def
=
∧
t∈C

Ct,k ∧
∧

t∈EC,1≤j≤k

(
It,j,k ∨¬ pIt,j,k

)
∧Sk ∧

∧
t∈EC,1≤j≤k

[pIt,j,k , ωI],

where the pIt,j,k are propositional variables which are true
if the Initiation condition It,j,k is satisfied, and ωI is the
corresponding weight. 8 We use Fk in our procedure CondSafe
in Algo. 1.

Algorithm 1 Proc. CondSafe computing conditional invariant
Input: component C, entry transitions EC , assertion (texit, ϕ)

s.t. texit is an exit transition of C and ϕ is a clause
Output: None | Q, where Q maps locations in C to conjunc-

tions of inequations
1: k ← 1
2: repeat
3: construct formula Fk from C, EC and (texit, ϕ)
4: σ ← Max-SMT-solver(Fk)
5: if σ is a model then
6: Q ← {` 7→ σ(I`,k) | ` in C} return Q
7: k ← k + 1
8: until k > MAX CONJUNCTS return None

In CondSafe, we iteratively try “larger” templates of more
conjuncts of linear inequations until we either give up (in our

7In our overall algorithm, k is initially 1 and increased in case of failures.
8Farkas’ Lemma is applied locally to the subformulas Ct,k , It,j,k and Sk ,

and weights are added on the resulting constraints over the template variables.

implementation, MAX CONJUNCTS is 3) or finally find a
conditional invariant. Note, however, that here we are only
trying to prove safety for one clause at a time, which reduces
the number of required conjuncts as compared to dealing with
a whole CNF in a single step. If the Max-SMT solver is
able to find a model for Fk, then we instantiate our invariant
templates I`,k with the values found for the template variables
in the model σ, obtaining a conditional invariant Q. When we
obtain a result, for every entry transition t = (`, τ, `′) ∈ EC
the conditional invariant Q(`′) is a precondition that implies
safety for the assertion (texit, ϕ). The following theorem states
the correctness of this procedure.

Theorem 1. Let C be a component, EC its entry transitions,
and (texit, ϕ) an assertion with texit an exit transition of C and
ϕ a clause. If the procedure call CondSafe(C, EC , (texit, ϕ))
returns Q 6= None, then Q is a conditional inductive invariant
for C and P is (t,Q(`′))-conditionally safe for (texit, ϕ) for
all t = (`, τ, `′) ∈ EC .

Proof. All proofs can be found in our technical report [13].

B. Propagating Local Conditions

In this section, we explain how to use the local procedure
CondSafe to prove safety of a full program. To this end we now
consider the full DAG of program components. As outlined
above, the idea is to start from the assertion provided by the
user, call the procedure CondSafe to obtain preconditions for
the entry transitions of the corresponding component, and then
use these preconditions as assertions for preceding components,
continuing recursively. If eventually for each initial transition
the transition relation implies the corresponding preconditions,
then safety has been proven. If we fail to prove safety for certain
assertions, we backtrack, trying further possible preconditions
and conditional invariants.

The key to the precision of our approach is our treatment
of failed proof attempts. When the procedure CondSafe finds
a conditional invariant Q for C, but proving (t,Q(`′)) as a
postcondition of the preceding component fails for some t =
(`, τ, `′) ∈ EC , we use Q to narrow our program representation
and filter out evaluations that are already known to be safe.

As outlined above, in our proof process we treat each clause
of the conjunction Q(`′) separately, and pass each one as its
own assertion to preceding program components, allowing for a
fine-grained program-narrowing technique. By construction of
Q, evaluations that satisfy all literals of Q(`′) after executing
t = (`, τ, `′) ∈ EC are safe. Thus, among the evaluations that
use t, we only need to consider those where at least one literal
in Q(`′) does not hold. Hence, we narrow each entry transition
by conjoining it with the negation of the conjunction of all
literals for which we could not prove safety (see line 13 in
Algo. 2). Note that if there is more than one literal in this
conjunction, then the negation is a disjunction, which in our
program model implies splitting transitions.

We can narrow program components similarly. For a tran-
sition t = (`, τ, `′) ∈ C, we know that if either Q(`) or
Q(`′)′ holds in an evaluation passing through t, the program

36

ISBN: 978-0-9835678-5-1. Copyright owned jointly by the authors and FMCAD, Inc.



Initiation: For t = (`, τ, `′) ∈ EC , 1 ≤ j ≤ k: It,j,k
def
= τ ⇒ I ′`′,j,k

Consecution: For t = (`, τ, `′) ∈ C: Ct,k
def
= I`,k ∧ τ ⇒ I ′`′,k

Safety: For texit = (˜̀
exit, τexit, `exit): Sk

def
= I˜̀

exit,k
∧ τexit ⇒ ϕ′

Fig. 6. Constraints used in CondSafe(C, EC , (texit, ϕ))

Algorithm 2 Procedure CheckSafe for proving a program safe
for an assertion
Input: Program P , a component C, entries EC , assertion

(texit, ϕ) s.t. texit is an exit transition of C and ϕ a clause
Output: Safe | Maybe

1: let (`exit, τexit, `
′
exit) = texit

2: if (τexit ⇒ ϕ′) then return Safe
3: else if `exit = `0 then return Maybe
4: Q ← CondSafe(C, EC , (texit, ϕ))
5: if Q = None then return Maybe
6: for all t = (`, τ, `′) ∈ EC , L ∈ Q(`′) do
7: C̃ ← component(`,P)
8: EC̃ ← entries(C̃,P)
9: res[t, L]← CheckSafe(P, C̃, EC̃ , (t, L))

10: if ∀t = (`, τ, `′) ∈ EC , L ∈ Q(`′) . res[t, L] = Safe then
11: return Safe
12: else
13: ÊC ← {(`, τ ∧ ¬(

∧
L∈Q(`′)

res[t,L]=Maybe

L′), `′) | t = (`, τ, `′) ∈ EC}

14: Ĉ ← {(`, τ ∧ ¬Q(`′)′ ∧ ¬Q(`), `′) | (`, τ, `′) ∈ C}
15: return CheckSafe(P, Ĉ, ÊC , (texit, ϕ))

is safe. Thus, we narrow the program by replacing τ by
τ ∧ ¬Q(`) ∧ ¬Q(`′)′ (see line 14 in Algo. 2).

This narrowing allows us to generate disjunctive conditional
invariants, where each result of CondSafe is one disjunct. Note
that not all disjunctive invariants can be discovered like this,
as each intermediate result needs to be inductive using the
disjuncts found so far. However, this is the pattern observed
in phase-change algorithms [14].

Our overall safety proving procedure CheckSafe is shown
in Algo. 2. The helper procedures component and entries are
used to find the program component for a given location and the
entry transitions for a component. The result of CheckSafe is
either Maybe when the proof failed, or Safe if it succeeded. In
the latter case, we have managed to create a chain of conditional
invariants that imply that (texit, ϕ) always holds.

Theorem 2. Let P be a program, C a component and
EC its entries. Given an assertion (texit, ϕ) such that
texit is an exit transition of C and ϕ is a clause, if
CheckSafe(P, C, EC , (texit, ϕ)) = Safe, then P is safe for
(texit, ϕ).

Example 2. We demonstrate CheckSafe on the program
displayed on Fig. 7, called P in the following, which is an
extended version of the example from Fig. 3.

We want to prove the assertion (t5, x 6= y). Hence we
make a first call CheckSafe(P, {t4}, {t3}, (t5, x 6=y)): the non-
trivial SCC containing `2 is {t4} and its entry transitions are
{t3}. Hence, we call CondSafe({t4}, {t3}, (t5, x 6= y)) and
the resulting conditional invariant for `2 is either x < y
or y < x. Let us assume it is y < x. In the next step,
we propagate this to the predecessor SCC {t2}, and call
CheckSafe(P, {t2}, {t1}, (t3, y < x)).

In turn, this leads to calling CondSafe({t2}, {t1}, (t3, y <
x)) to our synthesis subprocedure. No conditional invariant
supporting this assertion can be found, and hence None is
returned by CondSafe, and consequently Maybe is returned
by CheckSafe. Hence, we return to the original SCC {t4}
and its entry {t3}, and then by narrowing we obtain two new
transitions:

t′4 = (`2, x
′ = x + 1 ∧ y′ = y + 1 ∧ ¬(y < x), `2),

t′3 = (`1, x < 0 ∧ x′ = x ∧ y′ = y ∧ ¬(y < x), `2).

Using these, we call CheckSafe(P, {t′4}, {t′3}, (t5, x 6=y)). The
next call to CondSafe then yields the conditional invariant
x < y at `2, which is in turn propagated backwards with the
call CheckSafe(P, {t2}, {t1}, (t′3, x < y)). This then yields a
conditional invariant x < y at `1, which is finally propagated
back in the call CheckSafe(P, {}, {}, (t1, x < y)), which
directly returns Safe.

C. Improving Performance
`0

`1

`2

`3

t1 : x < y
∧ x′ = x
∧ y′ = y

t2 : x ≥ 0
∧ x′ = x− 1
∧ y′ = y

t3 : x < 0
∧ x′ = x
∧ y′ = y

t4 : x′ = x+ 1
∧ y′ = y + 1

t5 : >

Fig. 7.

The basic method CheckSafe
can be extended in several ways
to improve performance. We now
present a number of techniques that
are useful to reduce the runtime
of the algorithm and distribute the
required work. Note that none of
these techniques influences the pre-
cision of the overall framework.

a) Using conditional invari-
ants to disable transitions: When
proving an assertion, it is often nec-
essary to find invariants that show
the unfeasibility of some transition,
which allows disabling it. In our framework, the required in-
variants can be conditional as well. Therefore, CheckSafe must
be called recursively to prove that the conditional invariant is
indeed invariant. In our implementation, we generate constraints
such that every solution provides conditional invariants either
implying the postcondition or disabling some transition. By
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imposing different weights, we make the Max-SMT solver
prefer solutions that imply the postcondition.

b) Handling unsuccessful proof attempts: One important
aspect is that the presented algorithm does not learn facts
about the reachable state space, and so duplicates work when
assertions appear several times. To alleviate this for unsuccess-
ful recursive invocations of CheckSafe, we introduce a simple
memoization technique to avoid repeating such calls. So when
CheckSafe(P, C, EC , (t, ϕ)) = Maybe, we store this result, and
use it for all later calls of CheckSafe(P, C, EC , (t, ϕ)). This
strategy is valid as the return value Maybe indicates that our
method cannot prove the assertion (t, ϕ) at all, meaning that
later proof attempts will fail as well. In our implementation,
this memoization of unsuccessful attempts is local to the initial
call to CheckSafe. The rationale is that, when proving unrelated
properties, it is likely that few calls are shared and that the
book-keeping does not pay off.

c) Handling successful proof attempts: When a re-
cursive call yields a successful result, we can strengthen
the program with the proven invariant. Remember that
CheckSafe(P, C, EC , (t, ϕ)) = Safe means that whenever
the transition t is used in any evaluation, ϕ holds in the
succeeding state. Thus, we can add this knowledge explicitly
and change the transition in the original program. In practice,
this strengthening is applied only if the first call to CheckSafe
was successful, i.e, no narrowing was applied. The reason
is that, if the transition relation of t was obtained through
repeated narrowing, in general one needs to split transitions,
and it is not correct to just add ϕ′ to t. Namely, assume
that to = (`, τo, `

′) is the original (unnarrowed) version of
a transition t = (`, τ, `′) ∈ EC . As t is an entry transition
of C, we have τ = τo ∧ ¬ψ′1 ∧ . . . ∧ ¬ψ′m by construction,
where ψi is the additional constraint we added in the i-th
narrowing of component entries. Thus what we proved is that
ψ′1∨ . . .∨ψ′m∨ϕ′ always holds after using transition to. So we
should replace to in the program with a transition labeled with
τo ∧ (ψ′1 ∨ . . . ∨ ψ′m ∨ ϕ′). As we cannot handle disjunctions
natively, this implies replacing to by m+ 1 new transitions.

Note that this program modification approach, unlike mem-
oization, makes the gained information available to the Max-
SMT solver when searching for a conditional invariant. A
similar strategy can be used to strengthen the transitions in the
considered component C.

d) Parallelizing & distributing the analysis: Our analysis
can easily be parallelized. We have implemented this at two
stages. First, at the level of the procedure CondSafe, we try at
the same time different numbers of template conjuncts (lines
3-6 in Algo. 1), which requires calling several instances of the
solver simultaneously. Secondly, at a higher level, the recursive
calls of CheckSafe (line 9 in Algo. 2) are parallelized. Note that,
since narrowing and the “learning” optimizations described
above are considered only locally, they can be handled as
asynchronous updates to the program kept in each worker, and
do not require synchronization operations. Hence, distributing
the analysis onto several worker processes, in the style of
Bolt [4], would be possible as well.

Other directions for parallelization, which have not been
implemented yet, are to return different conditional invariants
in parallel when the Max-SMT problem in procedure CondSafe
has several solutions. Moreover, based on experimental observa-
tions that successful safety proofs have a short successful path
in the tree of proof attempts, we are also interested in exploring
a look-ahead strategy: after calling CondSafe in CheckSafe,
we could make recursive calls of CheckSafe on some processes
while others are already applying narrowing.

e) Iterative proving: Finally, one could store the condi-
tional invariants generated during a successful proof, which
are hence invariants, so that they can be re-used in later runs.
E.g., if a single component is modified, one can reprocess it
and compute a new precondition that ensures its postcondition.
If this precondition is implied by the previously computed
invariant, the program is safe and nothing else needs to be done.
Otherwise, one can proceed with the preceding components, and
produce respective new preconditions in a recursive way. Only
when proving safety with the previously computed invariants
in this way fails, the whole program needs to be reprocessed
again. This technique has not been implemented yet, as our
prototype is still in a preliminary state.

V. RELATED WORK

Safety proving is an active area of research. In the recent past,
techniques based on variations of counterexample guided ab-
straction refinement have dominated [15]–[24]. These methods
prove safety by repeatedly unfolding the program relation using
a symbolic representation of program states, starting in the
initial states. This process generates an over-approximation
of the set of reachable states, where the coarseness of
the approximation is a consequence of the used symbolic
representation. Whenever a state in the over-approximation
violates the safety condition, either a true counterexample
was found and is reported, or the approximation is refined
(using techniques such as predicate abstraction [25] or Craig
interpolation [26]). When further unwinding does not change
the symbolic representation, all reachable states have been
found and the procedure terminates. This can be understood as
a “top-down” (“forward”) approach (starting from the initial
states), whereas our method is “bottom-up” (“backwards”), i.e.
starting from the assertions.

Techniques based on Abstract Interpretation [27] have had
substantial success in the industrial setting. There, an abstract
interpreter is instantiated by an abstract domain whose elements
are used to over-approximate sets of program states. The
interpreter then evaluates the program on the chosen abstract
domain, discovering reachable states. A widening operator,
combining two given over-approximations to a more general
one representing both, is employed to guarantee termination
of the analysis when handling loops.

“Bottom-up” safety proving with preconditions found by
abduction has been investigated in [28]. This work is closest to
ours in its overall approach, but uses fundamentally different
techniques to find preconditions. Instead of applying Max-SMT,
the approach uses an abduction engine based on maximal
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universal subsets and quantifier elimination in Presburger
arithmetic. Moreover, it does not have an equivalent to our
narrowing to exploit failed proof attempts. In a similar vein,
[29] uses straight-line weakest precondition computation and
backwards-reasoning to infer loop invariants supporting validity
of an assertion. To enforce a generalization towards inductive
invariants, a heuristic syntax-based method is used.

Automatically constructing program proofs from indepen-
dently obtained subproofs has been an active area of research
in the recent past. Splitting proofs along syntactic boundaries
(e.g., handling procedures separately) has been explored in [1],
[2], [4], [30]. For each such unit, a summary of its behavior
is computed, i.e., an expression that connects certain (classes
of) inputs to outputs. Depending on the employed analyzers,
these summaries encode under- and over-approximations of
reachable states [1] or changes to the heap using separation
logic’s frame rule [2]. Finally, [4] discusses how such compo-
sitional analyses can leverage cloud computing environments
to parallelize and scale up program proofs.

VI. IMPLEMENTATION AND EVALUATION

We have implemented the algorithms from Sect. IV-A and
Sect. IV-B in our early prototype VeryMax, using the Max-
SMT solver for non-linear arithmetic [31] in the Barcel-
ogic [32] system. We evaluated a sequential (VeryMax-Seq)
and a parallel (VeryMax-Par) variant on two benchmark sets.

The first set (which we will call HOLA-BENCHS) are the
46 programs from the evaluation of safety provers in [28]
(which were collected from a variety of sources, among others,
[14], [33]–[43], the NECLA Static Analysis Benchmarks, etc.).
The programs are relatively small (they have between 17 and
71 lines of code, and between 1 and 4 nested or consecutive
loops), but expose a number of “hard” problems for analyzers.
All of them are safe.

On this first benchmark set we compare with three systems.
The first two were leading tools in the Software Verification
Competition 2015 [44]: CPAchecker9 [45], which was the
overall winner and in particular won the gold medal in
the “Control Flow and Integer Variables” category, and
SeaHorn [46], which got the silver medal, and also won
the “Simple” category. We also compare with HOLA [28],
an abduction-based backwards reasoning tool. Unfortunately,
we were not able to obtain an executable for HOLA. For
this reason we have taken the experimental data for this tool
directly from [28], where it is reported that the experiments
were performed on an Intel i5 2.6 GHz CPU with 8 Gb of
memory. For the sake of a fair comparison, we have run the
other tools on a 4-core machine with the same specification,
using the same timeout of 200 seconds. Tab. I summarizes
the results, reporting the number of successful proofs, failed
proofs, and timeouts (TO), together with the respective total
runtimes. Both versions of VeryMax are competitive, and our
parallel version was two times faster than our sequential one

9We ran CPAchecker with two different configurations, predicateAnalysis
and sv-comp15.

on four cores. As a reference, on these examples VeryMax-
Seq needed 2.8 overall calls (recursive or after narrowings) on
average, with a maximum of 16. The number of narrowings was
approximately 1, with a maximum of 13. Our memoization
technique making use of already failed proof attempts was
employed in about one third of the cases.

In our second benchmark set (which we will refer to as
NR-BENCHS) we have used integer abstractions of 217
numerical algorithms from [47]. For each procedure and for
each array access in it, we have created two safety problems
with one assertion each, expressing that the index is within
bounds. In some few cases the soundness of array accesses in
the original program depends on properties of floating-point
variables, which are abstracted away. So in the corresponding
abstraction some assertions may not hold. Altogether, the
resulting benchmark suite consists of 6452 problems, of up to
284 lines of C code. Due to the size of this set, and to give
more room to exploit parallelism (both tools with which we
compare on these benchmarks, CPAchecker and SeaHorn,
make use of several cores), we performed the experiments with
a more powerful machine, namely, an 8-core Intel i7 3.4 GHz
CPU with 16 GB of memory. The time limit is 300 seconds.

The results can be seen in Tab. II. On these instances,
VeryMax is able to prove more assertions than any of the
other tools, while being about as fast as SeaHorn, and
significantly faster than CPAchecker. Note that many examples
are solved very quickly in the sequential solver already,
and thus do not profit from our parallelization. VeryMax
is at an early stage of development, and is hence not yet
fully tuned. For example, a number of program slicing
techniques have not been implemented yet, which would be
very useful for handling larger programs. Thus, we expect
that further development will improve the tool performance
significantly. The benchmarks and our tool can be found at
http://www.cs.upc.edu/∼albert/VeryMax.html.

VII. CONCLUSION

We have presented a novel approach to compositional safety
verification. Our main contribution is a proof framework that
refines intermediate results produced by a Max-SMT-based
precondition synthesis procedure. In contrast to most earlier
work, we proceed bottom-up to compute summaries of code
that are guaranteed to be relevant for the proof.

We plan to further extend VeryMax to cover more program
features and include standard optimizations (e.g., slicing
and constraint propagation with simple abstract domains). It
currently handles procedure calls by inlining, and does not
support recursive functions yet. However, they can be handled
by introducing templates for function pre/postconditions.

In the future, we are interested in experimenting with
alternative precondition synthesis methods (e.g., abduction-
based ones). We also want to combine our method with a
Max-SMT-based termination proving method [12] and extend
it to existential properties such as reachability and non-
termination [5]. We expect to combine all of these techniques
in an alternating procedure [1] that tries to prove properties at
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Tool Safe Σ s Fail Σ s TO Total s
CPAchecker sv-comp15 33 2424.41 3 61.28 10 4489.73
CPAchecker predicateAnalysis 25 503.05 11 19.72 10 2271.12
SeaHorn 32 7.95 13 3.477 1 211.56
HOLA 43 23.53 0 0 3 623.53
VeryMax-Seq 44 293.14 2 50.69 0 343.83
VeryMax-Par 45 138.40 1 12.81 0 151.21

TABLE I
EXPERIMENTAL RESULTS ON HOLA-BENCHS BENCHMARK SET.

Tool Safe Σ s Unsafe Σ s Fail Σ s TO Total s
CPAchecker sv-comp15 5570 614803.98 251 6188.30 326 28749.78 305 735336.82
CPAchecker predicateAnalysis 5928 23417.15 170 495.13 234 9105.69 120 64652.29
SeaHorn 6077 4276.21 233 135.25 80 529.09 62 24167.11
VeryMax-Seq 6105 5940.88 0 0 326 26739.30 21 38980.80
VeryMax-Par 6106 4789.73 0 0 346 18878.42 0 23668.15

TABLE II
EXPERIMENTAL RESULTS ON NR-BENCHS BENCHMARK SET.

the same time as their duals, and which uses partial proofs to
narrow the state space that remains to be considered. Eventually,
these methods could be combined to verify arbitrary temporal
properties. In another direction, we want to consider more
expressive theories to model program features such as arrays
or the heap.

REFERENCES

[1] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali, “Compositional
may-must program analysis: unleashing the power of alternation,” in
POPL, 2009.

[2] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang, “Compositional
shape analysis by means of bi-abduction,” JACM, vol. 58, no. 6, 2011.

[3] B. Li, I. Dillig, T. Dillig, K. L. McMillan, and M. Sagiv, “Synthesis of
circular compositional program proofs via abduction,” in TACAS, 2013.

[4] A. Albarghouthi, R. Kumar, A. V. Nori, and S. K. Rajamani, “Parallelizing
top-down interprocedural analyses,” in PLDI, 2012.

[5] D. Larraz, K. Nimkar, A. Oliveras, E. Rodrı́guez-Carbonell, and A. Rubio,
“Proving non-termination using Max-SMT,” in CAV, 2014.

[6] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds., Handbook
of Satisfiability. IOS Press, 2009.

[7] M. Colón, S. Sankaranarayanan, and H. Sipma, “Linear Invariant
Generation Using Non-linear Constraint Solving,” in CAV, 2003.

[8] A. R. Bradley, Z. Manna, and H. B. Sipma, “Linear ranking with
reachability,” in CAV, 2005.

[9] A. Schrijver, Theory of Linear and Integer Programming. Wiley, 1998.
[10] C. Borralleras, S. Lucas, A. Oliveras, E. Rodrı́guez-Carbonell, and

A. Rubio, “SAT Modulo Linear Arithmetic for Solving Polynomial
Constraints,” JAR, vol. 48, no. 1, 2012.

[11] D. Jovanovic and L. M. de Moura, “Solving non-linear arithmetic,” in
IJCAR, 2012.

[12] D. Larraz, A. Oliveras, E. Rodrı́guez-Carbonell, and A. Rubio, “Proving
termination of imperative programs using Max-SMT,” in FMCAD, 2013.

[13] M. Brockschmidt, D. Larraz, A. Oliveras, E. Rodrı́guez-Carbonell, and
A. Rubio, “Compositional Safety Verification with Max-SMT,” 2015,
http://arxiv.org/abs/1507.03851.

[14] R. Sharma, I. Dillig, T. Dillig, and A. Aiken, “Simplifying loop invariant
generation using splitter predicates,” in CAV, 2011.

[15] T. Ball and S. K. Rajamani, “The SLAM toolkit,” in CAV, 2001.
[16] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software

verification with BLAST,” in SPIN, 2003.
[17] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “SATABS:

SAT-based predicate abstraction for ANSI-C,” in TACAS, 2005.
[18] K. L. McMillan, “Lazy abstraction with interpolants,” in CAV, 2006.
[19] A. Podelski and A. Rybalchenko, “ARMC: The logical choice for

software model checking with abstraction refinement,” in PADL, 2007.
[20] A. R. Bradley, “SAT-based model checking without unrolling,” in VMCAI,

2011.
[21] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko,

“Synthesizing software verifiers from proof rules,” in PLDI, 2012.
[22] A. Albarghouthi, A. Gurfinkel, and M. Chechik, “Whale: an interpolation-

based algorithm for inter-procedural verification,” in VMCAI, 2012.

[23] A. Cimatti and A. Griggio, “Software model checking via IC3,” in CAV,
2012.

[24] K. Hoder and N. Bjørner, “Generalized property directed reachability,”
in SAT, 2014.

[25] C. Flanagan and S. Qadeer, “Predicate abstraction for software verifica-
tion,” in POPL, 2002.

[26] K. L. McMillan, “Craig interpolation and reachability analysis,” in SAS,
2003.

[27] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL, 1977.

[28] I. Dillig, T. Dillig, B. Li, and K. L. McMillan, “Inductive invariant
generation via abductive inference,” in OOPSLA, 2013.

[29] C. S. Pasareanu and W. Visser, “Verification of Java programs using
symbolic execution and invariant generation,” in SPIN, 2004.

[30] G. Yorsh, E. Yahav, and S. Chandra, “Generating precise and concise
procedure summaries,” in POPL, 2008.

[31] D. Larraz, A. Oliveras, E. Rodrı́guez-Carbonell, and A. Rubio, “Minimal-
model-guided approaches to solving polynomial constraints and exten-
sions,” in SAT, 2014.

[32] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodrı́guez-Carbonell, and
A. Rubio, “The barcelogic SMT solver,” in CAV, 2008.

[33] A. Gupta and A. Rybalchenko, “InvGen: An efficient invariant generator,”
in CAV, 2009.

[34] S. Gulwani, S. Srivastava, and R. Venkatesan, “Program analysis as
constraint solving,” in PLDI, 2008.

[35] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko, “Path
invariants,” in PLDI, 2007.

[36] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani,
“Automatically refining abstract interpretations,” in TACAS, 2008.

[37] A. R. Bradley and Z. Manna, “Property-directed incremental invariant
generation,” Formal Asp. Comput., vol. 20, no. 4-5, 2008.
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Abstract—We present a language-based approach to certify
fault-tolerance techniques for digital circuits. Circuits are ex-
pressed in a gate-level Hardware Description Language (HDL),
fault-tolerance techniques are described as automatic circuit
transformations in that language, and fault-models are specified
as particular semantics of the HDL. These elements are formal-
ized in the Coq proof assistant and the properties, ensuring that
for all circuits their transformed version masks all faults of the
considered fault-model, can be expressed and proved. In this
article, we consider Single-Event Transients (SETs) and fault-
models of the form “at most 1 SET within k clock cycles”. The
primary motivation of this work was to certify the Double-Time
Redundant Transformation (DTR), a new technique proposed
recently [1]. The DTR transformation combines double-time
redundancy, micro-checkpointing, rollback, several execution
modes and input/output buffers. That intricacy requested a
formal proof to make sure that no single-point of failure existed.
The correctness of DTR as well as two other transformations for
fault-tolerance (TMR & TTR) have been proved in Coq.

I. INTRODUCTION

Circuit tolerance towards soft (non-destructive, non-perma-
nent) errors has become a design characteristic as important as
performance and power consumption [2]. The increased risk of
soft errors results from the continuous shrinking of transistor
size that makes components more sensitive to radiation [3].

The most widely-used methods to make circuits fault-
tolerant rely on hardware redundancy. Triple-Modular Re-
dundancy (TMR) [4] remains the most popular technique
along with Finite State Machine (FSM) encoding (one hot,
hamming, etc.). Some more complex ones are based on time-
redundancy (re-execution) [1], [5], [6]. All these techniques
can be realized through automatic circuit transformations and
some of them are already supported by CAD tools. Since
fault-tolerance is typically used in critical domains (aerospace,
nuclear power, etc.), the correctness of such transformations
is essential. If there is little doubt about the correctness of
simple transformations such as TMR, this is not the case for
more intricate ones.

The overall correctness of an automatic circuit transfor-
mation for fault tolerance consists not only in its functional
correctness when no soft errors occur but also in its proper
behavior under error occurrences. Widely-used post-synthesis
verification tools (e.g., model checking) are simply inappro-
priate to prove that a transformation ensures some property for
all possible circuits; only proof-based approaches are suitable.

We propose an approach using the Coq proof assistant [7]
to formally verify the functional and fault-tolerance properties
of circuit transformations. We define the syntax and semantics
of a simple gate-level functional HDL to describe circuits.
Fault models, that specify the kind and occurrences of faults
to be masked, are formalized in the language semantics. In this
paper, we focus on SETs and fault-models of the form “at most
1 SET every k cycles”. Fault-tolerance transformations are
defined as recursive functions on the syntax of the language.
Proofs rely mainly on relating the execution of the source
circuit without faults to the execution of the transformed circuit
w.r.t. the considered fault-model. They make use of several
techniques (case analysis, induction on the type or the structure
of circuits, co-induction on input streams).

While our approach is general, it has been originally de-
veloped to prove DTR, an involved transformation combining
double-time redundancy, micro-checkpointing, rollback, sev-
eral execution modes and input/output buffers [1]. If manual
checks were quite useful to develop that transformation, they
were error-prone and not convincing enough. This transforma-
tion served as an advanced case study. The correctness of DTR
as well as two other transformations (among which TMR) have
all been proved in Coq.

Section II introduces the syntax and semantics of our gate-
level HDL. In section III, we present the specification of fault-
models in the language formal semantics. Section IV explains
the proof methodology adopted to show the correctness of
circuit transformations. It is illustrated by examples taken from
the simplest transformation: TMR. Section V introduces the
DTR circuit transformation [1] and sketches the associated
proofs. Section VI presents related work, summarizes our
contributions and suggests a few extensions.

Throughout this article, we use standard mathematical and
semantic notations. The corresponding Coq specifications and
proofs are available online [8].

II. CIRCUIT DESCRIPTION LANGUAGE

We describe circuits at the gate level using a purely
functional language inspired from Sheeran’s combinator-based
languages such as µFP [9] or Ruby [10]. We equip our
language with dependent types which, along with the language
syntax, ensure that circuits are well-formed by construction
(gates correctly plugged, no dangling wires, no combinational
loops, . . . ).
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Contrary to µFP or Ruby, our primary goal is not to make
the description of circuits easy but to keep the language as
simple and minimal as possible to facilitate formal proofs.
Our language contains only 3 logical gates, 5 plugs and 3
combining forms. It is best seen as a low-level core language
used as the object code of a synthesis tool. We denote it as
LDDL (Low-level Dependent Description Language).

A. Syntax of LDDL

A bus of signals is described by the following type

B := ω | (B1 ∗B2)

A bus is either a single wire (ω) or a pair of buses. In other
terms, buses are defined as nested pairs. The constructors of
LDDL annotated with their types are gathered in Fig. 1. A
circuit takes as parameters its input and output types and is
either a logic gate, a plug, or composition of circuits.

Gates

NOT : Gate ω ω AND, OR : Gate (ω ∗ ω) ω

Plugs

ID : ∀α,Plug α α
FORK : ∀α,Plug α (α ∗ α)
SWAP : ∀α β,Plug (α ∗ β) (β ∗ α)
LSH : ∀α β γ,Plug ((α ∗ β) ∗ γ) (α ∗ (β ∗ γ))
RSH : ∀α β γ,Plug (α ∗ (β ∗ γ)) ((α ∗ β) ∗ γ)

Circuits
C ::= Gates

| Plugs
| C1 -◦-C2 : ∀α β γ,Circ α β → Circ β γ

→ Circ α γ
| []C1, C2[] : ∀α β γ δ,Circ α γ → Circ β δ

→ Circ (α ∗ β) (γ ∗ δ)
| x−C : ∀α β, bool→ Circ (α ∗ ω) (β ∗ ω)

→ Circ α β

Fig. 1: LDDL Syntax

The sets of logical gates and plugs are minimal but expres-
sive enough to specify any combinational circuit. The type of
AND and OR, Gate (ω∗ω) ω, indicates that they are gates taking
a bus made of two wires and returning one wire. Likewise,
NOT has type Gate ω ω. Plugs, used to express (re)wiring,
are polymorphic functions that duplicate or reorder buses: ID

leaves its input bus unchanged, FORK duplicates its input bus,
SWAP inverts the order of its two input buses, LSH and RSH

reorder their three input buses.
Circuits are either a gate, a plug, a sequential composition

(. -◦- .), a parallel composition ([]., .[]), or a composition with a
cell (flip-flop) within a feedback loop ( . −.). The typing of
the sequential operator ensures that the output bus of the first
circuit has the same type as the input bus of the second one.
The typing of the parallel operator expresses the fact that the
inputs (resp. outputs) of the resulting circuit is made of the

inputs (res. outputs) of the two sub-circuits. The last operator
(related to the µ operator of µFP) is the only way to introduce
feedback loops in the circuit. x−C is better seen graphically
as the circuit

C

x

The circuit C can have any input/output bus but it also
takes and returns a wire connected to a memory cell set to
the Boolean value x (tt or ff). The main advantage of that
operator is to ensure that any loop contains a cell. It prevents
combinational loops by construction. Of course, it does not
force all cells to be within loops. A simple cell without
feedback is expressed as x−SWAP:

SWAP

=x

x

To illustrate the language, a multiplexer

0

1
c

can be expressed in LDDL as the expression

[]FORK, ID[] -◦- LSH -◦- []NOT, RSH -◦- SWAP[] -◦- RSH

-◦- []AND, AND[] -◦- OR

As common with low-level or assembly-like languages, LDDL
is quite verbose. Recall that it is not meant to be used directly.
It is best seen as a back-end language produced by synthesis
tools. On the other hand, it is simple and expressive; its
dependent types make inputs and outputs of each sub-circuit
explicit and ensure that all circuits are well-formed.

B. Semantics of LDDL

From now on, to alleviate notations, we leave typing con-
straints implicit. All input and output types of circuits and
corresponding buses always match.

The semantics of gates and plugs are given by functions
denoted by J.K. For instance, the semantics of ID, is the identity
function (JIDKx = x) or the semantics of FORK is the function
duplicating its bus argument (JFORKKx = (x, x)).

Taking into account errors (in particular, SETs) makes the
semantics non deterministic. When a glitch produced by an
SET reaches a flip-flop, it may be latched non-deterministically
as tt or ff. Therefore, the standard semantics of circuits is not
described as functions but as predicates. The second issue is
the representation of a circuit state (i.e., the current values of
its cells). A solution could be to equip the semantics with an
environment (cell → bool). We choose here to use the circuit
itself to represent its state which is made explicit by the x−C
constructs.

The semantics of circuits is described by the inductive
predicate step : Circ α β → α → β → Circ α β. The
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expression step C a b C ′ can be read as “after one clock cycle,
the circuit C applied to the inputs a may produce the outputs
b and the new circuit (state) C ′ ”. The rules are gathered in
Fig. 2.

Gates & Plugs
JGKa = b

step G a b G

Seq
step C1 a b C

′
1 step C2 b c C

′
2

step (C1 -◦-C2) a c (C
′
1 -◦-C ′2)

Par
step C1 a c C

′
1 step C2 b d C

′
2

step []C1, C2[] (a, b) (c, d) []C
′
1, C

′
2[]

Loop
step C (a, b2s x) (b, s) C ′ s2b s y

step x−C a b y −C ′

Fig. 2: LDDL semantics for a clock cycle

Gates (or plugs) are stateless: they are always returned
unchanged by step. The rules for sequential and parallel
compositions are standard. The rule for x −C makes use
of the b2s function which converts the Boolean value of a
cell into a signal and of the s2b predicate which relates a
signal to a Boolean. The outputs and the new state (circuit)
depend on the reduction of C applied to the inputs a and the
signal corresponding to x. Non-determinism may come from
the predicate s2b which relates a glitch to both tt and ff.

The complete semantics is given by a co-inductive predicate
eval : Circ α β → Stream α→ Stream β which describes the
circuit behavior for any infinite stream of inputs.

Eval
step C i o C ′ eval C ′ is os

eval C (i : is) (o : os)

If C applied to the inputs i returns after a clock cycle the
outputs o and the circuit C ′ and if C ′ applied to the infinite
stream of inputs is returns the output stream os then the
evaluation of C with the input stream (i : is) returns the
stream (o : os).

The variable-less nature of LDDL spares the semantics
to deal with bindings and environments. It avoids many
administrative matters (reads, updates, well-formedness of
environments) and facilitates formalization and proofs.

III. SPECIFICATION OF FAULT MODELS

There are two main types of soft errors caused by particle
strikes: Single-Event Upsets (SEUs) (i.e., bit-flips in flip-
flops) and SETs (i.e., glitches propagating in the combinational
circuit). An SEU can be modeled by changing the value of
an arbitrary memory cell between two clock cycles. In this
article, we focus on SETs and fault-models allowing at most
1 SET within k clock cycles, written SET (1 , k). An SET
in a combinational circuit can lead to the non-deterministic
corruption of any memory cell connected (by a purely combi-
national path) to the place where the SET occurred. Since an
SET may potentially lead to several bit-flips, the SET (1 , k)

model subsumes SEU (1 , k). In order to model SETs, glitches
and their propagation must be represented in the semantics. We
use signals that can take 3 values: 0, 1, or a glitch written �.
We often abuse the notation and denote a wire by its signal
value.

Glitches propagate through plugs and gates
(e.g., AND(1, �) = �) but can be also logically masked
(e.g., OR(1, �) = 1 or AND(0, �) = 0). If a corrupted signal
is not masked, it is latched as tt or ff (both (s2b � tt) and
(s2b � ff) hold).

The semantics of circuits for a cycle with an SET is
represented as the inductive predicate stepg C a b C ′ that
can be read as “after one cycle with an SET occurrence, the
circuit C applied to the inputs a may produce the outputs b
and the new circuit/state C ′”. The main rules for stepg are
gathered in Fig. 3.

Gates
stepg G a � G

SeqL
stepg C1 a b C

′
1 step C2 b c C

′
2

stepg (C1 -◦-C2) a c (C
′
1 -◦-C ′2)

SeqR
step C1 a b C

′
1 stepg C2 b c C

′
2

stepg (C1 -◦-C2) a c (C
′
1 -◦-C ′2)

. . .

LoopC
stepg C (a, b2s x) (b, s) C ′ s2b s y

stepg x−C a b y −C ′

LoopM
step C (a, �) (b, s) C ′ s2b s y

stepg x−C a b y −C ′

Fig. 3: LDDL semantics with SET (main rules)

The rule (Gates) asserts that stepg introduces a glitch
after a logical gate. The two rules for sequential composition
represents two mutually exclusive cases where the SET occurs
in left sub-circuit (SegL) or in the right one (SegR). The rule
for the parallel operator is similar. The rule (LoopC) represents
the case where an SET occurs inside C. The rule (LoopM)
represents the case where an SET occurs at the output of the
memory cell x which is taken as an input by C. To summarize,
stepg introduces non-deterministically a single glitch after a
cell or a logical gate. Hence, if a circuit has n gates and m
cells, it specifies n+m possible executions.

The fault-model SET (1 , k) is expressed by the predicate
setk eval : Nat→ Circ α β → Stream α→ Stream β:

SetN
step C i o C ′ setk eval (n− 1) C ′ is os

setk eval n C (i : is) (o : os)

SetG
stepg C i o C ′ setk eval (k − 1) C ′ is os

setk eval 0 C (i : is) (o : os)

The first argument of setk eval plays the role of a clock
counter. A glitch can be introduced (by stepg) only if the
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counter is 0 (SetG). When a glitch is introduced, the counter
is reset to enforce at least k−1 normal execution steps (SetN).

IV. OVERVIEW OF CORRECTNESS PROOFS

Describing the proofs in details is out of scope of this paper
(and would be tiresome). Instead, we outline the common
proof structure of the transformations we have studied. We
illustrate the main steps using examples taken from the cor-
rectness proof of the simplest one: TMR.

Transformation

Each fault-tolerance technique is specified by a program
transformation on the syntax of LDDL. They are all defined by
induction of the syntax and replacement of each memory cell
by a memory block (a small circuit). The TMR transformation
takes a circuit of type Circ α β and returns a circuit of type
Circ ((α ∗ α) ∗ α) ((β ∗ β) ∗ β). Inputs/outputs are triplicated
to play the role of the inputs/outputs of each copy.

TMR(X) = [][]X,X[], X[] with X a gate/plug
TMR(C1 -◦-C2) = TMR(C1) -◦- TMR(C2)
TMR([]C1, C2[]) = S1 -◦- []TMR(C1), TMR(C2)[] -◦- S2
TMR( x−C) = x− x− x−(vot -◦- TMR(C) -◦- S3)

where S1, S2, S3 are reshuffling plugs (e.g., S1 has type
Plug (((α∗β)∗ (α∗β))∗ (α∗β)) (((α∗α)∗α)∗ ((β ∗β)∗β))
and reshuffles the input bus accordingly). Each cell is replaced
by three cells followed by a triplicated voter (vot) made of a
majority voter for each copy.

Relations between source and transformed circuits

The correctness property relates the execution of the source
circuit without fault to the execution of the transformed circuit
under a fault-model. Most of the lemmas also relate the states
and executions of the source and transformed circuits. These
relations are expressed as inductive predicates.

For TMR, a key property is that an SET can corrupt only a
single redundant copy and that such corruption stays confined
in that copy. To express corruption, we use a predicate relating
source and transformed programs expressed on the syntax of
LDDL. The corruption of the first copy of a transformed circuit
CT w.r.t. to its source circuit C is expressed by the predicate
c∼1. The main rule is

CLoop
C

c∼1 CT

( x−C) c∼1 ( z − x− x−(vot -◦-CT -◦- S3))

which states that if C is in relation with CT and the second
and third memory cells of the transformed circuit are the same
as the cell of the source circuit, then x−C and its transformed
version are in relation. The other rules just check recursively
this source/transformed circuit relationship. For instance, the
rule for the parallel construct is

CPar
C1

c∼1 CT
1 C2

c∼1 CT
2

([]C1, C2[])
c∼1 (S1 -◦- []CT

1 , C
T
2 [] -◦- S2)

The same relations exist for other options of redundant copy
corruption ( c∼2 and c∼3) and for each possible corruption of the

triplicated bus ( b∼1, b∼2, b∼3). In the following, we write c∼ for
the relation c∼1 ∨

c∼2 ∨
c∼3.

Key properties and proofs

Properties and their associated proofs can be classified as:
• properties “for all circuits” relating their source and

transformed versions for a one cycle reduction. They are
usually proved by a simple structural induction on the
structure of LDDL expressions;

• similar properties but for known sub-circuits introduced
by the transformations (e.g., voters). They are proved
by examining all possible cases of corruption or SET
occurrences.

• properties about the complete (infinite) execution of
source and transformed circuits. They are proved by co-
induction on the stream of inputs.

The main lemmas state how the transformed circuit evolves
when it is in a correct state and one SET occurs (stepg), or
when it is in a corrupted state and it executes normally (by
step). For TMR we have for instance:

step C1 a b C2 ∧ stepg TMR(C1) (a, a, a) b3 C
T
2

⇒ C2
c∼ CT

2

It can be read as: if C1 reduces by step in C2, and its
transformed version TMR(C1) reduces by stepg in a circuit
CT

2 , then CT
2 is the transformed version of C2 with at most

one corrupted redundant copy (C2
c∼ CT

2 ). In other terms, a
glitch can corrupt only one of copies of the TMR circuit.

The following lemma

C1
c∼ CT

1 ∧ step C1 a b C2

⇒ step CT
1 (a, a, a) (b, b, b) TMR(C2)

ensures that a corrupted transformed circuit comes back to a
valid state after one normal reduction step.

The main correctness theorems state that for related inputs
the normal execution of the source circuit and the execution
(under the considered fault-model) of the transformed circuit
give related outputs. A complete execution is modeled using
infinite streams of inputs/outputs and the proof should proceed
by co-induction.

The correctness of the TMR transformation is expressed as

eval C i o ∧ setk eval 2 TMR(C) n (tripl i) o3

⇒ o
s∼ o3

TMR masks all faults of the fault-model SET (1, 2), so it tol-
erates an SET every other cycle. The stream of primary inputs
for the transformed circuit is the input stream i where each
element (bus) is triplicated (tripl i). The stream of primary
outputs of the transformed circuit (o3 : Stream ((β∗β)∗β)) is
a triplicated version of the output stream (o : Stream β) with
at most one corrupted element in each triplet ( s∼ relation).
Indeed, the fault-model allows an SET to occur after the final
voters. These SETs cannot be corrected internally but, since
the outputs are triplicated, masking is still possible by voting
in the surrounding circuit.
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Practical issues

Taylor-made tactics had to be written for LDDL syntax and
semantics. They helped to shorten and to automatize parts of
the proofs.

All the transformations use known sub-circuits (e.g., voters)
and many basic properties must be shown on them. Such
properties are often of the form

Pstepg
P a stepg C a b C ′

Q(a, b, C ′)

with P and Q representing pre- and post-conditions, respec-
tively. These properties on stepg entail to consider all possible
SET occurrences. For TMR, which introduces triplicated vot-
ers, this can be done using standard proofs. The transformation
DTR introduces much bigger sub-circuits, which would lead
to very large proofs since dozens of different cases of SET
need to be considered. Fortunately, Coq permits proofs by
reflection which, in some cases, permits to replace manual
proofs by automatic computations. We use largely this feature
for known circuits. It amounts to
• define fstepg a functional version of stepg, which, for a

given circuit and particular input, computes the set of the
possible outputs and circuits in relation by stepg;

• prove that if (b, C ′) ∈ (fstepg C a) then stepg C a b C ′;
• define (or generate) equivalent functional (Boolean) ver-

sions Pb and Qb of the predicates P and Q.
Then, a proof by reflection of the property (Pstepg) proceeds

by generating all possible inputs, then it filters them by Pb,
executes fstepg on all elements of that set and, finally, checks
that Qb returns true on all results. In this way, reflection
automatizes the exploration of all fault occurrences and most
of the proof boils down to computations.

V. CORRECTNESS OF DOUBLE-TIME REDUNDANCY

The initial motivation of this work was to certify DTR, an
involved circuit transformation that we recently proposed [1].
Hereafter, we outline DTR and the main parts of its proof.

A. DTR Transformation Overview

The main assets of DTR are its much lower hardware
overhead than TMR and its ability to mask SETs using double-
time redundancy instead of a triple overhead (in time or in
space). DTR uses double-time redundancy to detect errors
and a micro-checkpointing and a rollback mechanisms to re-
execute the faulty cycle for recovery. Since, according to the
fault-model, no error can occur immediately after the last
error, time-redundancy can be switched-off during the recovery
phase to “accelerate” the circuit twice. Along with input and
output buffers to record inputs and to produce delayed outputs,
it makes errors and recovery absolutely transparent to the
surrounding circuit. Error detection followed by the recovery
to a correct state may take up to 9 clock cycles; therefore DTR
masks errors from the SET (1, 10) fault-model.

The DTR transformation consists of four parts (see Fig. 4):
1) substitution of each original memory cell with a memory

block and threading of control wires within the circuit;

ini:C2

MemoryRBlock
si so

failsave
rollBack

In
pu

tR
B

uf
fe

rs

rB

O
ut

pu
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B
uf

fe
rs

save
rollBack
subst

CombinationalRPartR

SequentialRPart

ini:C2

ControlRBlocksave
rollBack
rB
subst

failf1

f2

f3

f1

TMR f2

f3

Fig. 4: Transformed circuit for DTR.

2) addition of a control block;
3) addition of input buffers to all circuit primary inputs;
4) addition of output buffers to all circuit primary outputs.
Further, the input stream should be upsampled twice in order

to introduce enough redundancy in the transformed circuit to
detect errors caused by SETs.

1) Memory blocks: Each original memory cell is substituted
with a memory block (see Fig. 5) that stores the results of
signal propagation through the combinatorial circuit along
with recovery bits (or checkpoint bits). It consists of:
• two cells d and d′ (the data bits) to save redundant

information for comparison (with EQ) to detect errors;
since the input stream is upsampled twice, d and d′

normally contain the same value each every other cycle;
• two cells r and r′ (the recovery bits) with enable-input

to keep the value of the input during four clock cycles. If
an error is detected in any memory block, a synchronous
rollback occurs in all blocks. It retrieves correct values
from r′ cells and the circuit recovers from the erroneous
state using a third recomputation.

Q
r

D
E

Q Q
r'

D
E

Q

Q
d

D Q Q
d'

D Q

save 0

1

c

0

1c

si

so

rollBack

≠ fail

muxA

muxB

EQ

Fig. 5: DTR memory block.

2) Control block: When a memory block detects an error,
the fail signal, going to the control block, is raised and latched
in three error signaling cells (fi in Fig. 4). Then, the control
block emits a series of control signals to memory blocks
(e.g., save and rollBack ) to schedule rollback and recovery. Its
functionality can be described as the FSM of Fig. 6. The states
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0 and 1 compose the normal mode which raises alternatively
the save signal used as an enable signal to organize a 4-cycle
delay in the r-r′ memory block cells. When an error is detected
(i.e., fi = 1), the FSM enters the recovery mode for 4 cycles
(states 2, 3, 4, 5) and raises appropriate signals.

0 1

2

34

5

Fig. 6: FSM of the DTR control block: “ ?
=” denotes a guard,

“=” an assignment and, by default, signals are set to 0.

During the recovery process, the control block switches-
off double time redundancy speeding-up the circuit which, in
a few cycles, catches up the state it should have had if no
error had occurred. According to the fault-model, no error
may occur immediately after the last error which allows us
to perform such “acceleration”. The control block itself is a
small circuit protected against SETs using TMR.

3) Input/Output Buffers: To prevent disrupted input/output
behavior during recovery and to guarantee transparency for
the surrounding circuit, additional input and output buffers
are necessary. They are inserted at each primary input and
output of the original circuit. Input buffers keep the two
last inputs which are only used for re-computation during
recovery. Output buffers delay outputs (and introduce a two-
cycles latency) in order to emit the previously recorded correct
outputs during the recovery process. They are designed to
be also fault-tolerant to any SET occurring inside or even at
their outputs. To achieve this property, the primary outputs
are triplicated in space. Buffers are controlled by the rB ,
rollBack , subst , save signals. We refer the reader to [1] for a
detailed presentation of their internal structure and behavior.

We illustrate the basic functionalities of DTR using a simple
scenario where the upsampled stream a a b b c c d d e e f f . . .
is sent to the circuit but a SET in the combinational part cor-
rupts the first occurrence of b (written b̃). We use quadruplets
like (c, s, [d, d′, r, r′], s) to denote the cycle number (c), the
state of the control block (s) at the beginning of the cycle
(see Fig. 6) and the state of the memory blocks (the values
to be used as output are in bold). We start when the error is
about to be detected: the four first values a, a, b̃, b have been
stored in memory blocks. The execution proceeds as follows:

(1, 0, [b, b̃, b, a]); (2, 1, [c̃, b, b,a]); (3, 2, [b, c̃, b, b]);
(4, 3, [c, b, b, b]); (5, 4, [d, c, b, b]); (6, 5, [e,d, b, b]);
(7, 0, [e, e, e, b]); (8, 1, [f, e, e, b]); (9, 0, [f, f , f, e])

In cycle 1, the error is detected and the fi cells (see Fig. 4)
are set to 1. The value c̃ is read; it is potentially corrupted
since it may be the result of the propagation of b̃ (which is
corrupted) through the combinational circuit. In cycle 2, the
control block goes in the recovery mode and performs the
rollback (transition 1 7→ 2, Fig. 6). It emits control signals
that ensure that the values stored in the recovery bits r′ (as
well as those stored the input buffers) are used instead of the
usual inputs for the third recomputation. The circuit is now
in a speedup mode and double time redundancy is suspended.
The cycles 2 to 4 are computed using the values a, b, c. The
control signals entail that the read value, which is stored in d,
is used as output in the next cycle. Then, double redundancy
resumes and the recovery line r-r′ retakes correct values in
the next cycles. At the 9th cycle, the state is exactly the
state that would have been reached at the same 9th cycle
without error. During the recovery, input buffers also re-inject
previous values synchronously with the memory blocks, and
output buffers produce delayed correct outputs (see [1] for the
complete description).

B. Formal Specification and Proofs

While TMR is a well-established transformation and its
properties are doubtless, DTR is a novel and much more
complex technique. Our goal was to ensure that no single point
of failure existed: in particular, any SET in memory blocks,
combinational logic, input or output buffers, control block,
and control wires should be masked. The number of possible
error scenarios is very large (about 10 cases each for memory
block and output buffers). Moreover, the normal execution
mode has a two-cycle period which doubles the number of
corruption cases. Full confidence in DTR correctness for all
possible circuits and errors can only be achieved with a formal
proof-based approach.

Transformation

The core DTR transformation is defined very much like
TMR as presented in Section IV. It takes an original circuit
of type Circ α β and substitutes each memory cell with a
memory block returning a circuit of type Circ (α ∗ ((ω ∗ ω) ∗
ω)) (β∗((ω∗ω)∗ω)). The three wires ((ω ∗ ω) ∗ ω) correspond
to the control signals ((save ∗ rollBack) ∗ fail) that propagate
through all memory blocks. Input (resp. output) buffers are
plugged to each primary input (resp. output) by recursion on
the input type α (resp. output type β). Plugging input/output
buffers and the control block to the transformed circuit returns
a circuit of type Circ α ((β ∗ β) ∗ β). The triplicated output
interface of type ((β∗β)∗β) represents the triplicated original
output bus.

In the following, we write MB(d, d′, r, r′, C) to denote a
memory block with values d, d′, r, r′ (see Fig. 5) plugged to
a circuit C.

Relations between source and transformed circuits

Most of the inductive predicates relating states and exe-
cutions of the source and transformed circuits have several
versions depending on the state of the control block (0, 1, . . .).
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For instance, the predicate dtr0 expresses the relation be-
tween a transformed circuit and its source version(s) when the
control block is in state 0. The state of a memory block is of
the form [y, y, y, x] where the values x and y are the two values
taken successively by the corresponding cells of the source
version. Therefore, the state of the transformed circuit is in
relation with two successive source circuits. dtr0 is defined
inductively in a similar way as c∼ predicates in Sec. IV. The
main rule relates the memory block to the states of the two
source circuits:

dtr0 C0 C1 C
T

dtr0 ( x−C0) ( y −C1) MB(y, y, y, x, CT )

The memory block should be of the form (d = d′ = r = y;
r′ = x) where x and y are values of the corresponding cells
of the circuits x −C0 and y −C1, respectively. Those two
circuits represent two successive states of the source circuit.

The corresponding predicate when the control block is in
state 1 relates a transformed circuit to three successive source
circuits. Indeed, in that state, the memory block is of the form
[z, y, y, x] where x, y and z are three successive values taken
by the source circuit.

Several versions of these predicates are needed to repre-
sent the corruption cases. For instance, the predicate dtr1d
expresses the relation between a transformed circuit whose d
cells are potentially corrupted and its source version when the
control block is in state 1. The main rule is:

dtr1d C0 C1 C2 C
T

dtr1d ( x−C0) ( y −C1) ( z −C2) MB(w, y, y, x, CT )

that is, r′, (resp. d′ and r) should hold the same values are the
first (resp. second) source circuit; d has no constraint (i.e., can
be corrupted). Other predicates are also needed to relate the
source and transformed versions when the control block is in
the recovery mode.

Key lemmas

Using the aforementioned predicates, we can define lemmas
that show how the transformed circuit evolves with and with-
out SETs. First, it can be shown that, initially, the transformed
circuit is in relation with the source circuit i.e.,

dtr0 C C DTR(C)

Then, all cases of state evolution are covered. For instance,
the following property for a reduction with no SET

dtr0 C0 C1 C
T ⇒ step C1 a b C2

⇒ step CT {a, {0, 0, 0}} b′ C ′T
⇒ b′ = {b, {0, 0, 0}}
∧ dtr1 C0 C1 C2 C

′T

states that, if the original circuit evolves from C1 to C2 with
input a, then the corresponding transformed circuit CT with
input a and signals save = 0, rollBack = 0, and fail = 0
returns the same output b and the same global signals. Further,
if CT is related to (C0, C1) with dtr0, the returning state C ′T

is related to (C0, C1, C2) with dtr1.

Similarly, if the rollBack signal is corrupted (has a glitch),
then memory blocks may output an incorrect value (wrongly
selected by muxB, Fig.5). Since this value goes through the
combinational circuit and may be fetched by memory blocks,
their d values may be corrupted. This is formalized as

dtr0 C0 C1 C
T ⇒ step C1 a b C2

⇒ step CT {a, {0, �, 0}} b′ C ′T
⇒ ∃x, b′ = {x, {0, �, 0}}
∧ dtr1d C0 C1 C2 C

′T

These properties are shown by simple structural induction.
Similar properties on input and output buffers are proved using
reflection. The proofs for the collection of input and output
buffers plugged to the primary input and output buses are
proved by induction of the input and output types. Proofs for
the triplicated control block make a critical use of the main
properties proved for the TMR transformation.

The property corresponding to a reduction by stepg of
the whole transformed circuit proceeds by inspection of all
cases of fault occurrences and application of the properties
mentioned above. It can be shown that in all cases the
transformed circuit returns to a correct state after less than
10 reduction steps after an SET.

Main theorem

The main correctness theorem is expressed as

step C0 a b C1

∧ step DTR(C0) a b1 C
T ∧ step CT a b2 C

T
1

∧ eval C1 i o ∧ setk eval 10 CT
1 n (upsampl i) oo

⇒ outDTR (b, o) oo

It assumes that no error occurs during the first two cycles
(second line of the theorem). This is due to the arbitrary
initialization of memory cells (buffers, memory blocks) per-
formed by the transformation. Since the recovery bits are not
properly set, a rollback and the following recovery would be
incorrect. The stream of primary inputs of the transformed
circuit (upsampl i) is the input stream i where each bit is
repeated twice. The fault-model SET (1, 10) is expressed by
the predicate (setk eval 10) that may use stepg at most once
every 10 cycles (and uses step otherwise). The predicate
outDTR relates the output stream (of type Stream β) pro-
duced by the source circuit to the output stream (oo of type
Stream (β ∗ (β ∗ β))) of the transformed circuit. The two
first values of the transformed stream are not meaningful since
output buffers introduce a latency of two cycles. The predicate
outDTR states that if the first stream has value a at position
i, then the second stream will have a triplet with at least two
a’s at position 2 ∗ i+ 1. We can guarantee the correctness of
only two values because we allow an SET to occur even at
the primary outputs.

VI. CONCLUSIONS

Many efforts have been devoted to the formal functional
verification of circuits [11]. It is usually performed for specific
circuits using model-checking or SAT solving techniques.
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However, such an approach is inappropriate to prove the cor-
rectness of a synthesis or transformation tool for all possible
circuits; theorem proving must be used instead.

Still, proof-assistants have been mostly used for functional
circuit verification. Let us cite, among many others, the
application of ACL2 to prove the out-of-order microprocessor
architecture FM9801 [12], HOL for the Uinta pipelined mi-
croprocessor [13], and Coq for an ATM Switch Fabric [14].
The language proposed by Braibant [15] is close to our
LDDL language and has been used to prove the correctness
of parametric combinational circuits (e.g., n bits adders).

Proof-assistants have also been used to certify tools used
in circuit synthesis. An old survey of formal circuit synthesis
is given in [16]. More recently, S. Ray et al. proved circuit
transformations used in high-level synthesis with ACL2 [17].
Braibant and Chlipala certified in Coq a compiler from a
simplified version of BlueSpec to RTL [18].

To the best of our knowledge, our work is the first to certify
automatic circuit transformations for fault-tolerance. Contrary
to most of the works which specify circuits within the logic of
the prover, we use a gate-level HDL. This approach permits
to reason on circuits (gates and wires) and to model SETs as
glitches occurring at specific places. Automatic fault-tolerance
techniques are easily specified by program transformations
on the syntax of LDDL. Furthermore, its variable-less nature
allowed a simple semantics (without environments) that facil-
itated formalization and proofs.

Our approach is general and applicable to many fault-
tolerant transformations. We used it to prove the correct-
ness of TMR and DTR but also of Triple-Time Redundant
Transformation (TTR), a simpler and more straightforward
time redundancy technique where each computation cycle
is triplicated and followed by votings. However, our initial
motivation was the proof of DTR whose correctness was far
from obvious. While we relied on many manual checks to
design the transformation, only Coq allowed us to get complete
assurance. The formalization of DTR did not reveal real errors
but a few imprecisions. For instance, we stated in [1] that the
control block was protected using TMR without making it
clear how it was connected to the rest of the circuit. We had
to introduce three cells to record the value of the fail signal
and to slightly change the definition of its internal FSM.

The approach makes an essential use of two features of Coq:
dependent types and reflection. Dependent types provided an
elegant solution to ensure that all circuits were well-formed.
Such types are often presented as tricky to use but, in our case,
that complexity remained confined to the writing of libraries
for the equality and decomposition of buses and circuits.
Reflection was very useful to prove properties of known sub-
circuits; it would had been much harder without it.

The size of specifications and proofs for the common part
(LDDL syntax and semantics, libraries) is 5000 lines of Coq
(excluding comments and blank lines), 700 for TMR, 3500
for TTR and 7000 for DTR. Checking all the proofs takes
around 45 min on an average laptop. The overall effort for
the complete development is hard to estimate. Completing the

proof of DTR alone took roughly 5 man-months. The Coq
files for these proofs are available online [8].

We believe that additional user-defined tactics could make
the proofs of LDDL transformations much smaller and auto-
matic. Indeed, the key parts are to define the predicates relating
the source and transformed circuits and to state the lemmas.
The proofs themselves are, for the most part, straightforward
inductions. The proposed framework could also be used to
prove other fault-tolerance mechanisms (e.g., the transfor-
mations for adaptive fault-tolerance we present in [19]) or
well-known techniques used in circuit synthesis (e.g., FSM-
encoding). More generally, proof-assistants are now suffi-
ciently mature to consider the formal certification of the whole
circuit synthesis chain including optimizations.
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Abstract—Algorithms for the coverability problem have been
successfully applied to safety checking for concurrent programs.
In a former paper (An SMT-based Approach to Coverability
Analysis, CAV14) we have revisited a constraint approach to
coverability based on classical Petri net analysis techniques
and implemented it on top of state-of-the-art SMT solvers. In
this paper we extend the approach to fair termination; many
other liveness properties can be reduced to fair termination
using the automata-theoretic approach to verification. We use
T-invariants to identify potential infinite computations of the
system, and design a novel technique to discard false positives,
that is, potential computations that are not actually executable.
We validate our technique on a large number of case studies.

I. INTRODUCTION

In recent years, verification problems for concurrent shared-
memory or asynchronous message-passing software have been
attacked by means of Petri net techniques. In particular, it has
been shown that safety properties or fair termination can be
solved by constructing and analyzing the coverability graph
of a Petri net, or some related object [1]–[5]. This renewed
interest on the coverability problem has led to numerous al-
gorithmic advances for the construction of coverability graphs
[4], [6]–[9].

Despite this success, the coverability problem remains com-
putationally expensive [10], since it involves exhaustive state-
space exploration. This motivates the study of cheaper incom-
plete procedures: algorithms much faster than the construction
of the coverability graph, which may prove the property
true, but also answer “don’t know”. In a recent paper, the
authors, together with other colleagues, have revisited and
further developed tests based on the marking equation and
traps, two classical Petri net analysis techniques [11]. These
techniques allow one to efficiently compute program invariants
expressed as constraints of linear arithmetic [12]–[14]. If the
states violating the property also correspond to those satisfying
a linear constraint, unsatisfiability of the complete constraint
system proves the property true. In the test suite analyzed
in [11], 83% of the positive problem instances (that is, the
instances for which the property holds) could be proved in this
way. Moreover, due to advances in SMT-solving, the constraint
systems could be solved at a fraction of the cost of state-
exploration techniques. So the technique makes sense as a
preprocessing that allows to prove many easy cases at low cost;

if the technique fails, then we can always resort to complete
state-space exploration methods.

In this paper we extend the approach to liveness properties.
As in [11], which revisited and expanded previous work,
we revisit an idea initially presented in [15], based on the
use of transition invariants. Since liveness is typically harder
than safety, and the constraint technology of 1997 was very
primitive compared to state-of-the-art SMT-solvers, the work
of [15] only explored a rather straightforward test, and only
considered one case study. In this paper we improve the
test of [15], design different implementations, compare their
performance, and validate them on numerous case studies
coming from different areas: distributed algorithms, workflow
processes, Erlang programs, and asynchronous programs.

We conclude this introduction with a brief outline of our
technique. Given an infinite execution σ of a Petri net model,
let inf (σ) be the set of transitions that occur infinitely often in
σ. We consider liveness properties such that whether σ satisfies
the property or not depends only on inf (σ). (This is not an
important restriction because, by taking the product of the
Petri net model with a suitable Büchi automaton, every LTL
property can be reduced to a property of this kind.) We say
that a set T of transitions is feasible if T = inf (σ) for some σ.
We use T-invariants (more precisely, T-surinvariants) to extract
Boolean constraints that must be satisfied by every feasible set
of transitions. However, these constraints are typically quite
weak, and have spurious solutions, that is, they are satisfied by
unfeasible sets of transitions. So we design a refinement loop
that, given a solution, tries to construct an additional constraint
that excludes it. If the refinement procedure terminates, then
the model satisfies the property.

The paper is structured as follows. Section II contains
basic definitions. Section III introduces the main technique. In
Section IV and V, we describe two methods to refine the main
technique. Section VI contains the experimental evaluation.
Finally, Section VII presents conclusions.

II. PRELIMINARIES

A net is a triple (P, T, F ), where P is a set of places, T is a
(disjoint) set of transitions, and F : (P×T )∪(T×P )→ {0, 1}
is the flow function. For x ∈ P ∪ T , the pre-set is •x = {y ∈
P ∪ T | F (y, x) = 1} and the post-set is x• = {y ∈ P ∪ T |
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p1:
p2:
p3:

procedure PROCESS 1
begin
bit1 := false
while true do
bit1 := true
while bit2 do skip od
(∗ critical section ∗)
bit1 := false

od
end

q1:
q2:
q3:
q4:

q5:

procedure PROCESS 2
begin
bit2 := false
while true do
bit2 := true
if bit1 then
bit2 := false
while bit1 do skip od
goto q1

fi
(∗ critical section ∗)
bit2 := false

od
end

Fig. 1. Lamport’s 1-bit algorithm for mutual exclusion [16].

F (x, y) = 1}. We extend the pre- and post-set to a subset of
P ∪ T as the union of the pre- and post-sets of its elements.
A subnet of a Petri net (P, T, F ) is a triple (P ′, T ′, F ′) such
that P ′ ⊆ P , T ′ ⊆ T , and F ′ : (P ′×T ′)∪(T ′×P ′)→ {0, 1}
with F ′(x, y) = F (x, y). Since F ′ is completely determined
by F ,P ′, and T ′, we often speak of the subnet (P ′, T ′).

A marking of a net (P, T, F ) is a function m : P → N.
Assuming an enumeration p1, . . . , pn of P , we often identify
m and the vector (m(p1), . . . ,m(pn)). For a subset P ′ ⊆ P
of places, we write m(P ′) =

∑
p∈P ′ m(p). A Petri net is a

tuple N = (P, T, F,m0), where (P, T, F ) is a net and m0 is a
marking called the initial marking. Petri nets are represented
graphically as follows: places and transitions are represented
as circles and boxes, respectively. For x, y ∈ P ∪T , there is an
arc leading from x to y iff F (x, y) = 1. The initial marking
is represented by putting m0(p) black tokens in each place p.

A transition t ∈ T is enabled at m iff m(p) ≥ 1 for every
p ∈ •t. A transition t enabled at m may fire, yielding a new
marking m′ (denoted m

t−→ m′), where m′(p) = m(p) +
F (t, p)− F (p, t).

A sequence of transitions, σ = t1t2 . . . tr is an occurrence
sequence of N iff there exist markings m1, . . . ,mr such that
m0

t1−→ m1
t2−→ m2 . . .

tr−→ mr. The marking mr is said
to be reachable from m0 by the occurrence of σ (denoted
m0

σ−→ mr).
An infinite sequence of transitions, σ = t1t2 . . . is an infinite

occurrence sequence of N iff every finite prefix of σ is an
occurrence sequence of N (denoted m0

σ−→). The set inf (σ)
contains the transitions occurring infinitely often in σ.

A. Liveness properties

We consider a restricted notion of liveness property. Section
II-C briefly sketches how to handle general LTL properties.

A liveness property ϕ of a net N = (P, T, F,m0) is a
Boolean constraint over the free variables T . The property ϕ
holds for an infinite occurrence sequence σ (denoted σ |= ϕ)
iff Iσ |= ϕ, where Iσ(t) = 1 if t ∈ inf (σ) else 0. A
Petri net N satisfies a property ϕ (denoted N |= ϕ) iff

First Process Second Process

p3

s4

p1

s1

p2

s2

s3

t2

q3

t3

q4

t4

q2

t6

q5

t7

q1

t1

t5

bit1

bit2

nbit1

nbit2

Fig. 2. Petri net for Lamport’s 1-bit algorithm.

σ |= ϕ for every infinite occurrence sequence m0
σ−→. Note

that a liveness property is always satisfied if the Petri net
has no infinite occurrence sequences. Therefore the property
ϕ = false is equivalent to termination of the Petri net. Fair
termination properties can be expressed by means of more
complex formulas ϕ.

B. Two examples

As a first example, consider Lamport’s 1-bit algorithm for
mutual exclusion [16], shown in Fig. 1. Fig. 2 shows a Petri
net model for the code. The two grey blocks model the control
flow of the two processes. For instance, the token in place p1
models the current position of process 1 at program location
p1. The four places in the middle of the diagram model the
current values of the variables. For instance, a token in place
nbit1 indicates that the variable bit1 is currently set to false.

The main liveness property for the processes states that,
assuming a fair scheduler that allows both processes to execute
actions infinitely often, each process enters the critical section
infinitely often. For the first process, this corresponds to the
property that every infinite occurrence sequence in which at
least one of s1, . . . , s4 and one of t1, . . . , t7 occur infinitely
often, contains infinitely many occurrences of s2. As a Boolean
formula, we get (

4∨
i=1

si

)
∧

 7∨
j=1

tj

⇒ s2

For the second process we obtain a similar property.
As a second example, consider the fairly terminating asyn-

chronous program [17] given in Fig. 3. Here, the post com-
mand is a non-blocking operation for launching a process in
parallel. Initially, the process INIT is executed, which sets x
to true and launches H. Process H launches new instances of
H and G until G sets x to false. Assuming a fair scheduler,
i.e., one that will execute each process eventually, the program
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h:

procedure H
begin

if x then
post H
post G

fi
end

g:

procedure G
begin
x := false

end

procedure INIT
begin
x := true
post H

end

Fig. 3. Asynchronous program [17].

Process H Process G

s

x

notx

ph

h

pg

g

s1

s2

s3

t1

t2

t3

Fig. 4. Petri net for the asynchronous program.

should terminate. This fair termination is the liveness property
we want to prove.

Transforming the program into a Petri net gives us the
net in Fig. 4. The place s models the scheduler, ph and pg
are pending instances of H and G, respectively, and h and
g are program locations. The transitions t1 and s1 dispatch
the processes, while the other transitions exit the processes
depending on the value of x. Note that the net is unbounded,
as repeatedly firing s1s2 puts arbitrarily many tokens in pg.

If the scheduler is fair and continues dispatching instances
of H and G infinitely often, the program should terminate,
giving us the liveness property s1 ∧ t1 =⇒ false, equivalent
to ¬(s1 ∧ t1).

C. LTL properties

To check general LTL properties we can use the automata-
theoretic approach. Given a property ϕ, we construct the
product of the Petri net model of the system and a Büchi
automaton for ¬ϕ. The product yields a new Petri net with
a set of accepting places. The initial net violates the property
iff the product net has an infinite sequence σ such that inf (σ)
contains at least one of the input transitions of the accepting
places. A detailed construction can be found in [15].

III. T-SURINVARIANTS

We present a procedure, called LIVENESS, which checks a
sufficient condition for a given Petri net to satisfy a liveness
property. The condition is unsatisfiability of an appropriate
linear arithmetic formula.

Definition 1 (Incidence matrix). The incidence matrix C of a
Petri net N is a |P | × |T | matrix given by

C(p, t) = F (t, p)− F (p, t)

Definition 2 (T-surinvariant). A vector X : T → Z is a T-
surinvariant of a Petri net N iff C · X ≥ 0. If moreover
C ·X = 0, then X is a T-invariant.

A T-surinvariant X is semi-positive iff X ≥ 0 and X 6= 0.
The support of a T-surinvariant X is given by ‖X‖ = {t ∈
T | X(t) > 0}.

Loosely speaking, X is a surinvariant if for every place p
and for every occurrence sequence m σ−→ m′, if σ fires each
transition t exactly X(t) times, then m(p) ≤ m′(p), that is,
the number of tokens in p can only increase. The following
theorem, where we identify X with the multiset of transitions
containing each t ∈ T exactly X(t) times, shows that the
T-surinvariants of a Petri net provide information about its
infinite runs.

Theorem 1. [13], [14] Let σ be an infinite sequence of
transitions and N a Petri net. If σ is an infinite occurrence
sequence of N , then there is a semi-positive T-surinvariant X
satisfying ‖X‖ = inf (σ).

Proof. Let σ′ be a suffix of σ containing only transitions of
inf (σ), and let σ′ = σ′1σ

′
2σ
′
3 . . . such that each σ′i contains ev-

ery transition of inf (σ) at least once. Since σ is an infinite oc-
currence sequence of N , there exist markings m1,m2,m3, . . .

such that m1
σ′1−→ m2

σ′2−→ m3
σ′3−→ . . .. By Dickson’s lemma,

there exist indices i < j such that mi ≤ mj . Let X be the
Parikh vector of σ′i . . . σ

′
j−1, i.e., the vector assigning to each

transition its number of occurrences in the sequence. By the
definition of the firing rule and the incidence matrix C, for
every place p we have mj(p) −mi(p) =

∑
t∈T C(p, t)X(t)

or, in matrix form, mj −mi = C · X . Since mj ≥ mi, we
have mj−mi ≥ 0, and so X is a semi-positive T-surinvariant.
Since σ′i . . . σ

′
j−1 contains all transitions of inf (σ), we have

‖X‖ = inf (σ).

However, a T-surinvariant does not guarantee the existence
of a corresponding occurrence sequence. Consider the net in
Fig. 4. The multiset X = {s1, s2, t1, t3} is a semi-positive
T-invariant, but, as we will see later, no infinite occurrence
sequence σ satisfies inf (σ) = {s1, s2, t1, t3}. We say that a
T-surinvariant X is realizable if there is an infinite occurrence
sequence σ with ‖X‖ = inf (σ).

For a T-surinvariant X and a liveness property ϕ, we
denote by ϕ(X) the constraint of linear arithmetic obtained by
substituting X(t) > 0 for every occurrence of t in ϕ. So, for
instance, if ϕ = t1∨t2, then ϕ(X) = X(t1) > 0∨X(t2) > 0.
By Theorem 1, if there is an infinite sequence σ such that
σ |= ϕ, then there is also a semi-positive T-surinvariant X
such that ϕ(X) holds. Taking the contrapositive, we have: if
no semi-positive T-surinvariant X satisfies ¬ϕ(X), then no
sequence σ satisfies ¬ϕ, and so N |= ϕ. This directly leads to
a semi-decision procedure for checking if a liveness property
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x

notx

s2

s3

t2

t3

Fig. 5. Subnet of the net of Fig. 4.

ϕ is a property of a Petri net N : If the following constraints
are unsatisfiable, then N |= ϕ.

C(N,ϕ) ::


C ·X ≥ 0 T-surinvariant condition
X ≥ 0 non-negativity condition
X 6= 0 non-zero condition
¬ϕ(X) property condition

(1)

In practice, the procedure is very efficient, but often fails
to prove the property. As an example, consider Lamport’s
algorithm. The negation of the fairness property for the first
process yields

(s1 ∨ s2 ∨ s3 ∨ s4) ∧ (t1 ∨ t2 ∨ t3 ∨ t4 ∨ t5 ∨ t6 ∨ t7) ∧ ¬s2
which corresponds to runs of the system where both processes
are executed infinitely often, but where the first process never
enters the critical section. However, X = {s3, t5} is a
solution to the constraints (1). The solution corresponds to
the processes being stuck in the locations p2 and q4 while
executing the skip commands. For this reason, in the next
section we revisit an idea of [15] which leads to a more precise
set of constraints.

IV. REFINING T-SURINVARIANTS WITH P-COMPONENTS

The method LIVENESS can be strengthened by discarding
T-surinvariants which are not realizable.

Consider again the net of Fig. 4. Recall that X =
{s1, s2, t1, t3} is a semi-positive T-invariant. We prove that
it is not realizable. Consider the subnet N ′ = (P ′, T ′), where
P ′ = {x, notx} and T ′ = {s2, t2, s3, t3}, shown in Fig. 5.

Inspection of the subnet shows that firing a transition does
not change the total number of tokens in P ′. For example,
firing t2 takes a token from x, but adds a token to notx. So this
number is always equal to 1, and so it makes sense to speak
of “the” token of N ′. Assume now that X is realized by some
infinite sequence σ, i.e., inf (σ) = ‖X‖. Since both s2 and t3
occur infinitely often in σ, there are sequences σ1, σ2, σ3 such
that σ = σ1 s2 σ2 t3σ3, and σ2 ∈ ‖X‖∗. After the occurrence
of s2 the token of N ′ is on x, and before the occurrence of
t3 it is on notx. But σ2 cannot “move” the token from x to
notx, as it does not contain any occurrence of t2 (because
t2 /∈ ‖X‖). So we reach a contradiction, and σ does not exist.

In the rest of the section we show how to automatically
search for proofs of non-realizability like this. We need the
notion of a P-component of a net.

Definition 3 (P-component). A P-component of a net N =
(P, T, F ) is a subnet N ′ = (P ′, T ′) such that P ′ 6= ∅ and

|t• ∩ P ′| = |•t ∩ P ′| = 1 for all t ∈ T ′ and T ′ = P ′• ∪ •P ′
(where pre- and post-sets are taken with respect to N ).

The subnet of Fig. 5 is a P-component. Note that the number
of tokens in a P-component never changes, i.e., m0(P ) =
m(P ) for all m0

σ−→ m. Therefore, if initially a P-component
only contains one token, then we know that the token will stay
in the P-component.

Lemma 2. Let X be a T-surinvariant of a Petri net N . If N
has a P-component (P ′, T ′) such that m0(P

′) = 1, and the
subnet (P ′, T ′ ∩ ‖X‖) is not strongly connected, then X is
not realizable.

Proof. (Sketch.) If (P ′, T ′ ∩ ‖X‖) is not strongly connected,
then by the definition of P-component there are two transitions
t1, t2 ∈ T ′ ∩ ‖X‖ such that no path of (P ′, T ′ ∩ ‖X‖) leads
from t1 to t2. So the token of (P ′, T ′) cannot be transported
from the output place of t1 in (P ′, T ′∩‖X‖) to the input place
of t2 in (P ′, T ′ ∩ ‖X‖) by firing transitions of X only. Since
every sequence realizing X must fire both t1 and t2 infinitely
often, no such sequence exists.

Lemma 2 provides a refinement condition. To find such a
refinement, we encode the condition as a conjunction of linear
arithmetic constraints. A pair (P ′, T ′) is the set of places
and transitions of a P-component such that m0(P

′) = 1 iff
it satisfies these constraints:

∀t ∈ T ′ : |t• ∩ P ′| = 1 P ′• ∪ •P ′ = T ′

∀t ∈ T ′ : |•t ∩ P ′| = 1 m0(P
′) = 1

For the strong connectedness condition, we use that a graph
(V,E) is not strongly connected iff there is a partition
V = V1 ] V2 such that no edge (v, v′) ∈ E satisfies
v ∈ V1, v

′ ∈ V2. In our case, V is the set T ′ ∩ ‖X‖, and
E is the set of pairs (t1, t2) such that some place p ∈ P ′

satisfies (t1, p), (p, t2) ∈ F ′. So (P ′, T ′∩‖X‖) is not strongly
connected iff the following constraints are satisfiable:

T ′ ∩ ‖X‖ = T1 ] T2 T1 6= ∅
(T •1 ∩ P ′)• ∩ ‖X‖ ⊆ T1 T2 6= ∅

These constraints can be encoded by introducing an array of
variables with range {0, 1} for each set of places or transitions.
For example, the constraint ∀t ∈ T ′ : |t• ∩ P ′| = 1 translates
to the linear arithmetic constraint∧

t∈T

[
T ′(t) = 1 =⇒

∑
p∈t•

P ′(p) = 1

]

where (T ′(t1), . . . , T ′(tn)) is the array of Boolean variables
for the set T ′.

If the constraints above are satisfiable for a given T-
surinvariant X , then X is not realizable. We can exclude X
(and any other T-surinvariant whose support has the same
intersection with the P-component as ‖X‖) by adding the
constraint:
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Fig. 6. P-component and subnet of the Petri net for Lamport’s algorithm.

δ ::=

[ ∨
t∈T1

t

]
∧

[ ∨
t∈T2

t

]
=⇒

∨
t∈T ′\‖X‖

t (2)

to the set of constraints (1). We can iterate the process,
until either the constraints are unsatisfiable, which means
successfully proving the property, or no further P-components
can be found to discard a T-surinvariant, which means failure.

For example, for Lamport’s algorithm and the fairness
property for the first process, the constraints (1) have
the solution X = {s3, t5}. However, since (P ′, T ′) =
({bit2, q1, q4}, {s3, t1, t3, t4, t5, t7}) is a P-component and
T1 = {s3}, T2 = {t5} satisfy the constraints above, we get
that X is not realizable. The P-component (P ′, T ′) and the
subnet (P ′, T ′∩‖X‖) are shown in Fig. 6. We can immediately
see that the token cannot be transported from the output place
of s3 to the input place of t5.

We add the refinement constraint

s3 ∧ t5 =⇒ t1 ∨ t3 ∨ t4 ∨ t7

to the set (1) and check again for satisfiability. The
new set is still satisfiable with the solution X =
{s3, t1, t1, t2, t3, t4, t5, t6, t7}. In a second refinement step we
find a P-component with {nbit1, p2, p3} as set of places, and
add the refinement constraint

s3 ∧ (t4 ∨ t6) =⇒ s1 ∨ s2 ∨ s4,

after which the constraints (1) are unsatisfiable, and we
conclude that the fairness property for the first process holds.

For the second example (Fig. 3 and 4), we considered
the fair termination property ϕ = ¬(s1 ∧ t1). After adding
¬ϕ = s1 ∧ t1 to the constraints (1), we obtain a solution
X = {s1, s2, t1, t3}. With the P-component (P ′, T ′) =
({x, notx}, {s2, s3, t2, t3}) and the partition T1 = {s2} and
T2 = {t3}, we can discard this T-invariant as unrealizable and
obtain the refinement constraint

s2 ∧ t3 =⇒ s3 ∨ t2,

after which the constraints (1) are unsatisfiable and we can
prove fair termination.

p1

p2

p3

p4

t1

t2

t3

t4

(a) Net without P-components

p1

p2

p3 p4t1

t2

t3

(b) Net without unmarked traps

Fig. 7. Terminating Petri nets for which refinement is insufficient.

V. REFINING T-SURINVARIANTS WITH TRAPS

For some Petri nets, refinement with P-components is not
sufficient for discarding unrealizable T-surinvariants. For ex-
ample, we cannot prove the properties for the leader election
algorithm by Dolev, Klawe and Rodeh [18] or the mutual
exclusion algorithm by Szymanski [19]. These nets are too big
to give as an example, but consider instead the net in Fig. 7a,
which is similar to a subnet of the net for the leader election
algorithm. The net has no infinite occurrence sequences and
we would like to prove termination. The multiset X = {t2, t3}
is a T-surinvariant, but the net has no P-components, so we
cannot refine the constraints. To solve this problem we develop
a refinement technique based on traps.

Definition 4 (Trap). A trap is a set of places S ⊆ P such that
S• ⊆ •S.

It follows immediately from the definition that marked traps
stay marked: if a trap S is marked at some marking m, i.e.
m(S) > 0, then it is also marked at all markings m′ reachable
from m, because every transition taking tokens from S also
adds at least one token to S.

Given a T-surinvariant X , we consider the subnet (P ′, T ′) =
(‖X‖•, ‖X‖). In the example of Fig. 7a, (P ′, T ′) is obtained
by removing transitions t1 and t4, together with their input and
output arcs. Assume ‖X‖ is realized by an infinite occurrence
sequence σ. Then there are sequences σ′, σ′′ such that σ =
σ′σ′′ and σ′′ ∈ ‖X‖ω . Since every place P ′ has an input
transition in ‖X‖, every place of P ′ gets marked during the
execution of σ′′, and therefore every trap of (P ′, T ′) becomes
eventually marked. So we have the following lemma:

Lemma 3. Let N = (P, T, F,m0) be a net and let ‖X‖ be
a realizable T-surinvariant. Then some marking m reachable
from m0 in N marks every trap of the subnet (P ′, T ′) =
(‖X‖•, ‖X‖).

By this lemma, if we show that no reachable marking marks
every trap of (P ′, T ′), then X is unrealizable. We use an
iterative approach. Given a set of traps Q, using the technique
of [11] we can construct a set of constraints satisfied by
every reachable marking that marks every trap of Q.1 If the
constraints are satisfiable, then we extract from the solution a

1The constraints express that a solution m satisfies the marking equation
and that m(S) > 0 for every trap S ∈ Q.
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marking m that marks all traps in Q. Since m may not mark
all traps, we search for a new trap S /∈ Q not marked at m. If
we find such S, we set Q = Q∪{S} and iterate, otherwise we
give up. If the constraints are unsatisfiable, then no reachable
marking marks all traps in Q, which implies that X is not
realizable. We can then add a new constraint excluding any
solution with the same support as X . However, we can do
better, and add a stronger constraint. Since we have shown
that no infinite occurrence sequence σ can reach a marking that
simultaneously marks all traps of Q, we choose a constraint
expressing that if inf (σ) contains transitions marking all traps
of (P ′, T ′), then it must also contain at least one transition that
empties a trap of (P ′, T ′). (Of course, such a transition cannot
belong to T ′, it must be a transition of T \ T ′.)

δ ::=
∧
S∈Q

[ ∨
t∈•S

t

]
=⇒

∨
S∈Q

 ∨
t∈S•\•S

t

 (3)

For example, for the Petri net in Fig. 7a, the method
LIVENESS returns X = {t2, t3} as a T-surinvariant. The
corresponding subnet is (P ′, T ′) = ({p1, p2, p3, p4}, {t2, t3}).
Initially, for Q = ∅, we can take the initial marking m0. In m0,
the trap S1 = {p1} of (P ′, T ′) is unmarked. We search for a
marking m satisfying the marking equation and m(p1) ≥ 1,
and obtain as solution m1 = (1, 0, 1, 0). At this marking the
trap S2 = {p4} is unmarked. So we search for a marking m
satisfying the marking equation, m(p1) ≥ 1 and m(p4) ≥ 1,
and obtain as solution m2 = (1, 0, 0, 1). At this marking the
trap S3 = {p2, p3} is unmarked. We search for a marking
m satisfying the marking equation, m(p1) ≥ 1, m(p4) ≥ 1,
and m(p2) +m(p3) ≥ 1, and obtain that the constraints are
unsatisfiable. So we generate the refinement constraint

(t1 ∨ t2) ∧ (t3 ∨ t4) ∧ (t2 ∨ t3) =⇒ t1 ∨ t4,

which excludes {t2, t3}. In fact, the additional constraint turns
out to exclude not only {t2, t3}, but all T-surinvariants, which
proves termination of the Petri net.

The refinement with traps is a generalization of the refine-
ment with P-components. For a T-surinvariant X , assume there
is refinement with a P-component (P ′, T ′) and a partition
T1]T2 = T ′∩‖X‖. In the subnet (‖X‖•, ‖X‖), S1 = P ′∩T •1
and S2 = P ′ ∩ T •2 are two different traps, and as the P-
component has only one token, we can show with the marking
equation that S1 and S2 cannot be marked at the same time.

Generally, refinement with P-components requires fewer
calls to the SMT solver, and is therefore more efficient. In
our experiments it is also sufficient for most cases, and if it
fails, refinement with traps can be applied afterwards. So we
always start with a refinement with P-components, and apply
then a refinement with traps if necessary.

Even with both refinements, the method is still incomplete.
Consider the Petri net in Fig. 7b, which appears in a Petri
net model of the drinking philosopher’s problem [20]. The
net is terminating, but X = {t1, t1, t2, t3} is a surinvariant
(observe that X is a genuine multiset with two copies of t1).

The subnet corresponding to X is the complete net, and every
trap is initially marked, so no refinement can be found.

If the property does not hold, our method fails and returns
a surinvariant that cannot be excluded by our refinements. For
example, for Lamport’s algorithm, the fairness property for the
second process is not satisfied, where the negation ¬ϕ is:

(s1 ∨ s2 ∨ s3 ∨ s4) ∧ (t1 ∨ t2 ∨ t3 ∨ t4 ∨ t5 ∨ t6 ∨ t7) ∧ ¬t6.

After two refinement steps, our method returns the T-
surinvariant X = {s1, s2, s3, s4, t1, t2, t3, t4, t5}, which satis-
fies ¬ϕ and cannot be further refined. In this case we can use
guided state-space exploration [21] to try to identify permu-
tations of X that are actual repeatable occurrence sequences.
In this case, σ = s1t1s3t2t3s2t5s4t4 is indeed a matching
occurrence sequence which can be repeated infinitely and
violates the property.

VI. EXPERIMENTAL EVALUATION

We extended our tool Petrinizer [11], implemented on top
of the SMT solver Z3 [22], with the method LIVENESS.
The method can be used without refinement, with only P-
component or trap refinement, or with P-component refine-
ment followed by trap refinement. In addition, the refinement
structures can be minimized.

For our evaluation, we had three goals. First, we wanted
to measure the success rates on a large number of case
studies. The second goal was to investigate the usefulness and
necessity of P-components, traps and minimization of them.
As a third goal, we wanted to measure the performance of the
method and compare it with the model checker SPIN2 [23].

A. Benchmarks

For the evaluation, we used five different benchmark suites
from various sources. The first two suites are workflow nets
coming from business processes [24]. One is a collection of
SAP reference models [25] and the other consists of IBM
business process models [26]. We examined the nets for
termination. In total, these suites contain 1976 models, out
of which 1836 are terminating.

The third suite contains 50 examples that come from the
analysis of Erlang programs [5], found on the website of the
Soter tool3. Out of these, 33 are terminating.

For the fourth suite, we used classic asynchronous programs
that can be scaled in the number of processes. These include a
leader election algorithm [18], a snapshot algorithm [27] and
three mutual exclusion algorithms [16], [19], [28]. Each of the
5 algorithms is scaled from n = 2 to 6 processes, resulting in
25 examples. For the former two distributed algorithms, the
property is repeated liveness, i.e., infinitely often electing a
leader or taking a snapshot infinitely often, while for the latter
three mutual exclusion algorithms it is non-starvation for the
first process. These properties all contain a fairness assumption
for the scheduler, and they hold for all examples.

2http://spinroot.com/
3http://mjolnir.cs.ox.ac.uk/soter/
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TABLE I
FAIRLY TERMINATING EXAMPLES WITH RATE OF SUCCESS BY DIFFERENT

REFINEMENT METHODS.

Benchmark No ref. Ref. w/P-co. Ref. w/traps Terminating

SAP 1263 1263 1264 1264
IBM 571 571 572 572
Erlang 27 27 27 33
Asynchronous 0 14 20 25
Literature 0 3 5 5

Total 1861 1878 1888 1899

Finally, as the fifth suite, we collected 5 examples from the
literature on termination and liveness analysis and modeled
them as Petri nets. These are the programs from Fig. 2
in [29], Fig. 3 in [30], Fig. 1(b) in [17] and two variants
of the Windows NT Bluetooth driver from [31]. These are all
terminating programs.

The Petri nets for these benchmarks vary largely in size.
The number of places ranges from 4 to 66950, with a mean
of 116 and a median of 38. The number of transitions ranges
from 3 to 213626, with a mean of 163 and a median of 30.

We try to prove the fairness property of the asynchronous
programs and termination for the examples from the other
benchmark suites. In total, we have 1899 examples where the
property holds.

B. Rate of success on terminating examples

In Table I, the rate of success with different refinement
methods is shown. Even without refinement, we can prove
termination of all but 2 of the SAP and IBM examples, and of
27 of the 33 Erlang examples. However, without refinement
we can prove none of the 30 examples from the other two
suites. Refinement with P-components allows us to prove 14 of
the asynchronous and 3 of the literature examples. Additional
refinement with traps allows us to prove the 2 remaining SAP
and IBM examples, 6 more asynchronous examples, and the
remaining examples from the literature suite. In total, we can
prove termination for 1888 of the 1899 terminating examples,
and at least 80% of the terminating examples of each suite.

C. Usefulness of refinement methods and minimization

Table II presents results on the asynchronous benchmark
suite and refinement with and without minimization. Mini-
mization of the refinement components can result in better
refinement constraints that exclude more T-surinvariants, at
the price of a time overhead, since repeated calls to the
SMT solver are needed until a minimal component is found.
The default method, R1, is refinement with P-components
and traps without any minimization. Refinement method R2

minimizes P-components (P ′, T ′) by |P ′| and traps S by |S|.
Other criteria were also tested, but there was no optimal one
working for all benchmarks. For each method, the number of
P-components |R|, number of trap refinements |Q| and total
execution time in seconds for proving the property are given.

We observe cases where we need refinement only with P-
components (Snapshot), only with traps (Leader election) or

TABLE II
COMPARISON OF REFINEMENT WITH AND WITHOUT MINIMIZATION AND
RUNTIME COMPARISON WITH SPIN. FOR AN EXECUTION, TO DENOTES
EXCEEDING THE TIME LIMIT AND MO EXCEEDING THE MEMORY LIMIT.

Refinement R1 Ref. w/ min. R2 SPIN
Benchmark n |R| |Q| T (s) |R| |Q| T (s) T (s)

Leader election
by Dolev,
Klawe and
Rodeh [18]

2 0 4 2.53 0 4 2.30 0.69
3 0 6 8.45 0 6 9.03 0.74
4 0 8 35.5 0 8 38.4 15.7
5 0 13 206 0 10 154 MO
6 0 17 1104 0 12 728 MO

Snapshot
algorithm by
Bougé [27]

2 2 0 0.35 2 0 0.30 0.31
3 3 0 0.50 3 0 0.81 0.72
4 4 0 0.60 4 0 0.91 10.3
5 5 0 0.73 5 0 1.41 218
6 6 0 1.82 6 0 1.63 MO

Lamport’s 1-bit
algorithm for
mutual
exclusion [16]

2 2 0 0.50 3 0 0.43 0.69
3 6 0 1.26 6 0 1.63 0.69
4 12 0 2.83 13 0 5.50 0.92
5 27 0 9.34 18 0 11.3 10.4
6 26 0 13.4 23 0 20.6 MO

Peterson’s
mutual
exclusion
algorithm [28]

2 1 0 0.37 1 0 0.41 0.69
3 13 0 6.57 7 0 8.55 0.71
4 21 0 65.9 18 0 92.5 1.16
5 285 0 2289 36 0 911 43.5
6 - - TO - - TO MO

Szymanski’s
mutual
exclusion
algorithm [19]

2 21 6 10.9 26 6 17.6 0.70
3

Property cannot be proven with
refinement for n ≥ 3.

0.80
4 5.83
5 347
6 MO

with both (Szymanski at n = 2). For Szymanski at n ≥ 3 we
cannot prove the property even with both refinement methods.

Minimization with method R2 saves many refinement steps
for Peterson and a few for Lamport and Leader election,
while for Szymanski the number of steps increases. The time
overhead when no steps are saved is not very large (up to 2×).

Our method produces a certificate for fair termination
consisting of the P-components R and traps Q. One can
use independent methods to check that R and Q are indeed
P-components and traps, and that the constraints (1) are
unsatisfiable. The size of each P-component and trap is limited
by the size of the net. The size of the whole certificate depends
on the number of refinement steps, however it is usually much
more compact than the whole state space.

D. Performance

All experiments were performed on the same machine,
equipped with a Intel Core i7-4810MQ CPU at 2.8 GHz and
16 GB of memory, running Linux 3.18.6 in 64-bit mode.
Execution time was limited to 2 hours and memory to 16 GB.

Table II shows the execution times of Petrinizer for the
asynchronous benchmark suite and a comparison with SPIN.
SPIN was used with a fairness strategy enforced and partial
order reduction. Only for the snapshot algorithm, partial order
reduction was turned off, as it is not supported together with
fairness and the rendezvous operations used in the algorithm.
For small examples, SPIN is usually faster. However, as n
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Fig. 8. Execution time in dependence on the number of places for the
examples from the benchmark suites SAP, IBM, Erlang and Literature,
depending on whether Petrinizer succeeds in proving termination.

grows to 5 or 6, SPIN quickly reaches the memory limit. Here,
Petrinizer outperforms SPIN significantly on the examples
Leader election, Snapshot and Lamport.

For the other four benchmark suites, Fig. 8 shows the
performance of Petrinizer. For the positive examples (i.e.,
those where we can prove the property), we can prove all but
one of the 1868 examples in under 3 seconds. The outlier is
from the SAP suite, for which we need 320 refinement steps
and 8 minutes. Even the largest positive example from the
Erlang suite with 4014 places only needs 1.86 seconds. For the
negative examples, Petrinizer performs worse, usually because
it performs more refinement steps. However, it terminates in
under 3 seconds for all nets with up to 1000 places. Only
in one case we reach the time limit of 2 hours (our largest
example with 66950 places).

We only need more than 3 refinement steps in one case (an
outlier with 320 steps). The number of steps is not correlated
to the net size.

VII. CONCLUSION

Transition invariants and P-components are classical anal-
ysis techniques for Petri nets. We have demonstrated that,
combined with a state-of-the-art SMT solver, these techniques
are very effective in proving fair termination for a large
number of common benchmark examples. We have further
developed a novel technique based on traps, which allows us
to reach a high degree of completeness on these benchmarks.
The constraint systems produced by our tool can be used as a
certificate of fair termination.
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Abstract—This paper presents a new method for automati-
cally generating numerical invariants for imperative programs.
The procedure computes a transition formula which over-
approximates the behaviour of a given input program. It is
compositional in the sense that it operates by decomposing
the program into parts, computing a transition formula for
each part, and then composing them. Transition formulas for
loops are computed by extracting recurrence relations from a
transition formula for the loop body and then computing their
closed forms. Experimentation demonstrates that this method
is competitive with leading verification techniques based on
abstraction refinement.

I. INTRODUCTION

Compositional program analyses operate by decomposing
a program into parts, computing an abstract meaning of
each part, and then composing the meanings. Compositional
analyses have a number of desirable properties, including
scalability, parallelizability, and applicability to incomplete
programs. However, compositionality comes at a price: since
each program fragment is analyzed independently of its con-
text, the analysis cannot benefit from contextual information.
This paper presents a compositional analysis which, despite
loss of contextual information, is capable of generating precise
numerical invariants.

while(*):
x := x + 1
y := y - 2

Compositional recurrence analysis,
the technique proposed in this paper,
aims to compute a transition formula
that over-approximates the behaviour
of a given program. As with any invariant generation tech-
nique, the crucial question is how to approximate the be-
haviour of loops. The basic idea can be illustrated with the
example loop to the right, which loops for a non-deterministic
number of iterations, adding 1 to x and subtracting 2 from y
at each iteration. The body of this loop can be described by a
system of recurrence equations:

x(k) = x(k−1) + 1

y(k) = y(k−1) − 2

(where x(k) represents the value of x on the kth iteration of the
loop). A transition formula for the loop can be computed by
taking the closed form of this system. Using x and y to denote
the values of those variables before executing the loop and x’
and y’ to their values after the loop, a transition formula that
precisely describes this loop is:

∃k ∈ N.x’ = x+ k ∧ y’ = y− 2k

The idea of using recurrences to abstract loops is classical,
and there exist powerful techniques for solving very general
classes of recurrence equations. However, two barriers stand
in the way of applying recurrence analysis to real programs.
First, loop bodies may have arbitrary control flow. Extracting
recurrence equations from a straight-line loop body like the
one above is straightforward, but what if the loop body
contains branching, or nested loops, or even unstructured
control flow? Second, the behaviour of a loop may not be
describable as a system of recurrence equations (for example,
consider a loop where x is non-deterministically incremented
by either 1 or 2). How can recurrence analysis be used to
over-approximate loops whose behaviour is not determined by
system of recurrence equations?

Our approach exploits compositionality to overcome these
barriers. The assumption of compositionality demands that a
transition formula for a loop is computed from a transition
formula for its body. This makes the control flow of the loop
body irrelevant: whether it is a sequence of assignments or
contains branching or nested loops – its transition formula
is just a formula. While this circumvents the first barrier to
practical recurrence analysis, it also presents a new challenge:
how can we extract a system of recurrence equations from
a formula representing a loop body? Our solution is to
use a Satisfiablity Modulo Theories (SMT) solver to extract
recurrence equations which are semantically implied by a
loop body formula. In fact, our method goes beyond systems
of recurrence equations over program variables: it extracts
a system of recurrence inequations over linear terms. This
allows compositional recurrence analysis to compute accurate
over-approximations of loops which cannot be described as
a system of recurrence equations, thereby overcoming the
second barrier to practical recurrence analysis.

The rest of the paper is organized as follows. In the next
section, we give a high-level overview of our algorithm. In
Section III, we describe our strategy for over-approximating
the behaviour of loop whose body is expressed as a linear
arithmetic formula; Section IV describes a method for over-
approximating a non-linear arithmetic formula by a linear
arithmetic formula, so that our loop approximation proce-
dure may be applied to any arithmetic formula. In Sec-
tion V, we demonstrate experimentally that compositional
recurrence analysis compares favourably with leading (non-
compositional) verification techniques. Section VI compares
with related work, and Section VII concludes.
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II. OVERVIEW

We will adopt a simple intra-procedural program model in
which a program is represented by a control flow automa-
ton (CFA) where edges are labeled by program statements.
Figure 1(b) depicts such a CFA for a program that computes
the quotient and remainder of division of a variable x by a
variable y. Naturally, compositional recurrence analysis can
be extended to a program model with procedures by using
the analysis to compute procedure summaries [31], but for the
sake of simplicity we will not discuss this extension formally.

Compositional recurrence analysis (CRA) is presented in the
algebraic abstract interpretation framework described in [10].
In [10], a program analysis is defined by an interpretation,
which consists of a semantic algebra and a semantic function.
A semantic algebra consists of a universe which defines the
space of possible program meanings, along with sequencing
(�), choice (⊕), and iteration (⍟) operators, which define
how to compose program meanings. A semantic function is a
mapping from control flow edges to elements of the universe
which defines the meaning of each control flow edge.

Path expression algorithms [7], [29], [32] form the algorith-
mic foundation of the algebraic framework. A path expression
is a regular expression over an alphabet of control flow edges
which recognizes the set of paths through a control flow
automaton. Intuitively, path expression algorithms operate by
computing a path expression to a control point of interest and
then interpreting that path expression in the semantic algebra
defining the analysis. The exponential blow-up of computing
a regular expression from a control flow automaton is avoided
by sharing sub-expressions and evaluating the path expression
bottom-up. Path expression algorithms can share work over
multiple queries to avoid duplicate work if there are multiple
points of interest (e.g., if there is more than one assertion to
be verified).

More concretely, suppose that we wish to prove that the
assertion on the edge from v8 to vexit always succeeds using
CRA. First, we compute a path expression for vertex v8 (Fig-
ure 1(c)). This regular expression recognizes the set of paths
from ventry to v8. Second, we evaluate this path expression
in the semantic algebra of CRA by recursing on the regular
expression, interpreting each edge using the semantic function
and each regular expression operator by its counterpart in the
semantic algebra that defines CRA. The result is a transition
formula which approximates the executions which end at
v8. Third, we ask an SMT solver whether the transition
formula implies that the assertion holds in the post-state. If
the implication holds, then we may conclude that the assertion
is safe. If not, then the verification is inconclusive: either the
assertion fails in some execution, or the assertion is safe but the
transition formula computed by CRA is not strong enough to
prove it (the analysis cannot distinguish between these cases).

Keeping this framework in mind, we proceed to describe the
interpretation which defines compositional recurrence analysis.
CRA Universe. The semantic universe of CRA (i.e., the
space of program meanings) is the set of arithmetic transition

formulas. Letting Var denote the set of program variables
and Var′ the set of “primed” copies of program variables, a
transition formula is an arithmetic formula with free variables
in Var ∪ Var′.

Transition formulas may contain existential quantifiers and
non-linear arithmetic. For readability, we will often simplify
formulas by eliminating quantifiers in the remainder of the
paper. However, CRA does not require quantifier elimination
(and indeed, there is no quantifier elimination procedure for
the class of formulas we consider, since we allow non-linear
integer arithmetic).
CRA Semantic Function. The semantic function J·K maps
each edge of a control flow automaton to its interpretation as a
transition formula. For example (again considering Figure 1),
we have

J〈ventry, v1〉K , r′ = x ∧ id({q, t, x, y})

J〈v2, v3〉K , r ≥ y ∧ id({q, r, t, x, y})

where for X ⊆ Var, we define id(X) ,
∧

x∈X x′ = x ; we
use id to factor out equalities from the formulas and make
them more legible. Boxes around formulas have no meaning,
and are used to make it easier to distinguish between equalities
in formulas and the meta-language.
CRA Operators. The sequencing and choice operators of CRA
are defined as follows:

ϕ� ψ , ∃x′′.ϕ[x′′/x′] ∧ ψ[x′′/x] Sequencing

ϕ⊕ ψ , ϕ ∨ ψ Choice

(where ϕ[x′′/x′] denotes the formula obtained from ϕ by
replacing each primed variable x′ by its double-primed coun-
terpart x′′, and ψ[x′′/x] similarly replaces unprimed variables
in ψ with double-primed variables).

The semantic function, sequencing, and choice operators
are sufficient to analyze loop-free code. For example, CRA
computes a transition formula for the body of the inner loop
of Figure 1 as follows:
J〈v4, v5〉 · 〈v5, v6〉K = J〈v4, v5〉K� J〈v5, v6〉K

≡ t 6= 0 ∧ r′ = r − 1 ∧ id({q, t, x, y})
J〈v4, v5〉 · 〈v5, v6〉 · 〈v6, v4〉K = J〈v4, v5〉·〈v5, v6〉K� J〈v6, v4〉K

≡ t 6= 0 ∧ r′ = r − 1 ∧ t′ = t− 1 ∧ id({q, x, y})
Having defined the semantic function, semantic universe,

and sequencing and choice operators for CRA, it remains only
to define its iteration operator. The formal definition of the
iteration operator appears in the next section; in this section,
we will illustrate the iteration operator on the running example.

Let ϕinner , J〈v4, v5〉 · 〈v5, v6〉 · 〈v6, v4〉K be the formula
above, which represents the body of the inner loop. The
meaning of the inner loop is computed by applying the
iteration operator to ϕinner.

Recurrence Closed form
r′ = r − 1 r(k) = r(0) − k
t′ = t− 1 t(k) = t(0) − k

CRA’s iteration opera-
tor begins by extracting
the recurrence equations
shown to the right (note
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r := x // remainder
q := 0 // quotient
while(r >= y):

// subtract y from r
t := y
while(t != 0)

r := r - 1
t := t - 1

q := q + 1

assert(x = q*y + r)

(a) Program text

ventry v1 v2

v3 v4

v5 v6

v7

v8 vexit
r := x q := 0

[r >= y]

t := y [t = 0]

[t != 0]

r := r - 1

t := t - 1

q := q + 1

[r < y] assert(x = q*y+r)

(b) Control Flow Automaton for (a)

〈ventry, v1〉·〈v1, v2〉·
(
〈v2, v3〉·〈v3, v4〉·

Inner loop︷ ︸︸ ︷
(〈v4, v5〉·〈v5, v6〉·〈v6, v4〉)∗·〈v4, v7〉·〈v7, v2〉

)∗︸ ︷︷ ︸
Outer loop

·〈v2, v8〉

(c) Path expression to v8

Fig. 1. An integer division program, computing a quotient and remainder. A statement [ψ] denotes an assumption which blocks if ψ does not hold.

that this table omits “uninteresting” recurrences, such as
q′ = q + 0, which indicate that a variable does not change in
a loop). It then computes closed forms for these recurrences,
also shown to the right (where x(k) denotes the value that the
variable x takes on the kth iteration of the loop). These closed
forms are used to abstract the loop as follows:

ϕ⍟inner = ∃k.k ≥ 0 ∧ r′ = r − k ∧ t′ = t− k ∧ id({q, x, y})

≡ r′ = r + t′ − t ∧ t′ ≤ t ∧ id({q, x, y})
The path expression algorithm uses the formula ϕ⍟inner for

the inner loop to compute a transition formula representing
the body of the outer loop as follows:
ϕouter = J〈v2, v3〉K�J〈v3, v4〉K�ϕ⍟inner�J〈v4, v7〉K�J〈v7, v2〉K

≡ q′ = q+1 ∧ r′ = r+t′−y ∧ t′ = 0 ∧ r ≥ y ∧ id({x, y})

Recurrence Closed form
q′ = q + 1 q(k) = q(0) + k
r′ = r − y r(k) = r(0) − y(0)k

We then apply the
iteration operator to
ϕouter to compute a
transition formula for
the outer loop. The recurrences found for the outer loop and
their closed forms are shown to the right (again, omitting
“uninteresting” recurrences). Note that our algorithm extracts
these recurrences from ϕouter using only semantic operations:
the fact that ϕouter is an abstraction of a looping computation
is completely transparent to the analysis. Using the closed
forms of the recurrences to the right, we compute the following
transition formula for the outer loop:

ϕ⍟outer = ∃k.k ≥ 0 ∧ q′ = q + k ∧ r′ = r − ky ∧ id({x, y})

≡ q′ ≥ q ∧ r′ = r − (q′ − q)y ∧ id({x, y})
Finally, we compute a transition formula that approximates

all executions which end at v8 as follows:
ϕP = J〈ventry, v1〉 · 〈v1, v2〉K� ϕ⍟outer � J〈v2, v8〉K

≡ q′ ≥ 0 ∧ r′ = x− q′y ∧ r ≤ y ∧ id({x, y})

This formula is strong enough to imply that x′ = q′y′+ r′.
Thus CRA verifies that the assertion holds at v8.

III. CRA ITERATION OPERATOR

In this section, we describe the iteration operator of compo-
sitional recurrence analysis. Suppose that we have a formula
ϕbody which approximates the behaviour of the body of a
loop. The goal of the iteration operator is to compute a
formula ϕ⍟body which represents the effect of zero or more
executions of the loop body. CRA’s iteration operator works
by extracting recurrence relations from the formula ϕbody
and then computing closed forms for these relations. We
present the iteration operator in three stages, based on the
types of recurrence relations being considered: simple recur-
rence equations, stratified recurrence equations, and linear
recurrence (in)equations. Simple and stratified recurrences
are classical types of recurrence equations. Linear recurrence
(in)equations generalize classical recurrence equations by con-
sidering inequalities over linear terms (rather than equalities
over variables).

In the remainder of this section, fix a formula ϕbody repre-
senting the body of a loop. We assume that ϕbody is expressed
in linear (rational and integer) arithmetic (our strategy for
linearizing non-linear arithmetic is described in Section IV).
Additionally, we will assume that ϕbody is satisfiable; if ϕbody

is unsatisfiable, then we may take ϕ⍟body to be
∧

x∈Var x
′ = x ,

which represents zero iterations of the loop.

A. Simple recurrence equations

We start by defining simple recurrences and induction
variables.
Definition 1. A simple recurrence for a formula ϕbody is an
equation of the form x′ = x + c (for a constant c) such that
ϕbody |= x′ = x+ c. If x′ = x+ c is a simple recurrence for
ϕbody, we say that x satisfies the recurrence x′ = x+c, and if
there is some c such that x satisfies the recurrence x′ = x+c,
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we say that x is an induction variable.
The set of all simple recurrences which are satisfied by

a transition formula ϕbody can be detected as follows. First,
query an SMT solver for a model m of ϕbody. Then, for each
variable x, ask an SMT solver if ϕbody implies the equation
x′ = x+Jx′−xKm (where Jx′−xKm denotes the interpretation
of the term x′−x in the model m). This implication holds iff
x is an induction variable.

If x is an induction variable that satisfies the recurrence
x′ = x + c, then the closed form for x is x(k) = x(0) + kc
(writing x(k) for the value that x obtains on the kth iteration
of the loop).

B. Stratified recurrences equations

while(x ≤ 10):
x := x + 1
y := y + x
z := 2 * x

Consider the loop shown to the
right. One can see that x satisfies a
simple recurrence equation x′ = x+1,
and that y satisfies a (non-simple) re-
currence equation y′ = y + x + 1. A
closed form for y’s recurrence is y(k) = y(0)+

∑k−1
i=0 (x

(i)+1).
Since x is an induction variable, we have a closed form for x
(x(i) = x(0)+i), which we may use to simplify y’s recurrence:

y(k) = y(0) +

k−1∑
i=0

(x(0) + i+ 1)

= y(0) + kx(0) + k +

k−1∑
i=0

i

= y(0) + kx(0) +
k(k + 1)

2
.

Stratified recurrence equations generalize this idea: start-
ing from simple recurrence equations, solve more and more
complex recurrences using the closed forms for simpler ones.
Stratified recurrence equations are formalized as follows:
Definition 2. The stratified recurrence equations (and strat-
ified induction variables) of a formula ϕbody are defined
recursively as:
• A simple recurrence equation which is satisfied by ϕbody

is a stratified recurrence equation of ϕbody (and a simple
induction variable is a stratified induction variable) at
stratum 0.

• Let y denote a vector of the stratified induction variables
of strata ≤ N . A recurrence of the form x′ = x+cy+d
(where c is a rational vector and d is a rational) is a
stratified recurrence at stratum N + 1 (and if x satisfies
such a recurrence, it is a stratified induction variable at
stratum N + 1).

We now present a method of generating all stratified in-
duction variables from loop body formula. In order to re-
duce the number of SMT queries made, our method begins
by constructing an intermediate object from the loop body
formula, from which recurrence equations may be easily
extracted. This intermediate object is the affine hull aff(ϕbody)
of ϕbody. The affine hull aff(ϕbody) of a formula ϕbody is
the smallest affine set which contains ϕbody, represented as
(the set of solutions to) a system of equations Ax = b,

Algorithm 1: Affine hull.
Input : Satisfiable formula ϕbody
Output: Affine hull of ϕbody
H ← ⊥; ψ ← ϕbody;
while there exists a model m of ψ do

H ′ ←
∧
{x = JxKm : x ∈ Var ∪ Var′};

H ← H t= H ′ ; /*Affine equality join*/
ψ ← ψ ∧ ¬H;

end
return H

where x =
[
x1, · · · , xn, x′1, · · · , x′n

]
is a vector of

all variables in Var ∪ Var′. Logically, aff(ϕbody) is a system
of equations such that (1) ϕbody |= aff(ϕbody), and (2) every
affine equation over Var ∪ Var′ which is implied by ϕbody is
also implied by aff(ϕbody). The affine hull of a formula may be
computed using Algorithm 1 (a specialization of the algorithm
α̂ in [26] to the abstract domain of affine equalities). For
example, one representation of the affine hull of the example
loop given at the beginning of this section is:

−1 0 0 1 0 0
1 1 0 0 −1 0
0 0 0 2 0 −1



x
y
z
x’
y’
z’

 =

 1
−1
0



Our strategy for generating stratified recurrence equations
from aff(ϕbody) is based on the following lemma. Combined
with property (2) of aff(ϕbody) above, this lemma implies that
any affine equation implied by ϕbody can be expressed as a
linear combination of the equations in aff(ϕbody). Thus, after
computing the affine hull of ϕbody, determining whether a
given variable satisfies a stratified recurrence is simply a matter
of solving a system of linear equations (e.g., using Gaussian
elimination).
Lemma 3 ([30], Corollary 3.1d). Let A be a matrix, b be a
column vector, c be a row vector, and d be a constant. Assume
that the system Ax = b has a solution. Then Ax = b implies
cx = d iff there is a row vector λ such that λA = c and
λb = d.

An algorithm for finding all stratified induction variables of
ϕbody is as follows. Let us write aff(ϕbody) as Ax = b. The
algorithm operates by induction on strata. In the base case,
we compute all simple induction variables using the method
of the previous section. For the induction step, we suppose
that we have detected all induction variables of strata < N .
Then for each variable xi which is not an induction variable
of stratum < N , we ask if there exists λ, c, and d such that:
• λA = c and λb = d (i.e, cx = d is implied by aff(ϕbody)

and thus by ϕbody).
• ci = 1 and ci+n = −1 (the coefficients of xi and x′i are

1 and -1, respectively).
• For all j such that j 6= i + n and n ≤ j ≤ 2n, we have
cj = 0 (except for x′i, all coefficients of primed variables
are 0).

• For all j 6= i such that xj is not an induction variable
of stratum < N , we have cj = 0 (except for xi and
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induction variables of strata < N , all coefficients for
unprimed variables are 0).

This system of linear equations has a solution if and only
if xi is an induction variable of stratum N . The algorithm
terminates when it has computed a recurrence equation for
every variable, or when it fails to detect any induction variables
at some stratum.

Next, we give a procedure computing closed forms of
stratified induction variables. Again, this procedure operates
by induction on strata. For the base case, we compute closed
forms for simple induction variables, as in the previous section.
For the induction step, we make use of the induction hypoth-
esis that the closed form for a stratified induction variable of
stratum N is of the form

x(k) = p0(k) + p1(k)y
(0)
1 +· · ·+ pn(k)y

(0)
n

where each yi is a stratified induction variable of stratum < N
and each pi(k) ∈ Q[k] is a polynomial of one variable with
rational coefficients.

Suppose that we have a recurrence equation at stratum N :
x′ = x + c1y1 + · · · + cnyn + b (all y1, ..., yn are of strata
< N ). Then we may write

x(k) = x(0) +
k−1∑
i=0

(
c1y

(i)
1 +· · ·+ cny

(i)
n + b

)
.

By our induction hypothesis, each y
(i)
j can be written as a

linear term with coefficients from Q[k]. It follows that there
exists p0, ..., pn ∈ Q[k] so that

c1y
(i)
1 +· · ·+ cny

(i)
n + b = p0(i) + p1(i)y

(0)
1 +· · ·+ pn(i)y

(0)
n

Thus we have

x(k) = x(0) +
k−1∑
i=0

p0(i) + p1(i)y
(0)
1 +· · ·+ pn(i)y

(0)
n

= x(0) +
k−1∑
i=0

p0(i) + y
(0)
1

k−1∑
i=0

p1(i) +· · ·+ y(0)n

k−1∑
i=0

pn(i)

The closed form of a summation of a polynomial of degree
m is a polynomial of degree m+ 1. Polynomial curve fitting
is an elementary algorithm which can be used to compute the
closed form for the summation: compute the first m+1 terms
of the summation and then solve the corresponding linear
system of equations for the coefficients of the polynomial.

C. Linear recurrence (in)equations

while(x ≥ 0 ∧ y ≥ 0):
if(*): x := x - 1
else: y := y - 1

Recurrence equations
(such as the simple and
stratified varieties) yield
precise descriptions of
the dynamics of some variables, but what about variables
which do not satisfy any recurrence equation? For example,
consider that neither x nor y satisfy a recurrence equation
in the loop to the right. However, they do satisfy recurrence
inequations: x − 1 ≤ x′, x′ ≤ x, y − 1 ≤ y′, and y′ ≤ y.
These inequations can be closed to yield x(0) − k ≤ x(k)

and x(k) ≤ x(0), y(0) − k ≤ y(k), and y(k) ≤ y(0). We
will now describe a method for extracting and solving linear

recurrence (in)equations, which allows CRA to compute
accurate approximations for loops that cannot be completely
described by a system of recurrence equations.

Definition 4. A linear recurrence (in)equation of a formula ϕ
is an (in)equation which is implied by ϕ and which is of the
form

cx′ ./ cx+ by + d

where ./ ∈ {<,≤,=}, x is any vector of variables, y is
a vector of stratified induction variables in ϕbody, c, b are
constant vectors, and d is a constant.

Linear recurrence (in)equations generalize recurrence equa-
tions in two ways: first, they allow for inequalities rather
than equalities. Second, they allow recurrences for linear
terms, rather than just variables. For example, the linear
recurrence equation (x′ + y′) = (x + y) + 1 is satisfied by
the body of the loop above, which can be closed to yield
(x(k) + y(k)) = (x(0) + y(0)) + k.

We now describe a method for detecting and solving linear
recurrence (in)equations. Let Var] denote the set of variables
which are not stratified induction variables of ϕbody. Introduce
a set of difference variables δx, one for each variable x
in Var] (stratified induction variables are precisely described
by recurrence equations, so they need not be approximated).
Construct the strongest formula δ(ϕbody) which is implied
by ϕbody (conjoined with definitional equalities for each dif-
ference variable) and which the only free variables are the
difference variables and the stratified induction variables of
ϕbody as:

δ(ϕbody) , ∃Var′ ∪ Var].ϕbody ∧
∧
{δx = x′ − x : x ∈ Var]}

Next, use Algorithm 2 to compute the convex hull of
δ(ϕbody). Geometrically, the convex hull hull(ψ) of a formula
ψ is the smallest convex polyhedron which contains ψ. Logi-
cally, it is a set of (in)equations such that (1) every (in)equation
in hull(ψ) is implied by ψ, and (2) any affine (in)equation
(over the free variables of ψ) which is implied by ψ is also
implied by hull(ψ). For example, hull(δ(ϕbody)) for the loop
above is:

0 ≤ δx ∧ δx ≤ 1 ∧ 0 ≤ δy ∧ δy ≤ 1 ∧ δx + δy = 1

Algorithm 2: Convex hull.
Input : Formula of the form ∃X.ψ, where ψ is satisfiable and

quantifier-free
Output: Convex hull of ∃X.ψ
P ← ⊥;
while there exists a model m of ψ do

Let Q be a cube of the DNF of ψ s.t. m |= Q;
Q← project(Q,X); /*Polyhedral projection*/
P ← P tQ; /*Polyhedral join*/
ψ ← ψ ∧ ¬P ;

end
return P

Note that the only variables which appear in the
(in)equations in hull(δ(ϕbody)) are (stratified) induction vari-
ables and difference variables. Thus, any (in)equation in
hull(δ(ϕbody)) may be written as cδ ./ by + d (where δ is
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the vector of difference variables, y is the vector of stratified
induction variables, c and b are constant vectors, and d is a
constant). Recalling the definition of the difference variables,
such an inequation may be rewritten as c(x′ − x) ./ by + d
and thus as cx′ ./ cx+ by+ d, which matches the definition
of linear recurrence (in)equations given in Definition 4. The
closed form of this recurrence inequation is

cx(k) ./ cx(0) +
k−1∑
i=0

by(i) + d

where the closed form of the summation
∑k−1

i=0 by
(i) + d is

computed as in Section III-B.

D. Loop guards

Typically, there is crucial information about the execution
of a loop that cannot be captured by recurrence relations. For
example, consider the loop in Section III-B. Supposing that
the loop executes n times, it must be the case that x(k) ≤ 10
for each k < n. Further, consider that the variable z is a
function of the simple induction variable x, and so z(k) can
be described precisely in terms of the pre-state variables (even
though it does not itself satisfy any recurrence):

z(k) =

{
z(0) if k = 0

2(x(0) + k + 1) otherwise.
The question is: how can this type of information be recovered
from a loop body formula?

We define the guard of a transition formula ϕbody as follows:

guard(ϕbody) , (∃Var.ϕbody) ∧ (∃Var′.ϕbody)

If ϕbody is a loop body formula, then guard(ϕbody) is a
formula which over-approximates the effect of executing at
least one execution of the loop. Intuitively, (∃Var′.ϕbody) is a
precondition that must hold before every iteration of the loop
and (∃Var.ϕbody) is a post-condition of the loop that must
hold after each iteration.

Consider again the example loop in Section III-B. The loop
body formula is as follows:

ϕbody = x ≤ 10 ∧ x′ = x+ 1 ∧ y′ = y+ x′ ∧ z′ = 2x′

Following the definition of guard, we have:

guard(ϕbody) , (∃x,y,z.ϕbody) ∧ (∃x’,y’,z’.ϕbody)

≡ (x’ ≤ 11 ∧ z’ = 2x’) ∧ (x ≤ 10) .

Thus, guard(ϕbody) recovers the desired information about x
and z.

Since loop body formulas may be large, in practice it may be
advantageous to simplify the guard formula by eliminating the
quantifiers (as we did above). A second option, which is more
efficient but less precise, is to over-approximate quantifier
elimination. Two possibilities are to use Algorithm 2 to com-
pute the convex hull of guard(ϕbody), or to use optimization
modulo theories [18] to compute intervals for each pre- and
post-state variable in ϕbody.

E. Bringing it all together
We close this section by describing how the pieces defined

in this section fit into the iteration operator of compositional
recurrence analysis. Let CR(ϕbody) denote the set of closed lin-
ear recurrence (in)equations (including simple and stratified re-
currence equations) satisfied by ϕbody. Each such (in)equation
is of the form cx(k) ./ t, where the free variables of t are
drawn from {x(0) : x ∈ Var} and a distinguished variable
k /∈ Var indicating the loop iteration. Letting t[x(0) 7→ x]
denote the term t with every variable of the form x(0) is
replaced by the corresponding variable x, we define ϕ+

body to
be the following formula:

∃k.k ≥ 1 ∧
∧
{cx′ ./ t[x(0) 7→ x] : cx(k) ./ t ∈ CR(ϕbody)} .

Finally, the iteration operator of CRA is defined as:

ϕ⍟body , (ϕ+
body ∧ guard(ϕbody)) ∨

∧
x∈Var x

′ = x .

IV. LINEARIZATION

The iteration operator presented in the previous section
operates under the assumption that loop body formulas are ex-
pressed in linear arithmetic. However, a program may contain
non-linear instructions, and even if it does not, CRA’s iteration
operator may introduce non-linearity (consider Example 1,
where the transition formula for the outer loop ϕ⍟outer contains
the non-linear proposition r′ = x − q′y). A solution to this
problem is to linearize non-linear formulas before passing
them to the iteration operator.

Linearization is an operation that, given an (arbitrary)
arithmetic formula ϕ, computes a formula lin(ϕ) which over-
approximates ϕ (i.e., ϕ |= lin(ϕ)), but which is expressed in
linear arithmetic. There is generally no best approximation of
a non-linear formula as a linear formula, so our method is
(necessarily) heuristic.

We explain our linearization algorithm informally using an
example. Consider the following non-linear formula (where
w, x, y, z are integers):

ψ , 1 ≤ w = x < y < 5 ∧ wy ≤ z ≤ xy
Our algorithm begins by normalizing ψ, separating it into
a linear part and a set of non-linear equations (introducing
Skolem constants as necessary). For example, the result of
normalizing ψ is:(
1 ≤ w = x < y < 5∧ γ0 ≤ z ≤ γ1

)
∧
(
γ0 = wy ∧ γ1 = xy

)
The left conjunct is a linear over-approximation of ψ, but

it is very imprecise: semantically equal (but syntactically
distinct) non-linear terms become semantically unequal in the
over-approximation, and all information about the magnitude
of non-linear terms is lost. To increase precision of this
approximation, we use two strengthening steps.

1) Replace the non-linear operations with uninterpreted
function symbols and compute the affine hull of the re-
sulting formula to infer affine equalities between Skolem
constants (representing non-linear terms). For our exam-
ple ψ, this step discovers the equality γ0 = γ1.

2) Compute concrete and symbolic intervals for non-linear
terms. Consider γ1 = xy from our example ψ. First
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compute concrete (x ∈ [1, 3] and y ∈ [2, 4]) and symbolic
(x ∈ [x, x] and y ∈ [y, y]) intervals for the operands
x and y, using symbolic optimization [18] to compute
the concrete intervals. Obtain a concrete interval for xy
(xy ∈ [2, 12]) by multiplying the concrete intervals of its
operands. Obtain symbolic intervals for xy (xy ∈ [y, 3y]
and xy ∈ [2x, 4x]) by multiplying the concrete interval
for x by the symbolic interval for y and vice-versa. As
a result of interval computation, we discover: 2 ≤ γ1 ≤
12 ∧ y ≤ γ1 ≤ 3y ∧ 2x ≤ γ1 ≤ 4x.

We take lin(ψ) to be the initial coarse linear approximation of
ψ conjoined with the facts discovered by the two strengthening
steps.

We expect linearization to have applications outside of the
context in which we presented it, particularly in program
analysis, where over-approximation can be tolerated but non-
linear terms cannot. Finding improved linearization heuristics
is an interesting direction of future work.

V. EXPERIMENTS

In this section, we present an experimental evaluation of
CRA. We aim to support our hypothesis that, despite the fact
that CRA may not take advantage of contextual information,
it is competitive with leading verification techniques based on
abstraction refinement.

We implemented CRA in a tool that analyzes C code
(using the CIL [24] front-end). We use Z3 [9] to resolve
SMT queries that result from applying the iteration operator
and checking assertion violations. Polyhedra operations are
passed to the New Polka library implemented in Apron [4].
The quantifier elimination algorithm from [22] is used to
compute loop guards. The tool and benchmarks are available
at http://www.cs.toronto.edu/∼zkincaid/cra.

We tested two different configurations of CRA: one which
is fully compositional (CRA) and does not take advantage
of contextual information, and one (CRA+OCT) which uses
an intra-procedural octagon analysis [19] to gain some con-
textual information, but which is otherwise compositional.
We compare CRA’s performance against the state-of-the-
art invariant generation and verification tools CPACHECKER
(overall winner of the 2015 Software Verification Competition)
and SEAHORN (winner of the loops category among tools
which are sound for verification).

To evaluate the precision of CRA we used it to verify
the correctness of a suite of 119 small loop benchmarks of
varying difficulty. Our benchmark suite was drawn from the
loops category of the 2015 Software Verification Competition
(SVComp-15), as well as a set of non-linear benchmarks
(Non-linear), such as the one in Figure 1. The results for the 81
safe, integer-only benchmarks from these suites are shown in
Table I. The suite also contains 38 unsafe benchmarks: CRA
and CRA+OCT have no false negatives on these benchmarks;
CPACHECKER has 3 and SEAHORN has 2.

CRA can prove safety for 27 more programs than
CPACHECKER and 3 fewer than SEAHORN, thus demon-
strating that CRA is capable of generating competitively

Test Suite #Tests CRA+OCT CRA CPACHECKER SEAHORN

SVComp-15 74 65 60 37 65
Non-linear 7 6 5 1 3
Total 81 71 (88%) 65 (80%) 38 (47%) 68 (85%)

Running time across all test suites
Mean 1.9s 1.8s 42.4s 37.7s
Median 0.6s 0.6s 1.6s 0.2s

TABLE I
EXPERIMENTAL RESULTS.

precise invariants. This holds despite the fact that CRA is
a compositional analysis which does not use contextual in-
formation or employ abstraction refinement. The performance
of CRA+OCT (compared to CRA) indicates that CRA can
be combined with other invariant generation techniques to
increase precision.

VI. RELATED WORK

In this section, we compare compositional recurrence anal-
ysis to a sampling of related work on recurrence analysis and
compositional invariant generation.
Recurrence analysis. The idea of using closed forms of
recurrence relations to approximate loops has appeared in
a number of other papers. Generally speaking, CRA differs
from previous work in two essential ways: first, CRA uses
an SMT solver to extract semantic recurrences, rather than
syntactic recurrences. Second, CRA goes beyond exact recur-
rences (equations over variables) to approximate recurrences
(inequations over linear terms).

Ammarguellat and Harrison give a method for detecting
induction variables which is compositional in the sense that
it uses closed forms for inner loops in order to recognize
nested recurrences [1]. Maps from variables to symbolic terms
(effectively a symbolic constant propagation domain) are used
as an abstract domain (in contrast to CRA’s use of arbitrary
arithmetic formulas). Rodrı́guez-Carbonell and Kapur [27] and
Kovács [14] developed techniques for discovering invariant
polynomial equations based on solving recurrence relations.
The classes of simple and stratified recurrence equations are
subsumed by the ones considered in [27], [14], but admit a
simpler algorithm for computing closed forms. Kroening et al.
[15] present a technique for computing under-approximations
of loops which uses polynomial curve-fitting to directly
compute closed forms for recurrences rather than extracting
recurrences and then solving them in a separate step.

Ancourt et al. give a technique for computing recurrence
inequations for while loops with affine bodies [2]. As with the
method for computing linear recurrence inequations presented
in Section III-C, their method is based on difference variables
and polyhedral projection. CRA generalizes this work by (1)
extending it to arbitrary control flow and non-linear arithmetic,
(2) integrating recurrence inequations with stratified induction
variables, thereby allowing enabling the computation of invari-
ant polynomial inequations. Ancourt et al. discuss a method
for computing invariant polynomial inequations which is based
on higher-order differences rather than stratified recurrence
inequations.
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Acceleration. Acceleration is a technique closely related to
recurrence analysis that was pioneered in infinite-state model
checking [6], [11], [3], and which has recently found use in
program analysis [12], [17], [13]. Given a set of reachable
states and an affine transformation describing the body of
a loop, acceleration computes an exact post-image which
describes the set of reachable states after executing any number
of iterations of the loop (although there is recent work on
abstract acceleration that computes over-approximate post-
images [12], [13]). In contrast, CRA is approximate rather
than exact, and computes transition formulas rather than post-
images. A result of these two features is that CRA can be
applied to arbitrary loops, while acceleration is classically
limited to simple loops where the body consists of a sequence
of assignment statements.
Compositional program analysis. Compositional program
analysis has a long history. Particular examples are inter-
procedural analyses based on summarization [31] and
elimination-style dataflow analyses (a good overview of which
can be found in [28]). The following surveys recent work on
compositional analysis for numerical invariants.

Kroening et al. [16] and Biallas et al. [5] present compo-
sitional analysis techniques based on predicate abstraction. In
addition to predicate abstraction, there are a few papers which
use numerical abstract domains for compositional analysis.
These include an algorithm for detecting affine equalities
between program variables [23], an algorithm for detecting
polynomial equalities between program variables [8], a dis-
junctive polyhedra analysis which uses widening to compute
loop summaries [25], and a method for automatically synthe-
sizing transfer functions for template abstract domains using
quantifier elimination [21]. Our abstract domain is the set of
arbitrary arithmetic formula, which is more expressive than
these domains, but which (as usual) incurs a potential price in
performance. It would be interesting to apply abstractions to
our formulas to improve the performance of our analysis.
Linearization. The linearization algorithm in Section IV was
inspired by Miné’s procedure for approximating non-linear
abstract transformers [20]. Miné’s procedure abstracts non-
linear terms by linear terms with interval coefficients using the
abstract value in the pre-state to derive intervals for variables.
Our algorithm abstracts non-linear terms by sets of symbolic
and concrete intervals, and applies to the more general setting
of approximating arbitrary formulas.

VII. CONCLUSION

This paper describes compositional recurrence analysis, a
fully compositional algorithm for generating numerical invari-
ants of imperative programs. There are two main points to take
away. The first is that it is possible to design a fully composi-
tional analysis (which makes no use of contextual information)
that is competitive with state-of-the-art verification techniques
based on abstraction refinement. Second, recurrence-based
program analysis may be extended to programs with arbitrary
control flow by exploiting compositionality and SMT solving.
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Abstract—IC3 is undoubtedly one of the most successful and
important recent techniques for unbounded model checking.
Understanding and improving IC3 has been a subject of a
lot of recent research. In this regard, the most fundamental
questions are how to choose Counterexamples to Induction (CTIs)
and how to generalize them into (blocking) lemmas. Answers
to both questions influence performance of the algorithm by
directly affecting the quality of the lemmas learned. In this
paper, we present a new IC3-based algorithm, called QUIP1,
that is designed to more aggressively propagate (or push) learned
lemmas to obtain a safe inductive invariant faster. QUIP modifies
the recursive blocking procedure of IC3 to prioritize pushing
already discovered lemmas over learning of new ones. However,
a naive implementation of this strategy floods the algorithm with
too many useless lemmas. In QUIP, we solve this by extending
IC3 with may-proof-obligations (corresponding to the negations
of learned lemmas), and by using an under-approximation of
reachable states (i.e., states that witness why a may-proof-
obligation is satisfiable) to prune non-inductive lemmas. We
have implemented QUIP on top of an industrial-strength im-
plementation of IC3. The experimental evaluation on HWMCC
benchmarks shows that the QUIP is a significant improvement
(at least 2x in runtime and more properties solved) over IC3.
Furthermore, the new reasoning capabilities of QUIP naturally
lead to additional optimizations and new techniques that can lead
to further improvements in the future.

I. INTRODUCTION

IC3 [1] (also known as PDR [2]) is one of the most power-
ful algorithms for unbounded model checking of hardware. It
is highly customizable [3], [4], and was successfully extended
to more general domains [5]–[7].

In a nutshell, IC3 aims at constructing an inductive invari-
ant proving the property. IC3 works by iteratively detecting
states that lead to a property violation (in IC3-literature these
states are also identified with counterexamples-to-induction
and are called CTIs) and by learning lemmas that demonstrate
why these CTIs cannot be reached from the initial states within
a bounded number of steps. In this way, IC3 incrementally
refines over-approximations Fk of states that are reachable in
up to k steps, and terminates when one of the sets Fk represents
a safe inductive invariant, or when a counterexample is found.
The general scope of this paper is to further improve on the
invariant generation capabilities of IC3. In what follows, we
first analyze and discuss some of the choices made by IC3,
and then present our approach.

One of the most important decisions made by IC3 pertains
to the process of generalization of new lemmas at the time

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. This material has been approved for public release and unlimited distribution. DM-0002441.

1QUIP is an acronym for “a QUest for an Inductive Proof”.

when they are discovered. Ideally, given a CTI, we would like
to generate the strongest possible lemma that excludes this CTI
and holds on all reachable states. However, obviously the set
of all reachable states is not available. IC3 solves this problem
by attempting to find the strongest lemma ϕ that is relatively
inductive with respect to the appropriate over-approximation
Fk. However, as Fk is neither an over-approximation nor an
under-approximation of the set of all reachable states, ϕ can be
either too strong or too weak. Being too strong means that ϕ
excludes some of the reachable states and hence has no chance
to be in the final inductive invariant, while being too weak
means that ϕ prunes less unreachable states which degrades
convergence. Another deficiency of IC3 is that once a lemma
is added, it remains in the system, and there is no mechanism
to detect and prune non-inductive lemmas, which translates to
the wasted effort spent to propagate them.

An important optimization that already exists in IC3
consists of blocking the same CTI at many different levels. In
our experience, IC3 often discovers many different lemmas to
block the same CTI. On the one hand, different lemmas are in
general of different quality and so having a variety of lemmas
to choose from is beneficial. On the other hand, keeping several
lemmas for the same CTI leads to a wasted effort of storing
and pushing multiple lemmas when one would be enough.
IC3 partially addresses this concern by pushing each lemma
as far as possible when it is created (which implicitly blocks
the corresponding CTIs at higher levels); however, it often
happens that a lemma ϕ cannot be pushed forward because the
appropriate over-approximation Fk is not strong enough. An
alternative solution is to derive additional supporting lemmas
that enable pushing ϕ forward, thus prioritizing the usage of
a lemma already in the system, at the expense of finding
additional lemmas required to support it. We believe that the
new strategy is superior, as it should lead to an inductive
invariant faster. Unfortunately, a naı̈ve implementation forces
the algorithm to start discovering new lemmas to support
lemmas already in the system, and then new lemmas to support
these supporting lemmas, and so on – flooding the algorithm
with a huge number lemmas. To some extent the problem again
boils down to lack of control on the usefulness of lemmas in
the system, and the need to detect and prune the less useful
ones.

In this paper, we present an improvement to the core of
the IC3 algorithm. Motivated by the considerations above, we
present an algorithm, called Quip, that combines the following
innovations:

1) In Quip, we periodically detect the maximal inductive
subset of all lemmas discovered so far. These lemmas are
stored separately (in F∞ in the terminology of PDR) and
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represent good lemmas – lemmas that should always remain
in the system.

2) In Quip, we turn existing lemmas into additional proof
obligations (and prioritize considering these proof obligations
over regular proof obligations). Given ϕ ∈ Fk \Fk+1, we add
¬ϕ at level k + 1 as a may-proof-obligation. In this way, we
either succeed to push ϕ further (if ¬ϕ is blocked), or find a
witness trace that explains why ϕ cannot be pushed. Since ¬ϕ
does not necessarily represent a CTI, the witness trace does not
necessarily lead to a property violation; however, it produces
a concrete forward reachable state that is excluded by ϕ and
hence which explains why ϕ is not inductive. In particular,
ϕ is a bad lemma – lemma that has no chance to be in the
inductive invariant.

3) In Quip we dynamically discover reachable states.
These reachable states are used in several ways. First, each
time that a new reachable state is discovered, it is used to mark
as bad all lemmas in the system that exclude this state. Second,
reachable states are used to automatically invalidate other may-
proof-obligations or to discover a real counterexample. Finally,
they are used to effectively enlarge the set of initial states and
take the enlarged initial states into account when generalizing
lemmas in the future.

Note that the ideas above are highly interdependent: with-
out considering may-proof-obligations there is no way to
produce interesting reachable states, while without considering
reachable states there is no way to prune lemmas in the
system. We also claim that Quip partially addresses the
problems described in the beginning. By prioritizing may-
proof-obligations over regular-proof-obligations, we try to
reuse lemmas that already exist. In addition, as may-proof-
obligations usually consist of significantly fewer literals than
regular proof obligations, we effectively try to avoid detecting
lemmas that are too weak, while by computing and using the
set of reachable states for generalization, we also try to avoid
detecting lemmas that are too strong. Finally, we can now
classify lemmas as good, bad and unknown, and thus gain
some control on which lemmas we want to propagate and keep,
and which lemmas we do not. In what follows, we show how
to integrate the presented ideas into an efficient algorithm and
experimentally demonstrate that this represents a significant
performance improvement over classical IC3.

We believe that our work extends the IC3 framework with
additional reasoning capabilities: computing maximal induc-
tive invariants, considering may-proof-obligations and forward
reachable states. These naturally lead to other optimizations
and new techniques that can lead to further improvement in
the future. Last but not least, the new framework can be used
with all other known IC3 optimizations and can be adapted
to more general domains.

The rest of the paper is structured as follows. In Section II,
we review the necessary background about IC3. We present
the Quip algorithm at high-level in Section III, and the details
of our implementation in Section IV. Our empirical evaluation
is reported in Section VI. Finally, we conclude the paper with
an overview of related work in Section VII, and conclusion in
Section VIII.

II. BACKGROUND

Let V be a set of variables. A literal is either a variable
b ∈ V or its negation ¬b. A clause is a disjunction of literals.
A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. A cube is a conjunction of literals.
A Boolean formula in Disjunctive Normal Form (DNF) is a
disjunction of cubes. It is often convenient to treat a clause
or a cube as a set of literals, a CNF as a set of clauses, and
DNF as a set of cubes. For example, given a CNF formula F ,
a clause c and a literal `, we write ` ∈ c to mean that ` occurs
in c, and c ∈ F to mean that c occurs in F .

Let V be a set of variables and V ′ = {v′ | v ∈ V}. A safety
verification problem is a tuple P = (Init ,Tr ,Bad), where
Init(V) and Bad(V) are formulas with free variables in V
denoting initial and bad states, respectively, and Tr(V,V ′) is
a formula with free variables in V ∪V ′ denoting the transition
relation. Without loss of generality, we assume that Init and
Tr are in CNF.

The verification problem P is SAT (or UNSAFE) iff there
exists a natural number N such that the following formula is
SAT:

Init(~v0) ∧

(
N−1∧
i=0

Tr(~vi, ~vi+1)

)
∧ Bad(~vN ) (1)

P is UNSAT (or SAFE) iff there exists a formula Inv(V),
called a safe invariant, that satisfies the following conditions:

Init(~v)→ Inv(~v) Inv(~v) ∧ Tr(~v,~v′)→ Inv(~v′) (2)
Inv(~v)→ ¬Bad(~v) (3)

A formula Inv that satisfies (2) is called an invariant, while a
formula Inv that satisfies (3) is called safe.

We give a brief description of IC3 that highlights some
steps, but omits many crucial optimizations. We refer the
reader to [8] for an overview of available optimizations and
their possible implementations.

IC3 maintains a set of clauses F0, F1, . . . called a trace.
Each Fi in a trace is called a frame, each clause c ∈ Fi is
called a lemma, and the index of a frame is called a level. We
assume that F0 is initialized to Init and that Init → ¬Bad .
IC3 maintains the following invariant:

Fi → ¬Bad Fi+1 ⊆ Fi Fi ∧ Tr → F ′i+1

That is, each element of the trace is safe, the trace is syntac-
tically monotone, and each Fi+1 is inductive relative to Fi.

Additionally, IC3 maintains a queue of proof obligations
(or CTI’s) of the form 〈m, i〉 where m is a cube over state
variables and i is a level. At each point of the execution,
it considers a proof obligation 〈m, i〉 with the smallest level
i, and attempts to prove that m is reachable in i steps. If
i = 0 then there is a real counterexample. Otherwise, it
makes a predecessor query SAT?(¬m ∧ Fi−1 ∧ Tr ∧ m′)
that checks whether a state in m can be reached from a state
in Fi−1. If the result is satisfiable, it adds a predecessor of
m as a new proof obligation at level i − 1. If the result is
unsatisfiable, it learns a new lemma ϕ, such that Init → ϕ,
ϕ → ¬m and ϕ ∧ Fi−1 ∧ Tr → ϕ′, and adds ϕ to all Fj ,
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Data: A cex queue Q , where c ∈ Q is a pair 〈m, i〉, m
is a cube over state variables, and i ∈ N. A level
N . A trace F0, F1, . . .

Initially: Q = ∅, N = 0, F0 = Init , ∀i > 0 · Fi = >.
repeat

Unreachable If there is an i < N s.t. Fi+1 ⊆ Fi

return Unreachable.
Reachable If there is an m s.t. 〈m, 0〉 ∈ Q

return Reachable.
Unfold If FN → ¬Bad , then set N ← N + 1, and Q← ∅.
Candidate If for some m, m→ FN ∧ Bad , then add
〈m,N〉 to Q .

Predecessor If 〈m, i+ 1〉 ∈ Q and there are m0 and m1 s.t.
m1 → m, m0 ∧m′1 is satisfiable, and
m0 ∧m′1 → Fi ∧ Tr ∧m′, then add 〈m0, i〉 to Q .

NewLemma For 0 ≤ i < N : given 〈m, i+ 1〉 ∈ Q and a
clause ϕ, such that ϕ→ ¬m,
if Init → ϕ, and ϕ ∧ Fi ∧ Tr → ϕ′, then
add ϕ to Fj , for j ≤ i+ 1.

ReQueue If 〈m, i〉 ∈ Q , 0 < i < N and Fi−1 ∧ Tr ∧m′ is
unsatisfiable, then add 〈m, i+ 1〉 to Q .

Push For 0 ≤ i < N and a clause (ϕ ∨ ψ) ∈ Fi,
if ϕ 6∈ Fi+1, Init → ϕ and ϕ ∧ Fi ∧ Tr → ϕ′, then
add ϕ to Fj , for each j ≤ i+ 1.

until ∞;

Fig. 1. Rule-based description of IC3/PDR.

for j ≤ i. In other words, the lemma ϕ represents a new over-
approximation, and in particular demonstrates why the state m
cannot be reached in up to i steps from the initial states. An
important optimization is to re-enqueue 〈m, i + 1〉 as a new
proof obligation. If at any point of the execution Fi−1 = Fi

and Fi → ¬Bad , then Fi represents an inductive invariant
establishing the correctness of the property.

Fig. 1 shows a rule-based overview of IC3 (adapted
from [9]). Initially, Q is empty, N = 0 and F0 = Init . Then,
the rules in Fig. 1 are applied (possibly in a non-deterministic
order) until either Unreachable or Reachable rule is applica-
ble. Unfold extends the current trace and increases the level
at which counterexample is searched. Candidate picks a bad
state. Predecessor extends a counterexample from the queue
by one step. NewLemma blocks a counterexample and adds
a new lemma. ReQueue moves the counterexample to the
next level. Finally, Push pushes a lemma to the next level,
optionally generalizing it inductively. A typical schedule of
the rules is to first apply all applicable rules except for Push
and Unfold, followed by Push at all levels, then Unfold, and
then repeating the cycle.

III. QUIP: THE ALGORITHM

In this section, we give a high-level description of Quip
as a set of rules. This description shows various reasoning
capabilities of Quip and establishes its correctness. A practical
implementation of these rules is described in Section IV.

The main data structures and rules for Quip are shown
in Fig. 2. Similarly to IC3, Quip manages proof obligations
using a priority queue Q. However each proof obligation is
a triple 〈m, i, t〉, where m and i are as in IC3, and t is

Data: A cex queue Q , where c ∈ Q is a triple 〈m, i, t〉,
m is a cube over state variables, i ∈ N, and
t ∈ {may ,must}. A level N . A trace F0, F1, . . .
An invariant F∞. A set of reachable states
REACH.

Initially: Q = ∅, N = 0, REACH = F0 = Init ,
∀i ≥ 1 · Fi = >, F∞ = >.
Require: Init → ¬Bad
repeat

Unreachable If F∞ → ¬Bad
return Unreachable.

Reachable If 〈m, i,must〉 ∈ Q, m ∩ (∨REACH) 6= ∅
return Reachable.

Unfold If FN → ¬Bad , then set N ← N + 1.
Candidate If for some m, m→ FN ∧ Bad , then add
〈m,N,must〉 to Q .

Predecessor If 〈m, i+ 1, t〉 ∈ Q and there are
m0 and m1 s.t. m1 → m, m0 ∧m′1 is satisfiable,
and m0 ∧m′1 → Fi ∧ Tr ∧m′,
then add 〈m0, i, t〉 to Q .

NewLemma For 0 ≤ i < N : given 〈m, i+ 1〉 ∈ Q and a
clause ϕ, such that ϕ→ ¬m,
if (∨REACH)→ ϕ, and ϕ ∧ Fi ∧ Tr → ϕ′, then
add ϕ to Fj , for j ≤ i+ 1.

ReQueue If 〈m, i,must〉 ∈ Q , and Fi−1 ∧ Tr ∧m′ is
unsatisfiable, then add 〈m, i+ 1,must〉 to Q .

Push For 1 ≤ i and a clause (ϕ ∨ ψ) ∈ Fi \ Fi+1,
if (∨REACH)→ ϕ and ϕ ∧ Fi ∧ Tr → ϕ′, then
add ϕ to Fj , for each j ≤ i+ 1.

MaxIndSubset If there is i > N s.t. Fi+1 ⊆ Fi, then
F∞ ← Fi, and ∀j ≥ i · Fj ← F∞.

Successor If 〈m, i+ 1, t〉 ∈ Q and exist m0, m1 s.t.
m0 ∧m′1 are satisfiable and
m0 ∧m′1 → (∨REACH) ∧ Tr ∧m′, then
add m1 to REACH.

MayEnqueue For i ≥ 1 and a clause ϕ ∈ Fi \ Fi+1,
if (∨REACH)→ ϕ, add 〈¬ϕ, i+ 1,may〉 ∈ Q.

ResetQ Q← ∅.
ResetReach REACH ← Init .

until ∞;

Fig. 2. Rule-based description of Quip.

the type of the proof-obligation: either may or must. Must
proof-obligations represent cubes that must be blocked for the
problem to be SAFE. May-proof-obligations represent cubes
that we would like to block, but the problem might be SAFE
even if they are not blocked. As in IC3, Quip maintains a
trace of clauses F0, F1, . . .. However, the number of the non-
empty frames in the trace can be larger than the current depth
N . Intuitively, a non-empty frame Fi with i > N contains
clauses that are inductive up to a yet-to-be-explored level i.
Additionally, as in PDR, Quip maintains a set F∞ of absolute
invariants. The unique feature of Quip is that it also maintains
a set REACH of states reachable from Init . In practice, we
keep REACH as a set of cubes. We say that a lemma ϕ ∈ Fi is
good if it is also in F∞, bad if it excludes a state in REACH,
and unknown otherwise. Note that the categories above are
exclusive – a lemma cannot be both good and bad at the same
time.

We now describe the rules.
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a) Termination: The rule Unreachable in Quip is even
simpler than the corresponding one in IC3: the verification
problem is deduced to be SAFE as soon as F∞ ⇒ ¬Bad .
Note that this formulation makes it extremely easy to handle
designs with multiple properties. The rule Reachable in Quip
states that the problem is UNSAFE if a must-proof-obligation
includes a reachable state; that is, either an initial state or a
new reachable state explicitly found by the algorithm.

b) Generating proof obligations: The rules Candidate,
Predecessor, and ReQueue are similar to the corresponding
rules of IC3. The rule MayEnqueue is new. Candidate picks
a bad state and adds it as a must-proof-obligation. Predecessor
adds a CTI m0 for an already existing proof obligation m1

as a new proof obligation, at the level one lower than that
of m1. The type of m0 is the same as that of m1, and so
in particular m0 is a must-proof-obligation whenever m1 is.
ReQueue moves a blocked must-proof-obligation to the next
level. We explicitly limit this rule to must-proof-obligations
only, as may-proof-obligations are handled by MayEnqueue.
MayEnqueue picks a lemma ϕ ∈ Fi \ Fi+1 that is not yet
established at level i+ 1 and adds its negation ¬ϕ as a may-
proof-obligation at level i + 1. The rule is only applicable if
the status of ϕ is unknown. Note that it is actually sound to
take any clause ψ such that Init ⇒ ψ and any level k, and
add ¬ψ at level k as a may-proof-obligation. However, we do
not currently use this level of generality.

c) Managing lemmas: Unfold increases the level at
which a counterexample is searched. NewLemma adds a new
lemma that blocks a proof obligation. We explicitly disallow
learning bad lemmas. For correctness, it is possible to take
any clause ψ such that ψ ∧ Fi ∧ Tr → ψ′ and add ψ to
all Fj for j ≤ i + 1. Push pushes a lemma to the next
level, optionally generalizing it inductively. As before, we
limit pushing and generalization to unknown lemmas only. An
important distinction from IC3 is that in Quip Push is not
limited to the current working depth N of the algorithm.

d) Inductive invariant: MaxIndSubset checks whether
for some i there is Fi = Fi+1. In this case, Fi is an inductive
invariant which is used to enlarge F∞. In the case i < N ,
F∞ is a safe inductive invariant and an immediate application
of Unreachable finishes verification. Otherwise, it discovers
new good lemmas. Correctness follows from the fact that
Fi = Fi+1 indirectly implies that ∀j ≥ i · Fj ∩ REACH = ∅.
That is, there are no bad lemmas in any Fj for j ≥ i.
Note that a maximal inductive subset of current lemmas is
computed by applying Push as much as possible, followed by
MaxIndSubset.

e) Reachability: Successor adds new reachable states.
Given a proof obligation m that can be reached in one
transition from an already known reachable state (either an
initial state or an explicitly found reachable state), it computes
a new reachable state m1 that is included in m and adds it to
REACH.

f) Restarts: The final set of rules deals with various
reset mechanisms. The rule ResetQ allows to empty the proof
obligation queue. This rule can be though of as a “local reset”
that may guide Quip in a different search place by examining
different predecessors and learning new lemmas. Note that
in IC3, ResetQ is implicitly included in Unfold. That is,

F0 = Init
if F0 ∧ Bad then

return CEX
N ← 0; F∞ ← >; REACH = F0

while (true) do
N ← N + 1
if Quip_RecBlockCube(Bad , N) = CEX then

return CEX
if Quip_Push() = PROOF then

return PROOF

Fig. 3. Main Procedure (Quip_Main).

IC3 resets its queue every time a new depth is explored.
On the other hand, in Quip this choice is flexible. The rule
ResetReach resets the reachable states. In practice, we may
remove only some (less useful) reachable states when their
number becomes too large.

IV. QUIP: IMPLEMENTATION

In this section, we describe our implementation of the
Quip rules.

The set of all reachable states handled by Quip is of the
form REACH = Init ∪ R, where Init are the initial states
and R are the reachable states dynamically discovered by the
algorithm. In our current implementation, R consists only of
concrete states. That is, each element of R is a complete
assignment to all state variables. Each state in R is stored
as a Boolean array. The main functionality required from R
is checking whether a given cube s intersects (or equivalently
subsumes) one of the states r in R. In the pseudocode below,
the function Intersect(R, s) returns NULL if R ∩ s = ∅,
and returns a state r ∈ R with r ∩ s 6= ∅ otherwise.

In what follows, we require an additional bookkeeping
mechanism. If a proof obligation 〈s, f, p〉 is added as a
predecessor of another proof obligation 〈s̃, f̃ , p̃〉 using the
Predecessor rule, then we say that s̃ is a parent of s. On
the other hand, if 〈s, f, p〉 is added using either Candidate
or MayEnqueue, then we say that s has no parent. Finally,
the rule ReQueue keeps the parent information. In the pseu-
docode, we let Parent(s) be the parent of s or NULL if
none. To some extent this bookkeeping is already supported by
most IC3 implementations as it is required for reconstructing
counterexamples.

A. The Main Loop

Our implementation of Quip is structured similarly to
PDR [2]. For completeness, the main loop is shown in Fig. 3.
The algorithm first checks for a counterexamples at level 0
(N = 0), and then incrementally increases the working level
N until either a counterexample or a safe inductive invariant
is found.

B. Recursive Block Cube

The central procedure, Quip_RecBlockCube, that re-
cursively blocks a bad state, is shown in Fig. 4. On the
surface, it looks similar to Pdr_RecursiveBlockCube
from [2], but there are many important differences.
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Input: (Cube s0, Frame f0)
Data: Priority queue Q of triples 〈c, f, t〉, where c is a

cube, f is a level and t ∈ {may ,must}
Data: Map Parent from a proof obligation to its

parent proof obligation (NULL if none)
Data: Array R containing concrete reachable states

1 Add(Q, 〈s0, f0,must〉)
2 Parent(s0)← NULL
3 while ¬Empty(Q) do
4 〈s, f, p〉 ← Pop(Q)
5 if f = 0 then
6 if p = must then

// Found Real Counterexample
7 return CEX
8 else

// New reachable state
9 Find r such that Init ∧ Tr → r′ and

r ∩ Parent(s) 6= ∅; Add r to R
10 continue
11 if (r0 ← Intersect(R, s)) 6= NULL then
12 if p = must then

// Found Real Counterexample
13 return CEX
14 else
15 if Parent(s) 6= NULL then

// New reachable state
16 Find r such that r0 ∧ Tr → r′ and

r′ ∩ Parent(s) 6= ∅; Add r to R
17 continue
18 〈t, g〉 ← Block(s, f)
19 if g 6= f − 1 then

// Cube s is successfully blocked
by lemma ¬t

// Lemma ¬t holds until frame g
20 if (g < N) then
21 if t 6= s then
22 Add(Q, 〈t, g + 1,may〉)
23 Parent(t)← NULL
24 else
25 Add(Q, 〈t, g + 1, p〉)
26 else

// t is a predecessor of s
27 Add(Q, 〈t, f − 1, p〉)
28 Add(Q, 〈s, f, p〉)
29 Parent(t)← s
30 return BLOCKED

Fig. 4. Recursive Block Cube (Quip_RecBlockCube).

Quip_RecBlockCube accepts a must-proof-obligation
〈s0, f0,must〉, and either succeeds to strengthen the trace so
that s0 is blocked at level f0, or finds a concrete reachable
state r that intersects s0 (hence r is a witness that ¬s0 is not
an invariant).

Quip_RecBlockCube starts by adding the proof-
obligation 〈s0, f0,must〉, with no parent, to Q (lines 1–2) and
proceeds to the main loop. In each iteration of the loop, it
retrieves the proof-obligation from Q with the lowest-level,
and in case of a tie, with the smaller number of literals.
In particular, the proposed tie-breaking condition means that
when Q contains two proof-obligations s1 and s2 at the lowest

level, with s1 ⊆ s2, the algorithm will select s1 first – hence
attempting to derive the strongest possible lemma (that would
automatically block s2 as well). Let 〈s, f, p〉 be this proof
obligation (line 4).

Let us first assume that the level f of the proof obli-
gation is 0 (lines 5–10). In particular, s ∩ Init 6= ∅ and
Parent(s) 6= NULL (according to our rules, only Prede-
cessor can add proof-obligations at level 0). If this is a must-
proof-obligation (lines 6–7), then our property is deduced to be
UNSAFE and Quip_RecBlockCube terminates. Moreover,
a concrete counterexample can be reconstructed using the
parent information. If this is a may-proof-obligation (lines 8–
10), then we compute a new reachable state r that is one-
step reachable from Init and that intersects Parent(s). Note
that such a state r must always exist since s is a CTI for
Parent(s). In our implementation, we use a dedicated SAT-
solver for all the successor queries, including reconstruction
of real counterexamples. However, by also saving for each
predecessor the assignment to inputs, this task can be reduced
to simulation. The new state r is then added to R. In partic-
ular, when on some future iteration the algorithm returns to
examining the proof-obligation corresponding to Parent(s),
Parent(s) already intersects R.

Next, let us assume that s intersects a state r0 ∈ R
(lines 11–17). If this is a must-proof-obligation, then our prop-
erty is deduced to be UNSAFE and the procedure terminates.
By additionally storing for each state in R its predecessor (not
explicitly shown in the pseudocode), we can again reconstruct
a real counterexample. If this is a may-proof-obligation and
Parent(s) 6= NULL, then as before we compute a reachable
state r that is one-step reachable from r0 and that intersects
Parent(s) – and so when the algorithm returns to examining
Parent(s) the condition Intersect(R,Parent(s)) 6= ∅
is activated and the reachable state is further propagated. In
other words, as soon as a recursive predecessor of a may-
proof-obligation intersects an initial or an already existing
reachable state in R, a sequence of additional reachable states
is discovered, including a reachable state that intersects a given
proof-obligation.

The helper procedure Block (line 18), adapted from
PDR [2], hides some less relevant details. In our implementa-
tion, Block(s, f) first syntactically checks whether s is already
blocked in the frame f – i.e., whether there exists a lemma
¬t ∈ Fg with t ⊆ s and f ≤ g (the case g = ∞ is also
allowed). If so, then (t, g) is returned. Otherwise, Block(s, f)
checks whether the formula Ff−1 ∧Tr ∧ s′ is satisfiable. If it
is, a predecessor t of s is extracted and suitably generalized. In
this case, (t, f − 1) is returned. If the formula is unsatisfiable,
then using an inductive generalization procedure, we obtain a
lemma ¬t which holds at least up to the frame f (and possibly
up to a larger frame g, including ∞). In this case, Block
adds the lemma ¬t to Fg and returns (t, g). Note that lemma
generalization takes the reachable states R into account, and
ensures that new lemmas always include all of R.

Let us first consider the case that the cube s was suc-
cessfully blocked (lines 20–25), i.e., Block returns a lemma
¬t ∈ Fg with t ⊆ s and f ≤ g. An important optimization in
IC3 consists of reinserting the proof-obligation s at the level
g+1, forcing the algorithm to block s in all higher frames as
well. The unique feature of Quip is that ¬t is inserted into
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for k = 1, . . . do
for all lemmas c ∈ Fk \ Fk+1 do

// Rule Push
1 if ¬bad(c) then
2 if Fk ∧ c ∧ Tr ⇒ c′ then
3 Fk+1 ← Fk+1 ∪ {c}

if Fk \ Fk+1 = ∅ then
// Rule MaxIndSubset

4 F∞ ← Fk

5 for j = k + 1, . . . do
6 Fj ← F∞
7 break;

if F∞ ⇒ ¬Bad then
// Found Safe Inductive Invariant

8 return PROOF
return UNKNOWN

Fig. 5. Pushing lemmas (Quip_Push).

Q at the level g + 1 instead of s. This forces the algorithm
to concentrate on further pushing existing lemma t rather than
discovering new lemmas to block s at a higher level. However,
¬t can be only added as a may-obligation (with the only
exception being that s = t and s is a must-obligation). Finally,
note that when t 6= s, the cube t has no parent, otherwise we
keep the previous parent of s.

In the case that a predecessor t of s is found (lines 16–29),
just as in IC3, Quip returns 〈s, f, p〉 to Q, as well as inserts
a new proof obligation 〈t, f − 1, p〉 with the same type of a
proof obligation as that of s. The parent of t is set to s.

C. Pushing

Fig. 5 describes our pushing procedure Quip_Push. For
each lemma c, we keep a Boolean flag bad(c) that represents
whether c is known to be bad (that is, whether c excludes some
states in REACH). We say that a lemma is unknown if bad(c) =
FALSE and c /∈ F∞. Each time that a new reachable state
r is added in Quip_RecBlockCube, we check it against
every unknown lemma in the system and mark as bad those
lemmas that exclude r. Just as in IC3, in practice the sets Fi

are delta-encoded: for any i, j, Fi ∩ Fj = ∅. However, for
this presentation, we are using the full sets Fi as defined in
the introduction. The pushing stage proceeds as in IC3, with
the following exceptions. First, bad lemmas are not pushed.
This has two positive effects. The primary effect is conserving
resources by not propagating lemmas that have no chance to
be in the final invariant. A secondary effect is that as the new
lemmas are learned, they are less dependent on the currently
known bad lemmas. Second, the lemmas are pushed arbitrarily
far past the current depth N . In particular, in the last iteration
of the outer for-loop, all lemmas at level k are pushed to the
next frame. In this case, the if -condition on line 3 is true, and
all lemmas of Fk+1 are added to F∞. It is easy to see that
after Quip_Push, F∞ contains the maximal inductive subset
of all lemmas in the system. If F∞ implies ¬Bad , i.e., F∞
represents a safe inductive invariant, then Quip_Push returns
PROOF.

D. Managing reachable states

Efficiently handling reachable states poses additional chal-
lenges. Currently we represent reachable states explicitly, and
as their number grows large, the time taken by Intersect
and the memory required for their storage become significant.
However, our experience shows that many of the reachable
states can be removed without much sacrificing the number
of may-proof-obligations pruned or the quality of lemmas
discovered, and that the newly discovered states are more
likely to be useful in the immediate future. Thus our solution
mimics the clause deletion strategy as used in a SAT solver:
for each reachable state we keep its activity representing how
many times the state was a witness for intersection, and we
periodically decay this activity and aggressively delete the less
active states. Furthermore, as in our current implementation
most of the time on managing lemmas is spent during the
inductive generalization (making sure that a learned lemma
includes all the states in REACH), we have found it further
beneficial to consider even fewer reachable states during the
generalization.

It may also be possible to compute partial states directly
from the Successor query, or to represent reachable states
symbolically by computing minimal DNF representation of R.
An alternative way to take reachable states into account is to
include them directly in F0. Another optimization is to check
whether a given may-obligation is one-step reachable from R.
However, we have found both of these difficult to implement
efficiently. Finally, it might also be useful to push reachable
states forward more aggressively, for example, by running a
simulation from already known reachable states.

V. ALTERNATIVES

In this section, we present two alternative implementations
of Quip, which illustrate the variety of possibilities offered by
our framework. Unfortunately, for the reasons discussed below,
both of these variants do not perform consistently. We sketch
how they could be improved in the future.

A. Reset-free approach

Both IC3 and Quip as described previously implicitly
reset the queue of proof obligations each time that a new
depth is explored. An interesting alternative in Quip is as
follows. (1) Allow to enqueue proof-obligations at any level
(and not only up to N ) by removing the if -condition on line 20
of Quip_RecBlockCube. (2) Check whether Fk = Fk+1

each time that a lemma is successfully pushed from Fk to
a higher-frame (or simply each time that a proof obligation
at level k + 1 is successfully blocked); if Fk = Fk+1,
then grow the set F∞ to Fk, and check the termination
condition F∞ ⇒ ¬Bad . (3) Replace Quip_Main by a
single call to Quip_RecBlockCube(Bad , 1). In this way,
the negation of every unknown lemma in the system is always
present as a proof obligation at the corresponding frame and
the external pushing stage can be avoided altogether. This
alternative procedure takes to the extreme the idea of pushing
every lemma in the system as far as possible, and arguably
results in an even simpler overall algorithm. However, a
preliminary experimental evaluation shows that this scheme
performs worse in practice. One possible explanation is that
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TABLE I. SUMMARY OF EXPERIMENTAL RESULTS

UNSAFE solved UNSAFE time SAFE solved SAFE time
IC3 22 (2) 52,302 76 (7) 137,244
Quip 32 (12) 20,302 99 (30) 69,590

Experimental results on the instances solved by either IC3 or Quip separated into
unsafe and safe instances. The numbers in parentheses represent the unique solves. The

times are in seconds.

periodically resetting the proof obligation queue keeps proof
obligations more focused to proving the property, while the
procedure above handles the “main” lemmas and the “support-
ing” lemmas (and the supporting lemmas for the supporting
lemmas, and so on) equally. A possible solution would be to
define some additional criteria for proof obligations reflecting
their expected usefulness, and to take these into account when
choosing the next proof obligation.

B. Garbage-collecting bad lemmas

We can use the classification of all lemmas into good, bad
and unknown to periodically remove all the bad lemmas from
the system. However, as bad lemmas may be supporting other
unknown lemmas, we cannot simply remove bad lemmas from
their corresponding frames. Instead, we can keep all the good
lemmas in F∞, put all the unknown lemmas into F1, and use
Push to push the unknown lemmas as far as possible. We have
found that during this pushing stage it is important to preserve
the set of lemmas as much as possible, which requires to
disable both the additional generalizing capability of pushing
and the built-in subsumption mechanism for storing lemmas.
Note that we might also need to decrease the current bound N
at which the property is proved. A preliminary experimental
evaluation shows that this variant usually allows Quip to
converge at a smaller depth, and in some cases leads to a
significant speedup. However, it is also true that applying
“garbage collection” too aggressively on average leads to a
significant performance degradation, and an ongoing work is
to find the a good heuristic for when to apply it and how
to properly combine it with the resetting of reachable states
described in Section IV.

VI. EXPERIMENTS

In this section, we present our experimental results2. We
compare Quip with a custom variant of IC3, as implemented
in the IBM formal verification tool Rulebase-Sixthsense [10].
All experiments were performed on a 2.13Ghz Linux-based
machine with Intel Xeon E7-4830 processor, 16GB of RAM,
and one hour time limit. We have used 300 single property
designs from the HWMCC’13 and HWMCC’14 benchmark
sets. These are obtained by removing duplicates and instances
solved using standard logic synthesis (similar to the &dc2
command in ABC [11]).

The overall results are shown in Table I. The columns
“UNSAFE solved” and “SAFE solved” show that number of
unsafe and safe instances, respectively, solved by either IC3
or Quip. The numbers in parentheses represent the number of
instances not solved by the other configuration. The columns
“UNSAFE time” and “SAFE time” represent the cumulative
time in seconds for unsafe and safe properties, respectively.

2See http://arieg.bitbucket.org/quip for more details.
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Fig. 6. Run-time comparison between IC3 and Quip. Points below the
diagonal are in favor of Quip. The scale is logarithmic. Diagonals mark an
order of magnitude. Timeout is 3,600 seconds.

TABLE II. DATA ON REACHABLE STATES DISCOVERED BY QUIP

# reach. states 0–10 11 – 100 101 – 1K 1K – 10K 10K – 50K
# instances 42 19 29 32 9
# unique solved 1 1 10 22 8

According to our experiments, either IC3 or Quip was
successful on 34 unsafe instances and 106 safe instances. In
the remaining 160 instances both IC3 and Quip timed out.
We can see that Quip is clearly superior to IC3 on both safe
and unsafe problems, solving more properties and running in
roughly half of the time.

A more detailed comparison between IC3 and Quip is
shown on the scatter plot in Fig. 6. Only the 140 instances
solved by at least one tool are shown. For instances solved
by both, the run time is similar, with an advantage for Quip
Sometimes, the advantage is over an order of magnitude. Quip
shines on harder instances and is able to solve significantly
more of them than IC3.

Finally, we give some intuition on the total number of
reachable states typically discovered by Quip and whether
these states are useful for verification. Table II contains the
data for the 131 instances solved by Quip, including the 42
instances not solved by IC3. In the table, the row “#reach.
states” represents a range, the row “#instances” specifies the
number of instances solved by Quip with the total number of
reachable states in this range, and the row “#unique solves”
further specifies the number of instances solved uniquely by
Quip. For example, the third column means that 29 instances
solved by Quip required between 101 and 10,000 reachable
states, and 10 out of 29 are not solved by IC3. We draw
two conclusions. First, even though we use concrete reachable
states (i.e., complete assignment to all state variables), rela-
tively few states had to be discovered. Second, the advantage
of Quip over IC3 is especially pronounced as the number
of learned reachable states increases. For example, from the
61 instances where Quip required less than 100 reachable
states, only 2 are not solved by IC3. However, from the set
of 9 instances where Quip finds more than 10, 001 reachable
states, 8 (i.e., all but 1) are not solved by IC3.
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VII. RELATED WORK

Computing Maximal Inductive Subset (MIS) is a well-
known problem in both hardware and software verification
(e.g., [12], [13]). Applying MIS to enlarge F∞ in IC3/PDR
is already suggested in [2], but it was not effective since the
cost of computing an MIS out-weighted the gains. In Quip,
the MIS computation is amortized by not limiting Quip/Push
rule to the current bound N (for comparison, see IC3/Push
in Fig. 1) and by discovering MIS opportunistically using
Quip/MaxIndSubset. Thus, even if the MIS computation is
unsuccessful and no new lemmas are added to F∞, the trace
is strengthened for the future runs of the algorithm. In our
experience, extending IC3 in this way is beneficial regardless
of the other Quip rules.

Blocking states that are not necessarily backward reachable
from an error state and separating proof obligations into may
and must was proposed in the context of IC3-based abstraction
refinement [4]. The idea is also implicitly present in computa-
tion of minimal inductive clauses [3] and predicate-abstraction-
based extensions of IC3 to software [14], [15]. In contrast to
the above algorithms, Quip seamlessly integrates must and
may reasoning into one algorithmic procedure without any
specialized refinement steps. More significantly, Quip uses
the reachable states that witness a failure of a may-proof
obligation to improve future lemma generalization. Thus, both
proving and disproving a may-proof-obligation is beneficial to
the overall algorithm.

Extracting forward reachable states from spurious coun-
terexamples also appears in NEWITP [16] as states to re-
finement in the context of interpolation-based model check-
ing. Similar to Quip, these states are used to guide fu-
ture interpolants to avoid reachable states. In essence, Quip
computes both an over-approximation (lemmas) and under-
approximation (REACH) of reachable states. This can be seen
as an extension of over- and under-approximations used in
SPACER [6] from modular to monolithic-proofs. The key
difference is that, SPACER under-approximates summaries of
procedures and not states reachable from an initial state.

Interestingly, CTI’s of Reverse IC3 [17] – a dual
variant of IC3 that recursively enumerates states reachable
from Init and that learns an over-approximation of states
backwards reachable from Bad – are forward reachable states.
Thus, it might be possible to combine IC3 and Reverse
IC3 into an algorithm that computes both forward and back-
ward reachable states and their over-approximations, somewhat
akin to DAR [18]. Although DAR is restricted only to over-
approximations.

VIII. CONCLUSIONS

In this paper, we present an improvement to the core of
the IC3 algorithm. We propose an approach, called Quip,
that is designed to propagate learned lemmas more aggres-
sively, and whose implementation seamlessly integrates must
and may proof-obligations and forward reachable states. The
experimental results show that a naı̈ve implementation of
Quip significantly outperforms a highly-tuned implementation
of IC3/PDR. We believe that the new reasoning capabilities
introduced in Quip open up many opportunities for further
improvements to SAT-based automated verification.
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Abstract—Given a propositional formula F (x, y), a Skolem
function for x is a function ψ(y), such that substituting ψ(y) for
x in F gives a formula semantically equivalent to ∃x F . Auto-
matically generating Skolem functions is of significant interest
in several applications including certified QBF solving, finding
strategies of players in games, synthesising circuits and bit-
vector programs from specifications, disjunctive decomposition of
sequential circuits etc. In many such applications, F is given as a
conjunction of factors, each of which depends on a small subset
of variables. Existing algorithms for Skolem function generation
ignore any such factored form and treat F as a monolithic
function. This presents scalability hurdles in medium to large
problem instances. In this paper, we argue that exploiting the
factored form of F can give significant performance improve-
ments in practice when computing Skolem functions. We present
a new CEGAR style algorithm for generating Skolem functions
from factored propositional formulas. In contrast to earlier work,
our algorithm neither requires a proof of QBF satisfiability
nor uses composition of monolithic conjunctions of factors. We
show experimentally that our algorithm generates smaller Skolem
functions and outperforms state-of-the-art approaches on several
large benchmarks.

I. INTRODUCTION

Skolem functions, introduced by Thoraf Skolem in the
1920s, occupy a central role in mathematical logic. Formally,
let F (x, y) be a first-order logic formula, and let dom(x) and
dom(y) denote the domains of x and y respectively. A Skolem
function for x in F is a function ψ : dom(y)→ dom(x) such
that substituting ψ(y) for x in F yields a formula semantically
equivalent to ∃xF (x, y), i.e. F (ψ(y), y) ≡ ∃xF (x, y). In
this paper, we focus on the case where the formula F is
propositional and given as a conjunction of factors. Classically,
Skolem functions have been used in proving theorems in logic.
More recently, with the advent of fast SAT/SMT solvers, it
has been shown that several practically relevant problems can
be encoded as quantified formulas, and can be solved by
constructing realizers of quantified variables. We identify these
realizers as specific instances of Skolem functions, and focus
on algorithms for constructing them in this paper.

We begin by listing some applications that illustrate the util-
ity of constructing instances of Skolem functions in practice.

1) Quantifier elimination. Given a quantified formula
Qx F (x, y), where Q ∈ {∃,∀}, the quantifier elimination
problem requires us to find a quantifier-free formula
that is semantically equivalent to Qx F (x, y). Quantifier
elimination has important applications in diverse areas
(see, e.g. [7], [15], [2] for a sampling). It follows from
the definition of Skolem function that eliminating the
quantifier from ∃xF (x, y) can be achieved by substituting

x with a Skolem function for x. Since ∀xF (x, y) can be
written as ¬∃x¬F (x, y), the same idea applies in this
case too. In fact, the process can be repeated in principle
to eliminate quantifiers from a formula with arbitrary
quantifier prefix.

2) Controller Synthesis and Games. Control-program syn-
thesis in the Ramadge-Wonham [13] framework reduces
to games between two players—environment and the
controller—such that the optimal strategy of the controller
corresponds to an optimal control program. The optimal
(or winning) strategy of the controller corresponds to
choosing values of variables controlled by it such that
regardless of the way the environment fixes its variables,
the resulting play satisfies the controller’s objective. If
the rules of the game are encoded as a propositional
formula and if the strategy space for both players is
finite, the optimal strategy of the controller corresponds
to finding Skolem functions of variables controlled by
it. In fact, for a number of two-player games—such as
reachability games and safety games [2], tic-tac-toe [5]
and chess-like games [3], [2]—the problem of deciding
a winner can be reduced to checking satisfiability of a
quantified Boolean formula (QBF), and the problem of
finding winning or best-effort strategy reduces to Skolem
function generation.

3) Graph Decomposition. Skolem functions can be used to
compute disjunctive decompositions of implicitly speci-
fied state transition graphs of sequential circuits [17]. The
disjunctive decomposition problem asks the following
question: Given a sequential circuit, derive “component”
sequential circuits, each of which has the same state space
as the original circuit, but only a subset of transitions
going out of every state. The components should be such
that the complete set of state transitions of the original
circuit is the union of the sets of state transitions of
the components. Disjunctive decompositions have been
shown to be useful in efficient reachability analysis [16].

There are several other practical applications where Skolem
functions find use; see, e.g. [12], for a discussion. Hence, there
is a growing need for practically efficient and scalable ap-
proaches for generating instances of Skolem functions. Large
and complex representations of the formula F in ∃x F often
present scalability hurdles in generating Skolem functions
in practice. Interestingly, for several problem instances, the
specification of F is available in a factored form, i.e., as a
conjunction of simpler sub-formulas, each of which depends
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on a subset of variables appearing in F . Unfortunately, unlike
in the case of disjunction, existential quantification does not
distribute over conjunction of sub-formulas. Existing algo-
rithms therefore ignore any factored form of F and treat the
conjunction of factors as a single monolithic function. We
show in this paper that exploiting the factored form can help
significantly when generating Skolem functions.

Our main technical contribution is a SAT-based Counter-
Example Guided Abstraction-Refinement (CEGAR) algorithm
for generating Skolem functions from factored formulas. Un-
like competing approaches, our algorithm exploits the factored
representation of a formula and leverages advances made in
SAT-solving technology. The factored representation is used
to arrive at an initial abstraction of Skolem functions, while a
SAT-solver is used as an oracle to identify counter-examples
that are used to refine the Skolem functions until no counter-
examples exist. We present a detailed experimental evaluation
of our algorithm vis-a-vis state-of-the-art algorithms [7], [12]
over a large class of benchmarks. We show that on several
large problem instances, we outperform competing algorithms.
Proofs that are omitted can be found in the long version at [9].

Related Work. We are not aware of other techniques for
Skolem function generation that exploit the factored form
of a formula. Earlier work on Skolem function generation
broadly fall in one of four categories. The first category
includes techniques that extract Skolem functions from a proof
of validity of ∃X F (X,Y ) [12], [8], [4], [10]. In problem
instances where ∃X F (X,Y ) is valid (and this forms an
important sub-class of problems), these techniques can usually
find succinct Skolem functions if there exists a short proof
of validity. However, in several other important classes of
problems, the formula ∃X F (X,Y ) does not evaluate to
true for all values of Y , and techniques in the first category
cannot be applied. The second category includes techniques
that use templates for candidate Skolem functions [15]. These
techniques are effective only when the set of candidate Skolem
functions is known and small. While this is a reasonable
assumption in some domains [15], it is not in most other
domains. BDD-based techniques [14] are yet another way to
compute Skolem functions. Unfortunately, these techniques
are known not to scale well, unless custom-crafted variable
orders are used. The last category includes techniques that
use cofactors to obtain Skolem functions [7], [17]. These
techniques do not exploit the factored representation of a
formula and, as we show experimentally, do not scale well
to large problem instances.

II. PRELIMINARIES

We use lower case letters (possibly with subscripts) to
denote propositional variables, and upper case letters to
denote sequences of such variables. We use 0 and 1 to
denote the propositional constants false and true, respec-
tively. Let F (X,Y ) be a propositional formula, where X
and Y denote the sequences of variables (x1, . . . , xn) and
(y1, . . . , ym), respectively. We are interested in problem in-
stances where F (X,Y ) is given as a conjunction of factors

f1(X1, Y1), . . . , fr(Xr, Yr), where each Xi (resp., Yi) is
a possibly empty sub-sequence of X (resp., Y ). For no-
tational convenience, we use F and

∧r
j=1 f

j interchange-
ably throughout this paper. The set of variables in F is
called the support of F , and is denoted Supp(F ). Given
a propositional formula F (X) and a propositional function
Ψ(X), we use F [xi/Ψ(X)], or simply F [xi/Ψ], to denote
the formula obtained by substituting every occurrence of the
variable xi in F with Ψ(X). Since the notions of formulas
and functions coincide in propositional logic, the above is also
conventionally called function composition. If X is a sequence
of variables and xi is a variable, we use X \ xi to denote
the sub-sequence of X obtained by removing xi (if present)
from X . Abusing notation, we use X to also denote the set
of elements in X , when there is no confusion. A valuation or
assignment π of X is a mapping π : X → {0, 1}.

Definition 1. Given a propositional formula F (X,Y ) and a
variable xi ∈ X , a Skolem function for xi in F (X,Y ) is a
function ψ(X \ xi, Y ) such that ∃xi F ≡ F [xi/ψ].

A Skolem function for xi in F need not be unique. The
following proposition, which effectively follows from [7], [17],
characterizes the space of all Skolem functions for xi in F .

Proposition 1. A function ψ(X \ xi, Y ) is a Skolem function
for xi in F (X,Y ) iff F [xi/1] ∧ ¬F [xi/0] ⇒ ψ and ψ ⇒
F [xi/1] ∨ ¬F [xi/0].

The function F [xi/0] (resp., F [xi/1]) is called the positive
(resp., negative) cofactor of F with respect to xi, and plays a
central role in the study of Skolem functions for propositional
formulas. In particular, it follows from Proposition 1 that
F [xi/1] is a Skolem function for xi in F . The above definition
for a single variable can be naturally extended to a vector of
variables. Given F (X,Y ), a Skolem function vector for X =
(x1, . . . , xn) in F is a vector of functions Ψ = (ψ1, . . . , ψn)
such that ∃x1 . . . xn F ≡ (· · · (F [x1/ψ1]) · · · [xn/ψn]). A
straightforward way to obtain a Skolem function vector Ψ is
to first obtain a Skolem function ψ1 for x1 in F , then compute
F ′ ≡ ∃x1 F and obtain a Skolem function ψ2 for x2 in F ′, and
so on until ψn has been obtained. More formally, ψi can be
computed as a Skolem function for xi in ∃x1 . . . xi−1 F , start-
ing from ψ1 and proceeding to ψn. Note that ∃x1 . . . xi−1 F
can itself be computed as (· · · (F [x1/ψ1]) · · · [xi−1/ψi−1]).

Definition 2. The “Can’t-be-1” function for xi in F , de-
noted Cb1[xi](F ), is defined to be (¬∃x1 . . . xi−1 F ) [xi/1].
Similarly, the “Can’t-be-0” function for xi in F , denoted
Cb0[xi](F ), is defined to be (¬∃x1 . . . xi−1 F ) [xi/0]. When
X and F are clear from the context, we use Cb1[i] and Cb0[i]
for Cb1[xi](F ) and Cb0[xi](F ), respectively.

Intuitively, in order to make F evaluate to 1, we cannot set xi
to 1 (resp. 0) whenever the valuation of {xi+1, . . . , xn}∪Y sat-
isfies Cb1[i] (resp., Cb0[i]). The following proposition follows
from Definition 2 and from our observation about computing
a Skolem function vector one component at a time.
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Proposition 2. Ψ=(¬Cb1[1], . . . ,¬Cb1[n]) is a Skolem func-
tion vector for X in F .

Note that the support of ψi in Ψ, as given by Proposition 2,
is {xi+1, . . . , xn} ∪ Y . If we want a Skolem function vector
Ψ such that every component function has only Y (or a
subset thereof) as support, this can be obtained by repeatedly
substituting the Skolem function for every variable xi in all
other Skolem functions where xi appears. We denote such a
Skolem function vector as Ψ(Y ).

III. A MONOLITHIC COMPOSITION BASED ALGORITHM

Our algorithm is motivated in part by cofactor-based tech-
niques for computing Skolem functions, as proposed by Jiang
et al [7] and Trivedi [17]. Given F (X,Y ) =

∧r
j=1 f

j(Xj , Yj),
the techniques of [7], [17] essentially compute a Skolem
function vector Ψ(Y ) for X in F as shown in algorithm
MONOSKOLEM (see Algorithm 1). In this algorithm, the
variables in X are assumed to be ordered by their indices.
While variable ordering is known to affect the difficulty of
computing Skolem functions [7], we assume w.l.o.g. that
the variables are indexed to represent a desirable order. We
describe the variable order used in our study later in Section V.

MONOSKOLEM works in two phases. In the first phase, it
implements a straightforward strategy for obtaining a Skolem
function vector, as suggested by Proposition 2. Specifically,
steps 3 and 4 of MONOSKOLEM build a monolithic conjunc-
tion Fi of all factors that have xi in their support, before
computing ψi. This restricts the scope of the quantifier for
xi to the conjunction of these factors. In Step 6, we use
¬Cb1[i] as a specific choice for the Skolem function ψi. After
computing ψi from Fi, step 7 discards the factors with xi
in their support, and introduces a single factor representing
∃xi Fi (computed as Fi[xi/ψi]) in their place. Note that each
ψi obtained in this manner has {xi+1, . . . , xn}∪Y (or a subset
thereof) as support. Since we want each Skolem function to
have support Y , a second phase of “reverse” substitutions is
needed. In this phase (see Algorithm 2), the Skolem function
ψn(Y ) obtained above is substituted for xn in ψ1, . . . , ψn−1.
This effectively renders all Skolem functions independent of
xn. The process is then repeated with ψn−1 substituted for
xn−1 in ψ1, . . . , ψn−2 and so on, until all Skolem functions
have been made independent of x1, . . . , xn, and have only Y
(or subsets thereof) as support.

MONOSKOLEM can be further refined by combining steps
6 and 7, and directly defining ψi in terms of Fi. However,
we introduce the intermediate step using Cb0[i] and Cb1[i] to
motivate their central role in our approach. Note that instead
of ¬Cb1[i], we could combine Cb1[i] and Cb0[i] in other
ways (denoted by COMBINE(Cb0[i], Cb1[i]) within comments
in Algorithm 1) to get ψi in Step 6. In fact, Jiang et al [7]
compute a Skolem function for xi in F as an interpolant
of ¬Cb1[i] ∧ Cb0[i] and Cb1[i] ∧ ¬Cb0[i], while Trivedi [17]
observes that the function (¬Cb1[i]∧(Cb0[i]∨g)) ∨ (Cb1[i]∧
Cb0[i] ∧ h) serves as a Skolem function for xi in F where
h and g are arbitrary propositional functions with support in

Algorithm 1: MONOSKOLEM

Input: Prop. formula F (X,Y ) =
∧r

j=1 f
j(Xj , Yj),

where X = (x1, . . . , xn)
Output: Skolem function vector Ψ(Y )
// Phase 1 of algorithm

1 Factors :=
{
f j : 1 ≤ j ≤ r

}
;

2 for i in 1 to n do
3 FactorsWithXi := {f : f ∈ Factors, xi ∈ Supp(f)};
4 Fi :=

∧
f∈FactorsWithXi f ;

5 Cb0[i] := ¬Fi[xi/0]; Cb1[i] := ¬Fi[xi/1];
6 ψi := ¬Cb1[i];

// Generally, ψi:=COMBINE(Cb0[i], Cb1[i]);
7 Factors := (Factors \ FactorsWithXi) ∪ {Fi[xi/ψi]};
// Phase 2 of algorithm

8 return REVERSESUBSTITUTE(ψ1, . . . , ψn);

X\{xi}∪Y . Since computing interpolants using a SAT solver
is often time-intensive and does not always lead to succinct
Skolem functions [7], we simply use ¬Cb1[i] as a Skolem
function in Step 6. Proposition 2 guarantees the correctness of
this choice.

Algorithm 2: REVERSESUBSTITUTE

Input: Functions
ψ1(x2, . . . , xn, Y ), ψ2(x3, . . . , xn, Y ), . . . , ψn(Y )

Output: Function vector Ψ(Y )
1 for i = n downto 2 do
2 for k = i− 1 downto 1 do ψk = ψk[xi/ψi];

3 return Ψ(Y ) = (ψ1(Y ), . . . , ψn(Y ));

Observe that MONOSKOLEM works with a monolithic
conjunction (Fi) of factors that have xi in their support.
Specifically, it composes each such monolithic conjunction
Fi with a cofactor of Fi in Step 7 to eliminate quantifiers
sequentially. This can lead to large memory footprints and
more time-outs when used with medium to large benchmarks,
as confirmed by our experiments. This motivates us to ask if
we can develop a cofactor-based algorithm that does not suffer
from the above drawbacks of MONOSKOLEM.

IV. CEGAR FOR GENERATING SKOLEM FUNCTIONS

We now present a new CEGAR [6] algorithm for generating
Skolem function vectors, that exploits the factored form of
F (X,Y ). Like MONOSKOLEM, our new algorithm, named
CEGARSKOLEM, works in two phases, and assumes that the
variables in X are ordered by their indices. The first phase
of the algorithm consists of the core abstraction-refinement
part, and computes a Skolem function vector (ψ1, . . . , ψn),
where ψi has {xi+1, . . . , xn}∪Y , or a subset thereof, as sup-
port. Unlike in MONOSKOLEM, this phase avoids composing
monolithic conjunctions of factors, yielding simpler Skolem
functions. The second phase of the algorithm performs reverse
substitutions, similar to that in MONOSKOLEM.
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Before describing the details of CEGARSKOLEM, we intro-
duce some additional notation and terminology. Given propo-
sitional functions (or formulas) f and g, we say that f refines
g and g abstracts f iff f logically implies g. Given F (X,Y )
and a vector of functions ΨA = (ψA

1 , . . . , ψ
A
n ), we say that

ΨA is an abstract Skolem function vector for X in F iff there
exists a Skolem function vector Ψ = (ψ1, . . . , ψn) for X in F
such that ψA

i abstracts ψi, for every i ∈ {1, . . . , n}. Instead
of using Cb0[i] and Cb1[i] to compute Skolem functions, as
was done in MONOSKOLEM, we now use their refinements,
denoted r0[i] and r1[i] respectively, to compute abstract
Skolem functions. For convenience, we represent r0[i] and
r1[i] as sets of implicitly disjoined functions. Thus, if r1[i],
viewed as a set, is {g1, g2}, then it is g1 ∨ g2 when viewed as
a function. We abuse notation and use r1[i] (resp., r0[i]) to
denote a set of functions or their disjunction, as needed.

A. Overview of our CEGAR algorithm

Algorithm CEGARSKOLEM has two phases. The first phase
consists of a CEGAR loop, while the second does reverse
substitutions. The CEGAR loop has the following steps.

– Initial abstraction and refinement. This step involves
constructing refinements of Cb0[i] and Cb1[i] for every
xi in X . Using Proposition 2, we can then construct an
initial abstract Skolem function vector ΨA. This step is
implemented in Algorithm 3 (INITABSREF), which pro-
cesses individual factors of F (X,Y ) =

∧r
j=1 f

j(Xj , Yj)
separately, without considering their conjunction. As a
result, this step is time and memory efficient if the
individual factors are simple with small representations.

– Termination Condition. Once INITABSREF has com-
puted ΨA, we check whether ΨA is already a Skolem
function vector. This is achieved by constructing an
appropriate propositional formula ε, called the “error for-
mula” for ΨA (details in Subsection IV-C), and checking
for its satisfiability. An unsatisfiable formula implies that
ΨA is a Skolem function vector. Otherwise, a satisfying
assignment π of ε is used to improve the current refine-
ments of Cb1[i] and Cb0[i] for suitable variables xi.

– Counterexample guided abstraction and refinement.
This step is implemented in Algorithm 4: UPDATEAB-
SREF, and computes an improved (i.e., more abstract)
refinement of Cb0[i] and Cb1[i] for some xi ∈ X . This, in
turn, leads to a refinement of the abstract Skolem function
vector ΨA.

The overall CEGAR loop starts with the first step and repeats
the second and third steps until a Skolem function vector is
obtained. We now discuss the three steps in detail.

B. Initial Abstraction and Refinement

Algorithm INITABSREF (see Algorithm 3) starts by initial-
izing each r1[i] and r0[i], viewed as sets, to the empty set.
Subsequently, it considers each factor f in

∧r
j=1 f

j(Xj , Yj),
and determines the contribution of f to Cb0[i] and Cb1[i], for
every xi in the support of f . Specifically, if xi ∈ Supp(f),
the contribution of f to Cb0[i] is (¬∃x1 . . . xi−1 f) [xi/0], and

Algorithm 3: INITABSREF

Input: Prop. formula F (X,Y ) =
∧r

j=1 f
j(Xj , Yj),

where X = (x1, . . . , xn)
Output: Abstract Skolem function vector

ΨA = (ψA
1 , . . . , ψ

A
n ), and refinements r0[i] and

r1[i] for each xi in X
1 for i in 1 to n do
2 r0[i] := ∅; r1[i] := ∅; // Initializing

3 for j in 1 to r do
4 f := f j ; // for each factor
5 for i in 1 to n do
6 if xi ∈ Supp(f) then
7 r0[i] := r0[i] ∪ {¬f [xi/0]};
8 r1[i] := r1[i] ∪ {¬f [xi/1]};

// Skolem function for xi in f
9 ψi,f := f [xi/1];

10 f := f [xi/ψi,f ]; // ∵ f [xi/ψi,f ] ≡ ∃xi f

11 for i in 1 to n do
12 ψA

i := ¬r1[i];
// Interpreting r1[i] as a function

13 return ΨA=(ψA
1 , . . . , ψ

A
n ) and r0[i], r1[i] ∀xi∈X

its contribution to Cb1[i] is (¬∃x1 . . . xi−1 f) [xi/1]. These
contributions are accumulated in the sets r0[i] and r1[i],
respectively, and xi is existentially quantified from f . The
process is then repeated with the next variable in the support
of f . Once the contributions from all factors are accumulated
in r0[i] and r1[i] for each xi in X , INITABSREF computes
an abstract Skolem function ψA

i for each xi in F by com-
plementing r1[i], interpreted as a disjunction of functions.
Note that executing steps 4 through 10 of INITABSREF
for a specific factor f is operationally similar to executing
steps 1 through 7 of MONOSKOLEM with a singleton set
of factors, i.e., Factors = {f}. This highlights the key
difference between INITABSREF and MONOSKOLEM: while
MONOSKOLEM works with monolithic conjunctions of factors
and their compositions, INITABSREF works with individual
factors, without ever considering their conjunctions. Lemma 1
asserts the correctness of INITABSREF.

Lemma 1. The vector ΨA computed by INITABSREF is an
abstract Skolem function vector for X in F (X,Y ). In addition,
r0[i] and r1[i] computed by INITABSREF are refinements of
Cb0[i](F ) and Cb1[i](F ) for every xi in X .

C. Termination condition

Given F (X,Y ) and an abstract Skolem function vector ΨA,
it may happen that ΨA is already a Skolem function vector
for X in F . We therefore check if ΨA is a Skolem function
vector before refinement. Towards this end, we define the error
formula for ΨA as F (X ′, Y )∧

∧n
i=1(xi ⇔ ψA

i )∧¬F (X,Y ),
where X ′=(x′1, . . . , x

′
n) is a sequence of fresh variables with

no variable in common with X . The first term in the error

76

ISBN: 978-0-9835678-5-1. Copyright owned jointly by the authors and FMCAD, Inc.



formula checks if there exists some valuation of X that renders
∃Y F (X,Y ) true. The second term assigns variables in X to
the values given by the abstract Skolem functions, and the
third term checks if this assignment falsifies the formula F .

Lemma 2. The error formula for ΨA is unsatisfiable iff ΨA

is a Skolem function vector of X in F .

The following example illustrates the role of the error
formula.

Example 1. Let X = {x1, x2}, Y = {y1, y2, y3} in
∃x1x2F (X,Y ) where F ≡ (f1 ∧ f2 ∧ f3), with f1 =
(¬x1∨¬x2∨¬y1), f2 = (x2∨¬y3∨¬y2), f3 = (x1∨¬x2∨y3).

Algorithm INITABSREF gives r1[1] = (x2 ∧ y1), r0[1] =
(x2 ∧¬y3), r1[2] = false, r0[2] = y3 ∧ y2. This yields ψA

1 =
(¬x2 ∨ ¬y1), ψA

2 = true. Now, while ψA
1 is a correct Skolem

function for x1 in F , ψA
2 is not for x2. This is detected by the

satisfiability of the error formula ε = F (x′1, x
′
2, Y ) ∧ (x1 =

¬x2 ∨¬y1)∧ (x2 = 1)∧¬F (x1, x2, Y ). Note that ¬F (¬x2 ∨
¬y1, 1, Y ) simplifies to (y1 ∧ ¬y3), and y1 = 1, y2 = 1, y3 =
0, x1 = 0, x2 = 1, x′1 = 0, x′2 = 0 is a satisfying assignment
for ε.

D. Counterexample-guided abstraction and refinement

Let ε be the error formula for ΨA, and let π be a satisfying
assignment of ε. We call π a counterexample of the claim that
ΨA is a Skolem function vector. For every variable v ∈ X ′ ∪
X∪Y , we use π(v) to denote the value of v in π. Satisfiability
of ε implies that we need to refine at least one abstract Skolem
function ψA

i in ΨA to make it a Skolem function vector. Since
ψA
i is ¬r1[i] in our approach, refining ψA

i can be achieved by
computing an improved (i.e., more abstract) version of r1[i].
Algorithm UPDATEABSREF implements this idea by using π
to determine which r1[i] should be rendered abstract by adding
appropriate functions to r1[i], viewed as a set.

Before delving into the details of UPDATEABSREF, we
state some key results. In the following, we use π |= f to
denote that the formula f evaluates to 1 when the variables
in Supp(f) are set to values given by π. If π |= f , we
also say f evaluates to 1 under π. We use r0[i]init and
r1[i]init to refer to r0[i] and r1[i], as computed by algorithm
INITABSREF. Since UPDATEABSREF only adds to r1[i] and
r0[i] viewed as sets, it is easy to see that r0[i]init ⇒ r0[i] and
r1[i]init ⇒ r1[i] viewed as functions (recall these functions
are simply disjunctions of elements in the corresponding sets).

Lemma 3. Let π be a satisfying assignment of the error
formula ε for ΨA. Then the following hold.
(a) π |= ¬Cb0[n] ∨ ¬Cb1[n].
(b) There exists k ∈ {1, . . . , n− 1} s.t., π |= r1[k] ∧ r0[k].
(c) There exists no Skolem function vector Ψ = (ψ1, . . . , ψn)

such that ψj ⇔ ψA
j for all j in {k + 1, . . . , n}.

(d) There exists l ∈ {k + 1, . . . , n} such that xl = 1 in π,
and π |= Cb1[l] ∧ ¬r0[l].

Algorithm 4 (UPDATEABSREF) uses Lemma 3 to compute
abstract versions of r0[i] and r1[i], and a refined version of

Algorithm 4: UPDATEABSREF

Input: r0[i] and r1[i] for all xi in X ,
Satisfying assignment π of error formula, i.e.,
F (X ′, Y ) ∧

∧n
i=1

(
xi ⇔ ψA

i

)
∧ ¬F (X,Y )

Output: Improved (i.e., refined) ΨA = (ψA
1 , . . . , ψ

A
n ),

Improved (i.e., abstracted) r0[i] & r1[i], ∀xi ∈ X
1 k := largest m such that π satisfies r0[m] ∧ r1[m];
2 µ0 := GENERALIZE(π, r0[k]);
3 µ1 := GENERALIZE(π, r1[k]);
4 µ := µ0 ∧ µ1;
// Search for Skolem function among{

ψA
k+1, . . . , ψ

A
n

}
to be refined

5 l := k + 1;
6 while true do // current guess: refine ψA

l

7 if xl ∈ Supp(µ) then
8 if xl = 1 in π then
9 µ1 := µ[xl/1];

10 r1[l] := r1[l] ∪ {µ1};
11 if π satisfies r0[l] then
12 µ0 := GENERALIZE(π, r0[l]);
13 µ := µ0 ∧ µ1;

14 else
15 break;

16 else
17 µ0 := µ[xl/0];
18 r0[l] := r0[l] ∪ {µ0};
19 µ1 := GENERALIZE(π, r1[l]);
20 µ := µ0 ∧ µ1;

21 l := l + 1 ;

22 ΨA = (¬r1[1], . . . ,¬r1[n]);
23 return r0[i] and r1[i] for all xi in X , and ΨA

ΨA, when ΨA is not a Skolem function vector. It takes as
input the current versions of r0[i] and r1[i] for all xi in X , and
a satisfying assignment π of the error formula for the current
version of ΨA. Since π |= F (X ′, Y ) and π |= ¬F (X,Y ), and
since the value of every xi in π is given by ψA

i , there exists
at least one ψA

l , for l ∈ {1, . . . , n}, that fails to generate
the right value of xl when the value of Y is as given by π.
UPDATEABSREF works by identifying such an index l and
refining ψA

l . Since ψA
i = ¬r1[i], ψA

l is refined by updating
(abstracting) the corresponding r1[l] set. In fact, the algorithm
may, in general, end up abstracting not only r1[l], but several
r0[i] and r1[i] as well in a sound manner.

As shown in Algorithm 4, UPDATEABSREF first finds the
largest index k such that π |= r0[k] ∧ r1[k]. Lemma 3b
guarantees the existence of such an index in {1, . . . , n}. We
assume access to a function called GENERALIZE that takes
as arguments an assignment π and a function ϕ such that
π |= ϕ, and returns a function ξ that generalizes π while
satisfying ϕ. More formally, if ξ = GENERALIZE(π, ϕ),
then Supp(ξ) ⊆ Supp(ϕ), π |= ξ and ξ ⇒ ϕ (details of
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GENERALIZE used in our implementation are discussed later).
Thus, in steps 2 and 3 of UPDATEABSREF, we compute
generalizations of π that satisfy r0[k] and r1[k], respectively.
The function µ computed in step 4 is therefore such that π |= µ
and µ⇒ r0[k]∧ r1[k]. Since r0[k]∧ r1[k]⇒ ¬∃x1 . . . xkF ,
any abstract Skolem function vector that produces values of
x1, . . . , xn (given the valuation of Y as in π) for which µ
evaluates to 1, cannot be a Skolem function vector. Since the
support of µ is {xk+1, . . . , xn}∪Y , one of the abstract Skolem
functions ψA

k+1, . . . , ψ
A
n must be refined.

The loop in steps 6–21 of UPDATEABSREF tries to identify
an abstract Skolem function ψA

l to be refined, by iterating l
from k + 1 to n. Clearly, if xl 6∈ Supp(µ), the value of ψA

l

under π is of no consequence in evaluating µ, and we ignore
such variables. If xl ∈ Supp(µ) and if xl = 1 in π, then π |=
µ[xl/1] and µ[xl/1]⇒ (¬∃x1 . . . xl−1F )[xl/1]. Recalling the
definition of Cb1[l], we have µ[xl/1]⇒ Cb1[l], and therefore
µ[xl/1] can be added to r1[l] (viewed as a set) yielding a
more abstract version of r1[l]. Steps 8–10 of UPDATEABSREF
implement this update of r1[l]. Note that since π |= µ[xl/1],
we have π |= r1[l] after step 10. If it so happens that π |=
r0[l] as well, then we have π |= r0[l] ∧ r1[l], where r1[l]
refers to the updated refinement of Cb1[l]. In this case, we
have effectively found an index l > k such that π |= r0[k] ∧
r1[k]. We can therefore repeat our algorithm starting with l
instead of k. Steps 11–13 followed by step 21 of algorithm
UPDATEABSREF effectively implement this. If, on the other
hand, π 6|= r0[k], then we have found an l that satisfies the
conditions in Lemma 3d. We exit the search for an abstract
Skolem function in this case (see steps 14–15).

If xl = 0 in π, a similar argument as above shows that
µ[xl/0] can be added to r0[l]. Steps 17–18 of UPDATEAB-
SREF implement this update. As before, it is easy to see that
π |= r0[l] after step 18. Moreover, since π |=

∧n
i=1(xi ⇔ ψA

i )
and ψA

i ≡ ¬r1[l], in order to have xl = 0 in π, we must
have π |= r1[l]. Therefore, we have once again found an
index l > k such that π |= r0[k] ∧ r1[k], and can repeat
our algorithm starting with l instead of k. Steps 19–21 of
algorithm UPDATEABSREF effectively implement this.

Once we exit the loop in steps 6–21 of UPDATEABSREF,
we compute the refined Skolem function vector ΨA as
(¬r1[1], . . .¬r1[n]) in step 22 and return the updated r0[i],
r1[i] for all xi in X , and also ΨA.

Example 1 (Continued). Continuing with our earlier example,
the error formula after the first step has a satisfying assign-
ment y1 = 1, y2 = 1, y3 = 0, x1 = 0, x2 = 1, x′1 = 0, x′2 = 0.
Using this for π in UPDATEABSREF, we find that ψA

1 is
left unchanged at (¬x2 ∨ ¬y1), while ψA

2 , which was true
earlier, is refined to (¬y1 ∨ y3). With these refined Skolem
functions, F (ψA

1 , ψ
A
2 , Y ) evaluates to true for all valuations of

Y . As a result, the (new) error formula becomes unsatisfiable,
confirming the correctness of the Skolem functions.

It can be shown that Algorithm UPDATEABSREF always
terminates, and renders at least one r1[i] strictly abstract, and
at least one ψA

i strictly refined, for i ∈ {1, . . . , n} (see [9] for

Algorithm 5: CEGARSKOLEM

Input: Propositional formula
F (X,Y ) =

∧r
j=1 f

j(Xj , Yj), X = (x1, . . . , xn)
Output: Skolem function vector Ψ(Y ) for X in F

1 (ΨA,{r0[i], r1[i] : 1 ≤ i ≤ n}) :=
INITABSREF(

∧r
j=1 f

j);
2 ε := F (X ′, Y ) ∧

∧n
i=1(xi ⇔ ψA

i ) ∧ ¬F (X,Y );
3 while ε is satisfiable do
4 Let π be a satisfying assignment of ε;
5 (ΨA, {r0[i], r1[i] : 1 ≤ i ≤ n}) :=

UPDATEABSREF({r0[i], r1[i] : 1 ≤ i ≤ n}, π);
6 ε := F (X ′, Y ) ∧

∧n
i=1(xi ⇔ ψA

i ) ∧ ¬F (X,Y );

7 Ψ(Y ) := REVERSESUBSTITUTE(¬r1[1], . . . ,¬r1[n]);
8 return Ψ(Y );

the proof). The overall CEGARSKOLEM algorithm can now
be implemented as depicted in Algorithm 5. From the above
discussion and Lemmas 1 and 2, we obtain our main result.

Theorem 1. CEGARSKOLEM(F (X,Y )) terminates and com-
putes a Skolem function vector for X in F .

The function GENERALIZE(π, ϕ) used in UPDATEABSREF
can be implemented in several ways. Since π |= ϕ, we may
return a conjunction of literals corresponding to the assignment
π, or the function ϕ itself. From our experiments, it appears
that the first option leads to low memory requirements and
increased run-time (due to large number of invocations of
UPDATEABSREF). The other option requires more memory
and less run-time due to fewer invocations of UPDATEAB-
SREF. For our study, we let GENERALIZE(π, r1[k]) return
one element in r1[k] (viewed as a set) amongst all those that
evaluate to 1 under π, such that the support of µ computed
in Algorithm UPDATEABSREF is minimized (we had to allow
GENERALIZE(·, ·) access to µ for this purpose). We follow a
similar strategy for GENERALIZE(π, r0[k]). This gives us a
reasonable tradeoff between time and space requirements.

V. EXPERIMENTAL RESULTS

A. Experimental Methodology

We compared CEGARSKOLEM with (a) MONOSKOLEM
(the algorithm based on the cofactoring approach of [7], [17])
and with (b) Bloqqer (a QRAT-based Skolem function gen-
eration tool reported in [12]). As described in [12], Bloqqer
generates Skolem functions by first generating QRAT proofs
using a remarkably efficient (albeit incomplete) preprocessor,
and then generates Skolem functions from these proofs.

The Skolem function generation benchmarks were obtained
by considering sequential circuits from the HWMCC10 bench-
mark suite, and by reducing the problem of disjunctively
decomposing a circuit into components to the problem of
generating Skolem function vectors. Details of how these
benchmarks were generated are described in [1]. Each bench-
mark is of the form ∃XF (X,Y ), where F (X,Y ) is a con-
junction of factors and ∃Y (∃XF (X,Y )) is true. However,
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for some benchmarks, ∀Y (∃XF (X,Y )) does not evaluate to
true. Since Bloqqer can generate Skolem functions only when
∀Y (∃XF (X,Y )) is true, we divided the benchmarks into
two categories: a) TYPE-1 where ∀Y ∃XF (X,Y ) is true,
and b) TYPE-2 where ∀Y ∃XF (X,Y ) is false (although
∃Y ∃XF (X,Y ) is true). While we ran CEGARSKOLEM and
MONOSKOLEM on all benchmarks, we ran Bloqqer only on
TYPE-1 benchmarks. Further, since Bloqqer required the
input to be in qdimacs format, we converted each TYPE-1
benchmark into qdimacs format using Tseitin encoding [18].
All our benchmarks can be downloaded from [1].

Our implementations of MONOSKOLEM and
CEGARSKOLEM make use of the ABC [11] library
to represent and manipulate functions as AIGs. For
CEGARSKOLEM, we used the default SAT solver provided
by ABC, which is a variant of MiniSAT. We used a simple
heuristic to order the variables, and used the same ordering for
both MONOSKOLEM and CEGARSKOLEM. In our ordering,
variables that occur in fewer factors are indexed lower than
those that occur in more factors.

We used the following metrics to compare the performance
of the algorithms: (i) average/maximum size of the generated
Skolem functions in a Skolem function vector, where the
size is the number of nodes in the AIG representation of
a function, and ii) total time taken to generate the Skolem
function vector (excluding any input format conversion time).
The experiments were performed on a 1.87 GHz Intel(R)
Xeon machine with 128GB memory running Ubuntu 12.04.4.
The maximum time and main memory usage was restricted
to 2 hours and 32GB, although we noticed that for most
benchmarks, all three algorithms used less than 2 GB memory.

B. Results and Discussion

We conducted our experiments with 424 benchmarks, of
which 160 were TYPE-1 benchmarks and 264 were TYPE-2
benchmarks. The 424 benchmarks covered a wide spectrum
in terms of number of factors, total number of variables, and
number of quantified variables (see [9] for details).

1) CEGARSKOLEM vs MONOSKOLEM: The performance
of these two algorithms on all the benchmarks (TYPE-1
and TYPE-2) is shown in the scatter plots of Figure 1,
where Figure 1a shows the average sizes of Skolem func-
tions generated in a Skolem function vector and Figure 1b
shows the total time taken in seconds. From Figure 1a, it is
clear that the Skolem functions generated by CEGARSKOLEM
in a Skolem function vector are on average smaller than
those generated by MONOSKOLEM. There is no instance on
which CEGARSKOLEM generates Skolem function vectors with
larger functions on average vis-a-vis MONOSKOLEM.

Due to repeated calls to the SAT-solver, CEGARSKOLEM
takes more time than MONOSKOLEM on some benchmarks,
but on most of them the total time taken by both algorithms
is less than 100 seconds (Figure 1b). Indeed, on profiling
we found that CEGARSKOLEM spent most of its time on
SAT solving. On 38 benchmarks where CEGARSKOLEM took
greater than 100 but less than 300 seconds, MONOSKOLEM
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Fig. 1: CEGARSKOLEM vs MONOSKOLEM on TYPE-1 & TYPE-2
benchmarks. Topmost (rightmost) points indicate benchmarks where
MONOSKOLEM (CEGARSKOLEM) was unsuccessful.

performed significantly worse, taking more than 1000 seconds.
We found the degradation of MONOSKOLEM was due to
the large sizes of Skolem functions generated (of the order
of 1 million AIG nodes) compared to those generated by
CEGARSKOLEM (< 8000 AIG nodes). Large Skolem function
sizes clearly imply more time spent in function composition
and reverse-substitution.

For benchmarks where the sizes of Skolem functions gen-
erated were even larger (of the order of 107 AIG nodes),
MONOSKOLEM could not complete generation of all Skolem
functions: for 8 benchmarks, the memory consumed by
MONOSKOLEM increased rapidly, resulting in memory outs;
for 10 benchmarks, it ran out of time; for an overwhelming
83 benchmarks, it encountered integer overflows (and hence
assertion failures) in the underlying ABC library. These are
indicated by the topmost points (see label “FA” on the axes)
in Figure 1. In contrast, CEGARSKOLEM generated Skolem
functions for almost all (412/424) benchmarks. The rightmost
points indicate the 12 cases where CEGARSKOLEM failed, of
which 10 were time-outs and 2 were memory outs.

2) CEGARSKOLEM vs Bloqqer: Of the 160 TYPE-1
benchmarks, Bloqqer successfully generated Skolem function
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Fig. 2: CEGARSKOLEM vs Bloqqer on TYPE-1 benchmarks.
Topmost (rightmost) points indicate benchmarks for which Bloqqer
(CEGARSKOLEM) was unsuccessful.

vectors in 148 cases. It gave a NOT VERIFIED message for
the remaining 12 benchmarks (in less than 30 minutes). These
benchmarks are indicated by the topmost points (see label
“FA” on the axes) in the scatter plots of Figure 2. Of these,
8 are large benchmarks with 1000+ factors and variables to
eliminate (overall, there are 9 such large benchmarks). On the
other hand, CEGARSKOLEM was able to successfully generate
Skolem functions on 154 benchmarks, including the 9 large
benchmarks, on each of which it took less than 20 minutes.

For the 142 benchmarks for which both algorithms suc-
ceeded, we compared the times taken in Figure 2b. As earlier,
CEGARSKOLEM took more time on many benchmarks, but
there were several benchmarks, including the large bench-
marks, on which Bloqqer was out-performed. We also com-
pared the maximum sizes of Skolem functions generated in a
Skolem function vector (see Figure 2a). We used the maximum
(instead of average) size, since Tseitin encoding was needed
to convert the benchmarks to qdimacs format, and this in-
troduces many variables whose Skolem function sizes are very
small, skewing the average. For a majority (108/142) of the
benchmarks where both algorithms succeeded, the maximum
sizes of Skolem functions obtained by CEGARSKOLEM were

smaller than those generated by Bloqqer. Hence, not only does
CEGARSKOLEM run faster on the large benchmarks, it also
generates smaller Skolem functions on most of them.

3) Discussion: For all benchmarks on which
CEGARSKOLEM timed out, we noticed that there were
large subsets of factors that shared many variables in their
supports. As a result, CEGARSKOLEM could not exploit
the factored representation effectively, requiring many
refinements. We also noticed that for many benchmarks
(197/424), the initial abstract Skolem functions were correct,
and most of the time was spent in the SAT solver. In fact, on
averaging over all benchmarks, we found that around 33% of
the time spent by CEGARSKOLEM was for SAT-solving. This
shows that we can leverage improvements in SAT solving
technology to improve the performance of CEGARSKOLEM.

VI. CONCLUSION AND FUTURE WORK

We presented a CEGAR algorithm for generating Skolem
functions from factored propositional formulas. Our experi-
ments show that for complex functions, our algorithm out-
performs two state-of-the-art algorithms. As part of future
work, we will explore integration with more efficient SAT-
solvers and refinement using multiple counter-examples.
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Abstract—We present a method for the automatic composi-
tional verification of certain classes of concurrent programs. Our
approach is based on the casting of the model checking problem
into a theory of transition systems within CVC4, a DPLL(T)
based SMT solver. Our transition system theory then cooperates
with other theories supported by the solver (e.g., arithmetic,
arrays), which can help accelerate the verification process. More
specifically, our theory solver looks for known patterns within
the input programs and uses them to generate lemmas in the
languages of other theories. When applicable, these lemmas can
often steer the search away from safe parts of the search space,
reducing the number of states to be explored and expediting the
model checking procedure. We demonstrate the potential of our
technique on a number of broad classes of programs.

I. INTRODUCTION

In concurrent programming, the size of the composite pro-
gram is typically exponential in the number of its constituent
threads. This phenomenon, an instance of the state explosion
problem, is a major hindrance to the verification of concurrent
software. In recent decades, a prominent approach to tackling
this difficulty has been that of compositional verification [13]:
properties of threads are derived/verified in isolation, and are
used to deduce global system correctness, without exploring
the entire composite state space. When applicable, compo-
sitional verification can often significantly outperform direct
verification techniques.

A key challenge in compositional verification is how to
automatically come up with “good” thread properties — those
whose verification is considerably cheaper than the verification
of the global property on the one hand, but which are
sufficiently meaningful to imply the desired system properties
on the other. Automatic property generation is essential in
rendering a compositional verification scheme scalable [11].

Since the compositional verification of arbitrary programs is
difficult (and often impossible [9]), one reasonable approach is
to trade generality for effectiveness — i.e., to limit the scope
of programs that a scheme handles, in exchange for better per-
formance on programs that remain within that scope. Here, we
adopt this approach and propose an automatic compositional
verification scheme for certain kinds of concurrent software.

The paper has two main contributions. The first is the rigor-
ous formalization and implementation of a solver for a theory
of transition systems (T S) within the context of CVC4 [1]
— a lazy, DPLL(T) based SMT solver [28]. The T S solver
takes as input formulas describing a program’s concurrent
threads (given as transition systems) and the assertion that
a certain safety property is violated; and it answers UNSAT
if the program is safe, or SAT if it is not. As a standalone

module, the T S solver explores the space of reachable states
in order to determine a system’s safety — an exploration that
is driven by the SMT solver’s underlying SAT engine.

Several existing approaches utilize SMT solvers in model
checking (e.g., Lazy Annotation [26] and PDR [8]), but
typically the process is driven by a model checker that uses
an SMT solver as a black-box tool. In our approach the roles
are reversed, and the SMT engine, via the T S solver, can
be regarded as invoking a model checker. This design allows
other theories within CVC4 to be seamlessly used in analyzing
the input program at hand, determining which parts of the state
space should be explored and which may safely be ignored.
These theories may then influence the search conducted by the
T S solver by asserting lemmas to the underlying DPLL(T)
core, sometimes pruning significant portions of the search
space and greatly improving performance. We term this pro-
cess theory-aided model checking: the T S solver explores the
state space while also looking for opportunities in which other
theories may aid and direct the search.

The second contribution of the paper is in the way other
theories determine which parts of the state space may be
ignored during model checking. We perform this by having
the T S solver analyze the input threads and look for pre-
supplied patterns: structural properties of the threads that
may be expressed as assertions in the languages of other
theories, such as arithmetic or arrays. It is through these
assertions that other theories can “understand” the program
and efficiently discover, e.g., that a certain branch of the search
space cannot lead to a violation. A key fact here is that each
thread/transition system is analyzed separately — and hence
the compositionality of our approach: the analysis complexity
is proportional to the size of the program and not to that of
its state space. We thoroughly describe three of the currently
implemented patterns.

While our proposed technique is compositional and com-
pletely automatic, it is useful only when the input programs
match one of the pre-supplied patterns. This is in line with
our approach of trading generality for effectiveness, and, as
we demonstrate in later sections, our approach is capable of
effectively handling broad classes of programs even with just
a few stored patterns.

The type of software that we target here is a family of
discrete event systems. In particular, we focus on a com-
putational model that has three fundamental concurrency
idioms — requesting events, waiting-for events and blocking
events — which we term the RWB model. The RWB
concurrency idioms are widespread and appear, sometimes
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in related forms, in various formalisms such as publish-
subscribe architectures [12], supervisory control [29] and live
sequence charts (LSC) [10]. Together, these three idioms
also form the behavioral programming (BP) model [20].
Thus, by focusing on the RWB model, we hope to make
our technique applicable (with appropriate adjustments) to
a variety of programming formalisms. Further, we believe
that the technique can be extended to cater to additional
concurrency idioms and models.

The rest of the paper is organized as follows. In Section II
we recap the definitions of the DPLL(T) framework for SMT
solvers and of the RWB model. Next, in Section III we
introduce the theory of transition systems (T S) and describe
a theory solver aimed at model checking RWB programs. In
Section IV we demonstrate how the T S solver can cooperate
with other theory solvers in order to expedite model checking.
Subsequently, we apply our technique to two broad classes of
problems: periodic problems in Section V, and programs with
shared arrays in Section VI. Experimental results appear in
Section VII, and we conclude with a discussion and related
work in Section VIII.

II. DEFINITIONS

The DPLL(T) Framework. DPLL(T) [28] is an extensible
framework used by modern SMT solvers. It employs multiple
specialized theory solvers that interact with a SAT solver.
The SAT solver maintains an input formula F and a partial
assignment M for F . Periodically, a theory solver is asked
whether M is satisfiable in its theory; and, if it is not, the
theory solver generates a conflict clause, the negation of an
unsatisfiable subset of M , that is added to F . The theory
solver may request case splitting by means of the splitting-on-
demand paradigm [2], which allows the solver to add theory
lemmas to F consisting of clauses possibly with literals not
occurring in F .

The RWB Model. In this work we focus on the RWB
model for concurrent discrete event systems. An RWB pro-
gram is comprised of a set of events and set of threads that
communicate via the requesting, waiting-for and blocking of
events. More specifically, the threads repeatedly synchronize
with each other at predetermined synchronization points, and
at each such point they each declare events that they request
and events that they block. Then, an event that is requested by
at least one thread and not blocked is selected for triggering,
and all the threads that requested or waited-for this event
proceed with their execution. Whenever a new synchronization
point is reached, the process is repeated.

The RWB model is not intended to be programmed in
directly. Rather, it is used to describe the underlying tran-
sition systems of threads written in higher level languages,
for the purpose of analysis and verification. Actual pro-
gramming in RWB is performed, e.g., using the behavioral
programming (BP) framework [20], which is implemented
in various high level languages such as C++ or Java (see
http://www.b-prog.org). Thus, while inter-thread communica-
tion in BP is performed solely through the RWB idioms,
threads may internally use any construct provided by the

underlying programming language (e.g., C++). Indeed, the
tool and examples described in this paper were prepared using
a C++ version of BP (termed BPC [16]), and CVC4. It should
further be noted that the RWB definitions as given here
entail global lockstep synchronization between components,
which may cause unwanted overhead. There exist extensions
to RWB that mitigate this difficulty without altering the
model’s semantics [14], and our technique is applicable to
these extensions as well.

Formally, an RWB-thread T over event set E is a tuple
T = 〈Q, δ, q0, R,B〉, where Q is a set of states (one for each
synchronization point), q0 is the initial state, R : Q→ 2E and
B : Q → 2E map states to events requested and blocked at
these states (respectively), and δ : Q×E → 2Q is a transition
function (the definition is adopted from [19]).
RWB programs are created by composing RWB-threads.

The parallel composition of threads T 1 = 〈Q1, δ1, q1
0 , R

1, B1〉
and T 2 = 〈Q2, δ2, q2

0 , R
2, B2〉, both over the same event

set E, yields the RWB-thread defined by T 1 ‖ T 2 =
〈Q1 × Q2, δ, 〈q1

0 , q
2
0〉, R1 ∪ R2, B1 ∪ B2〉, where 〈q̃1, q̃2〉 ∈

δ(〈q1, q2〉, e) iff q̃1 ∈ δ1(q1, e) and q̃2 ∈ δ2(q2, e). The union
of the labeling functions is defined in the natural way, i.e. e ∈
(R1 ∪R2)(〈q1, q2〉) iff e ∈ R1(q1)∪R2(q2). An RWB pro-
gram P comprised of RWB-threads T 1, T 2, . . . , Tn is the
composite thread P = T 1 ‖ . . . ‖ Tn. Denoting P =
〈Q, δ, q0, R,B〉, an execution of P starts from q0, and in
each state q along the run an enabled event is chosen for
triggering, if one exists (i.e., an event e ∈ R(q) − B(q)).
Then, the execution moves to state q̃ ∈ δ(q, e), and so on.
An execution can either be infinite, or finite if it ends in a
state with no successors (a deadlock state). An illustration of
a simple RWB program appears in Fig. 1.

WaterLevelLow

Hot

Hot

Hot

R=∅, B=∅

R={Hot}, B=∅

R={Hot}, B=∅

R={Hot}, B=∅

WaterLevelLow

Cold

Cold

Cold

R=∅, B=∅

R={Cold}, B=∅

R={Cold}, B=∅

R={Cold}, B=∅

HotCold

R=∅, B={Cold}

R=∅, B={Hot}

WhenLowAddHot WhenLowAddCold Alternation

Figure 1: An RWB program for controlling the water level in a tank with hot and
cold water sources. Each node corresponds to a synchronization point in a thread, labeled
with its requested (R) and blocked (B) events. Waited-for events are not labeled, and are
represented by transitions. If an event that a thread did not wait for is triggered, the thread
does not change states. In the program depicted, the RWB-thread WhenLowAddHot
repeatedly waits for WaterLevelLow events (requested by a sensor thread, not shown)
and requests three times the event Hot. WhenLowAddCold performs a similar action
with the event Cold. In order to keep the water temperature stable, the Alternation
thread enforces the interleaving of Hot and Cold events by using event blocking.

From a software-engineering perspective, the motivation for
using the RWB idioms for inter-thread communication lies
in the model’s strict and simple synchronization mechanism.
Studies show that this form of inter-thread interaction — i.e.,
through repeated synchronization and declaration of requested,
waited-for and blocked events — facilitates incremental, non-
intrusive development, and the resulting systems often have
threads that are aligned with the specification [20].

Verifying RWB Programs. In [19], [22], the authors
demonstrate how the transition systems underlying RWB-
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threads can be automatically extracted from high level code
and then, using abstraction techniques, be symbolically tra-
versed in order to verify safety properties. Safety properties
are themselves expressed by marker RWB-threads, marking
that a violation has occurred with a special API call [19].
For simplicity, we assume that marker threads signal that
a violation has occurred by blocking all events, causing a
deadlock. Thus, safety checking is reduced to checking for
deadlock freedom.

The manual compositional verification of RWB programs
is discussed in [15]. There, it is shown how the simple RWB
synchronization mechanism facilitates the generation of in-
dividual thread properties, which are then used for proving
the system property at hand. The beneficial effect that simple
concurrency idioms have on verification is also discussed
in [18]. Indeed, the simplicity of the RWB idioms plays a key
role in the pattern matching algorithm that we discuss later.

III. THE THEORY OF TRANSITION SYSTEMS

We now cast the model checking of RWB into a DPLL(T)
setting, by defining a dedicated theory of transition systems
(T S). We assume familiarity with the definitions of many-
sorted first order logic (see, e.g., [3]). The theory is param-
eterized by a set Q̄ = {Q1, . . . , Qn} of state sorts used to
represent the state sets of the program’s constituent threads.
Let Q̄+ denote the composite state sorts obtained by taking
the Cartesian product of one or more elements in Q. Every
element Q ∈ Q̄+ is a sort in T S . Further, every such Q is
also associated with a matching transition system sort, SQ.
Finally, T S has an event sort, E.

For every Q ∈ Q̄+ the signature includes: the predicate
IQ : SQ×Q, indicating initial states; the predicates RQ, BQ :
SQ ×Q× E to indicate whether an event is requested (RQ)
or blocked (BQ) at a given state; and the predicate TrQ :
SQ ×Q× E ×Q to indicate the state transition rules.

In order to reason about composite transition systems, the
signature includes the following functions and predicates.
For every Q1, Q2 ∈ Q̄+ we have the transition system
composition function ‖Q1Q2 : SQ1 × SQ2 → SQ1×Q2 (Re-
call that (Q1 × Q2) is itself a sort in Q̄+); and also the
pairQ1Q2 : Q1 × Q2 → (Q1 × Q2) function for composing
states, which, per the T S semantics, is a bijection. Later we
often omit the Q subscripts when clear from the context.

For each Q1, Q2 ∈ Q̄+, T S has the following axioms
which enforce theRWB composition rules. A composite state
is initial iff its components are initial states:
∀s1 : SQ1 , s2 : SQ2 , s : SQ1×Q2 . s = s1 ‖ s2 =⇒
∀q : Q1 ×Q2. (I(s, q) ⇐⇒
∃q1 : Q1, q2 : Q2. (I(s1, q1) ∧ I(s2, q2) ∧ q = pair(q1, q2))).

Composite transitions are performed component-wise:
∀s1 : SQ1 , s2 : SQ2 , s : SQ1×Q2 . s = s1 ‖ s2 =⇒
∀q, q′ : Q1 ×Q2, e : E. (Tr(s, q, e, q′) ⇐⇒
∃q1, q′1 : Q1, q2, q

′
2 : Q2. (q = pair(q1, q2)∧

q′ = pair(q′1, q
′
2) ∧ Tr(s1, q1, e, q

′
1) ∧ Tr(s2, q2, e, q

′
2))).

Requested and blocked events in a composite state are the
union of those in the component states:

∀s1 : SQ1 , s2 : SQ2 , s : SQ1×Q2 . s = s1 ‖ s2 =⇒
∀q : Q1 ×Q2, e : E.(R(s, q, e) ⇐⇒ ∃q1 : Q1, q2 : Q2.

q = pair(q1, q2) ∧ (R(s1, q1, e) ∨R(s2, q2, e))) ∧
(B(s, q, e) ⇐⇒ ∃q1 : Q1, q2 : Q2.

q = pair(q1, q2) ∧ (B(s1, q1, e) ∨B(s2, q2, e))).

As previously discussed, by encoding safety properties as
threads of the program to be checked, safety is reduced to
deadlock freedom. For each Q ∈ Q̄+, the signature includes
a deadlockQ : SQ ×Q predicate, such that:
∀s : SQ, q : Q. (deadlock(s, q) ⇐⇒
¬∃q′ : Q, e : E. Tr(s, q, e, q′) ∧R(s, q, e) ∧ ¬B(s, q, e)),

and the safe stateQ : SQ ×Q predicate, with:
∀s : SQ, q : Q. ¬safe state(s, q) =⇒ deadlock(s, q) ∨
∃q′ : SQ, e : E. (Tr(s, q, e, q′) ∧R(s, q, e) ∧

¬B(s, q, e) ∧ ¬safe state(s, q′)).

¬safe stateQ(s, q) indicates that state q is unsafe, because it
is (or can lead to) a deadlock state. Finally, for each Q ∈ Q̄+,
safeQ : SQ indicates that a transition system is safe:
∀s : SQ. ¬safe(s) ⇐⇒ ∃q : Q. I(s, q) ∧ ¬safe state(s, q).

The Theory Solver. Inputs for the T S solver start with
a preamble P that contains assertions that describe the pro-
gram’s threads. Specifically, P includes variables s1 . . . , sn,
each of sort SQ for some basic state sort Q ∈ Q̄; and for
every si it includes assertions describing its initial states, its
transitions and its requested and blocked events. After P,
the solver expects an assertion Φ about the system’s safety:
s = s1 ‖ s2 ‖ s3 ‖ . . . ‖ sn ∧ ¬safe(s). The solver then
returns SAT iff s is determined to be unsafe.

Fig. 2 shows derivation rules used to implement a simple
explicit-state model checker.1 Intuitively, T S traverses the
state graph in a DFS-like manner, looking for bad states.
The underlying SAT solver manages the splits by deciding
which successor state to check at every point. The process
ends when a deadlock state is found or when the state space
has been exhausted and no derivation rules apply; an example
appears in Fig. 3. As demonstrated in the next section, this
implementation allows us to seamlessly leverage other theory
solvers in curtailing the state space, which may reduce the
overall runtime. Additional details and proofs of correctness
and termination appear in Section A of the supplementary
material [23].

IV. AUTOMATIC ANALYSIS OF TRANSITION SYSTEMS

The calculus in Section III captures the basic proof strategy
of our theory solver: a forward reachability search. We next
enrich this basic strategy with additional derivation rules,
aimed at narrowing down the state space that needs to be ex-
plored. The idea is to include within the T S solver a database
of structural patterns that characterize common/useful threads
and alongside each pattern also to keep lemmas that describe
these threads’ behavior in the language of some other theory

1While we do not assume the system is finite-state, we do assume that the
initial states and the successors for each state are finite and decidable.
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START
Γ[¬safe(s)]

Γ,¬safe state(s, q1) . . . Γ,¬safe state(s, qn)
IF

Γ �TS q1, . . . , qn ARE THE INITIAL STATES OF s
AND ∀1≤i≤n. ¬safe state(s, qi) /∈ Γ

DECIDE
Γ[¬safe state(s, q)]

Γ,¬safe state(s, q1) . . . Γ,¬safe state(s, qn)
IF

Γ �TS q1, . . . , qn ARE THE SUCCESSORS OF q (n ≥ 1)
AND ¬deadlock(s, q) /∈ Γ

UNSAT
Γ[¬safe state(s, q)]

⊥
IF ∀q′. ¬safe state(s, q′) ∈ Γ =⇒ ¬deadlock(s, q′) ∈ Γ

DEADLOCK-LEMMA : P ∧ Φ =⇒ ¬deadlock(s, q) IF q HAS A SUCCESSOR IN s

Figure 2: Γ represents an arbitrary set of assertions that the solver has gathered at a given state, and Γ[φ] indicates that φ appears in Γ. The Start rule starts the traversal of
the graph: the solver initiates a forward reachability search for bad states by nondeterministically guessing an initial state that is unsafe. When a state with unvisited successors is
asserted to be unsafe, the Decide rule is used to nondeterministically assert that one of its successors is unsafe. Splitting is handled through the splitting-on-demand feature of the
DPLL(T) framework. The UNSAT rule closes branches that fail to reach a deadlock state. If all branches terminate with ⊥, UNSAT is returned; otherwise, if a branch terminates
with a state other than ⊥ where no rule is applicable, we return SAT. The last rule, Deadlock-Lemma, is a lemma generation rule: the resulting lemma is theory-valid, i.e. does not
depend on the context in which it was generated. These lemmas mark that a non-deadlock state has been visited, and that it does not need to be revisited in the future. As part of
the proof strategy, the T S solver invokes the lemma generation rule for (s, q) immediately after the Decide rule is invoked for ¬safe state(s, q), and only then (provided that q
is not a deadlock state). This strategy, together with the side-conditions on the derivation rules, ensures that no state is visited more than once. See Section A of the supplementary
material [23] for more details.

q0 q1 q2q3

Figure 3: The depicted program has a reachable deadlock state, q3. After reading the
preamble, the solver uses the Start rule to assert ¬safe state(s, q0). Then, it invokes
the Decide rule for state q0, nondeterministically asserting ¬safe state(s, q1). This
invocation of Decide is followed by the generation of the lemma ¬deadlock(s, q0).
Next, Decide is invoked for state q1, generating the assertion ¬safe state(s, q2)
— followed by the lemma ¬deadlock(s, q1). Decide is then invoked for state q2,
generating ¬safe state(s, q1) and the lemma ¬deadlock(s, q2). At this point,
the conditions for the UNSAT rule are met, and the solver closes this branch of the
tree. The solver backtracks to the last nondeterministic split and generates the assertion
¬safe state(s, q3). State q3 is deadlocked, and so the Deadlock-Lemma rule is not
invoked. No additional derivation rules apply, and so the process terminates with a SAT
result, indicating that the system is unsafe.

in CVC4. As the T S solver traverses the state space, it also
repeatedly checks to see if any of the patterns apply to the
threads at hand. When a match is found, the solver asserts the
matching lemmas to the SMT framework. Sometimes, these
lemmas may be contradictory to the assertion that the safety
property is violated along the current search path, and another
theory solver will raise a conflict: this will cause the T S solver
to backtrack and check other areas of the state space.

We demonstrate the method on a simple example, adopted
from [15]. Observe an RWB program over event set E =
{0, 1} that generates the event sequence (05 · (0 + 1))ω . The
program has three threads, depicted in Fig. 4. The safety
property to be verified is that event 1 is never triggered (and
so, the program is unsafe). Observe that direct model checking
of this system requires visiting 6 composite states.

0 1
0

0, 1

R = {0}
B = {1}

R = {0, 1}
B = ∅

Thread 1

0 1 2
0 0

0, 1

R = {0}
B = {1}

R = {0}
B = {1}

R = {0, 1}
B = ∅

Thread 2

0 1
1

0

R = ∅
B = ∅

R = ∅
B = {0, 1}

Thread 3

Figure 4: An RWB program adopted from [15]. Thread 1 counts the number of
events triggered so far, modulo 2. Every second event it requests both events 0 and 1;
otherwise, it requests 0 but blocks 1. Thread 2 does the same, but counts modulo 3.
Thread 3 is a bad marker: it waits for a violation to occur, i.e. for 1 to be triggered, and
then goes into a “bad” state that blocks all the events, forcing a deadlock. This RWB
program can have 0 triggered at every index, and can have 1 triggered precisely every
6 events. Consequently, it is unsafe.

For this program as input, the T S solver performs the
following automatic compositional proof. First, it compares
the transition systems to its pattern bank, and recognizes that
they match the looped thread mold — a thread whose state is

determined uniquely by the step index in the run (assuming
a violation has not occurred). This is a structural property of
each thread, that is checked locally and in isolation from its
siblings. After determining that all threads are looped, the
solver finds all individual thread states in which 1 is not
blocked. In our case, this is state 1 for thread 1, state 2 for
thread 2, and state 0 for thread 3. Denoting composite states
as triplets, this is state 〈1, 2, 0〉. Finally, the solver uses the
gathered information to generate the following lemma in order
to curtail the state space:

P ∧ Φ =⇒ ((¬safe state(s, 〈0, 0, 0〉) =⇒
¬safe state(s, 〈1, 2, 0〉)) ∧ ∃t : N.
(t ≡ 1 (mod 2)) ∧ (t ≡ 2 (mod 3)) ∧ (t ≡ 0 (mod 1))).

This lemma connects the safety of the initial state 〈0, 0, 0〉
with that of the only state in which 1 is not blocked, state
〈1, 2, 0〉 — provided that there exists an integer t for which
t ≡ 1 (mod 2), t ≡ 2 (mod 3) and t ≡ 0 (mod 1). Because,
in looped threads, the step index determines the state, this last
part captures the fact that state 〈1, 2, 0〉 is reachable.

Upon generation of this lemma, CVC4 asserts the lemma’s
arithmetical clauses to the arithmetic solver. If the latter
determines that there is no solution for t, CVC4 answers
UNSAT on the entire query. This signifies that the system
is safe, which is indeed the case if state 〈1, 2, 0〉 cannot be
reached. However, if the arithmetic solver manages to solve
for t, as is the case here, the T S solver continues exploring
the successors of state 〈1, 2, 0〉 and discovers that it has a bad
successor. Then, SAT is returned for the query.

The key observation is that through the automatically gen-
erated lemma, the 4 intermediate states between state 〈0, 0, 0〉
and 〈1, 2, 0〉 did not need to be explored. Because the threads
matched the looped pattern, CVC4 was able to deduce that
these intermediate states would be safe iff state 〈1, 2, 0〉 was
safe. Further, because the arithmetic solver can solve for t
more quickly than the intermediate states can be traversed
(especially when generalizing to (0n · (0+1))ω for a large n),
the solver’s performance is improved.

Pattern Matching. The T S solver’s pattern database con-
sists of pattern matchers. A pattern matcher P is comprised
of a family of recognizer predicates {Rn}n≥1, where Rn
is defined over n transition system variables s1, . . . , sn, and
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a lemma generating function f (described later). For input
system s = s1 ‖ . . . ‖ sn, we say that pattern P applies to
s if Rn(s1, . . . , sn) evaluates to true. The Rn predicates can
encode various facts about the transition systems: e.g., that
threads always or never block certain events, that they have a
certain state that must always be revisited, that certain events
always send threads into a deadlock state, etc. For example,
in the previously discussed looped pattern, Rn evaluates to
true iff each of the threads’ states has precisely one successor
state.

In our proof-of-concept C++ implementation, recognizer
predicates are coded as Boolean methods that take as input a
list (of arbitrary length) of transition systems. Upon receiving
a query, the T S solver passes the input program’s threads to
the recognizer predicates of each of the patterns, to determine
which patterns apply in this case. Recognizer implementations
may traverse the given transition systems, compute strongly
connected components, etc. The only restriction, needed for
the method to be efficient, is that recognizers do not compute
the composite transition systems of the system; they are
restricted to (polynomial) operations on the individual threads.
Thus, the complexity of pattern matching is polynomial in
the size of the individual threads — and because these
threads are typically exponentially smaller than the composite
program [17], we can quickly test multiple patterns.

The second component in a pattern matcher is the lemma
generating function, f . When pattern P applies to an input
program, its lemma generating function is invoked repeatedly
during state space traversal, in order to allow P to generate
lemmas that affect the search. Specifically, f is invoked
whenever T S visits a new state q (i.e., after the Decide
rule generates the assertion ¬safe state(s, q)), and returns a
(possibly empty) list of lemmas concerning the safety of state
q. The T S solver then asserts these lemmas to the underlying
SAT engine, and other theories may use them in trimming the
search space. In practice, the generated lemmas may depend
on parameters extracted from the input threads by the pattern
recognizers. For example, in the looped pattern, the size of
the loop is extracted by the recognizer and is then used in
generated lemmas.

Limitations. The above example demonstrates our
method’s potential advantages, but also raises a question re-
garding its generality: can the pattern database be sufficiently
extensive, i.e. apply to a sufficient range of programs, so as
to make our approach worthwhile? Indeed, if one needed to
“teach” the solver new patterns for every new input program,
the method would boil down to a manual compositional proof.

We believe that the answer to this question is affirmative:
our findings show that even a small set of patterns included
within the T S solver may already apply to broad classes of
interesting programs. We demonstrate two such cases, periodic
programs and programs with arrays, in Sections V and VI.
Still, adding new patterns is not a trivial task, and so we store
them in a central repository — amortizing the cost of adding
additional patterns over future applications.

The T S Solver vs. Model Checking. In the simple
example given above, our theory-aided approach could also

be implemented by a more standard design: a model checker
that issues queries to a black-box SMT solver. Our motivation
for conducting model checking within the T S solver is in
handling more elaborate examples, in which SMT theories
partake in directing the state space traversal (see, e.g., Sec-
tion V). While such cases can still be accommodated by
a model checker that is “running the show” and an SMT
solver that exposes proper callbacks, we feel that a DPLL(T)-
based solution is cleaner, and also more extensible and robust.
By encoding the state traversal engine as a few axioms and
lemma generation rules, and by having the pattern match-
ing mechanism likewise generate lemmas, the complexity of
integrating and synchronizing the two is automatically and
seamlessly handled by CVC4’s DPLL(T) core — simplifying
the implementation of the T S solver. Further, this enables
the T S solver to be plugged into any other SMT solver that
adheres to the DPLL(T) framework.

V. VERIFYING PERIODIC PROGRAMS

In this section, we discuss the theory-aided verification
of periodic programs [25] — a class of single processor
scheduling problems that have been widely studied over the
last decades. A periodic program consists of a finite set of
tasks T1, . . . , Tn, which are processes that repeatedly need to
be scheduled for execution on a single processor. Each task
Ti is characterized by its period time Pi and an execution
time Ci (for simplicity, we ignore here other parameters such
as relative deadlines and initial offsets). From task Ti’s point
of view, the execution of the program is divided into time
cycles of length Pi each, and in each such cycle the task must
be alloted Ci time slots on the processor. The least common
multiple of the tasks’ period times is called the program’s
hyper-period. Tasks may have priorities: a task with a higher
priority will preempt another if both need to be scheduled
at a specific point in time. A periodic program is said to
be schedulable if there exists a task scheduling in which no
deadlines are violated. See Section C of the supplementary
material [23] for an example.

Here, we study the verification of safety properties in
periodic programs: we assume that the input program is
schedulable, and check whether it can violate a given property.
This is typically done by transforming the periodic program
into an equivalent sequential program and then verifying it
using standard model checking [7]. Our approach is similar,
but we seek to leverage the program’s special structure in
order to explore only a portion of its state space.

In RWB, periodic programs may be programmed by ex-
pressing each task as a thread that requests an event whenever
the task needs to be scheduled [15]. Priorities are expressed
using blocking: a thread (task) may block events belonging
to other threads with lesser priorities. Fig. 5 illustrates the
structure of task threads and describes their pattern matcher.

Whenever all input threads are identified as tasks, the
pattern recognizer reports that the program is periodic. This
causes the pattern’s lemma generation function to be repeat-
edly invoked during state space traversal, so that it may gener-
ate lemmas aimed at curtailing the search space. For this pur-
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Figure 5: An RWB implementation of a task thread with period time P = 5 and
execution time C = 2. The thread’s underlying transition system can be regarded as a
(C + 1)×P matrix, where the columns represent the time passed since the beginning
of the period and the rows represent the number of times the task has been scheduled
so far. Green edges in the figure represent the task being successfully scheduled (i.e.,
its requested event was triggered) and red edges represent the task not being scheduled
(an event requested by some other task was triggered). Thus, with every time unit the
state moves to the right, and if the task was scheduled it also moves one row down.
If the task’s deadline is violated, it enters a deadlock state (the rightmost state in the
figure). The task pattern matcher traverses the state graph of each input thread and
checks whether it has these structural properties. If so, it also extracts the task’s P and
C parameters and its sequence of requested events (not illustrated). If blocking is used
to prioritize tasks, the matcher also extracts the prioritization hierarchy.

pose, we extend the signature of T S to include a sort Z+ for
non-negative integers, and the predicate deadlockQ : SQ×Z+.
Intuitively, deadlockQ(s, t) indicates that a deadlock state in s
is reachable in t steps from an initial state. Further, we extend
T S to support backward reachability analysis, in addition to
the forward reachability analysis afforded by the safe state
predicate. To this end, we add the reachableQ : SQ × Q
predicate, with the following semantics:
∀s : SQ, q : Q.reachable(s, q) =⇒ I(s, q) ∨ ∃q′ : SQ, e : E.

(Tr(s, q′, e, q) ∧R(s, q′, e) ∧ ¬B(s, q′, e) ∧ reachable(s, q′))

Intuitively, a state is reachable if it is initial or has a
reachable predecessor. For more details, see Section B of the
supplementary material [23].

The lemmas generated by the pattern matcher assert that
there must be a time t within the hyper-period in which
a violation occurs. They also limit the possible values of t
based on the information gathered about the individual tasks.
Specifically, the pattern matcher generates the lemma:

P ∧ Φ =⇒ ∃t : Z+. deadlock(s, t) ∧Ψt

where Ψt describes constraints on t that are deduced from the
structure of the task threads. If the arithmetic solver finds a
solution t0 for Ψt it assigns it to t, and the T S solver then
translates it, by analyzing the task threads’ possible locations
in time t, into candidate reachable bad states q1, . . . , q`:

P ∧ Φ ∧ deadlock(s, t0) =⇒ ∨`
i=1reachable(s, qi)

T S then performs backward reachability checks on candidates
q1, . . . , q`. If a path to an initial state is found, the system is
unsafe and we are done. Otherwise, the contradiction forces
the arithmetic solver to propose another solution t = t1,
which corresponds to additional candidate bad states. The
process is repeated until the system is proven unsafe, or until
all possible solutions are exhausted. Other bad states, which
do not correspond to any of the proposed values of t, are
guaranteed to be unreachable and are ignored.

In order to generate the constraints in Ψt, the pattern
matcher identifies tasks participating in the violation: these
are the threads whose requested events are part of a violating
sequence. Then, it uses information about these threads, and
about threads with higher priority, to put constraints on t.

We demonstrate this on a schedulable periodic program
with 4 tasks: task T1 with parameters P1 = 5, C1 = 1; T2

with P2 = 6, C2 = 1; T3 with P3 = 9, C3 = 3; and task
T4 with parameters P4 = 11, C4 = 2. Task 1 has the highest
priority, task 2 has the second highest priority, and tasks 3
and 4 both share the lowest priority. The safety property in
question is that it is impossible for task T4 to be scheduled
for three consecutive time slots. Here, direct model checking
requires visiting 55000 states in the composite program.

By intersecting the violating event sequence with the events
requested by each thread, the pattern matcher determines
that T4 is the only participating task. By the information
extracted regarding task priorities, it deduces that tasks T1

and T2 supersede it. Then, it generates the Ψt constraint
as follows. One conjunct in Ψt is 0 ≤ t ≤ 990, as the
hyper-period is lcm(5, 6, 9, 11) = 990. Another conjunct is
((t ≥ 3 (mod 5))∧ (t ≥ 3 (mod 6))): if it did not hold, T1 or
T2 would preempt T4, preventing it from being scheduled 3
consecutive times. Yet another conjunct is (t ≤ 1 (mod 11));
it holds because in order for T4 to be scheduled 3 consecutive
times (with execution time C4 = 2), a fresh period must start
at time t or t−1. A few additional conjuncts are omitted. The
complete lemma reduces the number of possible values for t
from 990 to just 15, and the query as a whole entails exploring
only 700 states out of 55000 reachable states in order to prove
the system’s safety.

VI. VERIFYING PROGRAMS WITH SHARED ARRAYS

Next we demonstrate the theory-aided verification of pro-
grams with shared arrays — a widespread construct in concur-
rent programming. In the RWB model, a shared m-ary array
with n cells may be implemented using n b-threads, each of
size m. Each thread represents a single array cell and has a
clique-like structure, where each state si is associated with
a write event wi and a read event ri. Intuitively, each state
si corresponds to a value vi that is stored in the array cell.
Whenever event wi is triggered, the thread moves to state si;
and whenever not in state si, the thread blocks ri. Thus, other
threads can request ri in order to check if the thread is in state
si (i.e., to check if the array cell has value vi). See Fig. 6 for
an illustration. Note that this implementation is only needed
for shared arrays; internally, threads may use any construct
available in the underlying programming language.

0

1

write(1, 1)write(1, 0)

R = ∅
B = read(1, 1)

R = ∅
B = read(1, 0)

Cell #1

0

1

write(n, 1)write(n, 0)

R = ∅
B = read(n, 1)

R = ∅
B = read(n, 0)

Cell #n

. . .

Figure 6: An RWB implementation of a binary array with n cells. Each cell is
represented by a thread with two states, signifying the stored value in that cell, 0 or 1.
Each thread/cell is associated with two write events, for 0 and 1; when they occur,
the thread changes states to indicate the new stored value. Other threads in the program
may read from a cell by requesting the two read events associated with it, one for 0
and one for 1; the read event that does not match the value in the cell will be blocked
by the cell thread, and so only the “correct” read event may be triggered.

The T S solver has a pattern matcher that looks for threads
that match this array cell pattern. If an array is found, the
pattern matcher checks whether deadlocks are possible only
in certain array configurations (e.g., when certain array cells
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hold certain values; an example appears later in this section).
If such constraints are found, it generates a lemma that
conditions the system’s unsafety on the array threads reaching
an unsafe configuration.

We demonstrate with an example. Observe a program with a
shared array of size n and an initial state q0. The array pattern
matcher creates an array expression arrq0 whose value at each
index i is set to some fresh constant ci. This expression is used
to represent the value of the array in various states of the
program. The matcher also creates a target array, arr target,
and asserts constraints on arr target signifying the state that
the array has to be in for a violation to occur. Then, it
generates the lemma P ∧ Φ =⇒ (arrq0 = arr target).

The bulk of the work is then performed as T S traverses
the state space. Whenever a new state q is visited, the
pattern matcher analyzes the threads (each of them separately),
looking for array entries that have become fixed. This can
be determined, e.g., when additional write events to a cell
are never requested or are always blocked. Suppose that it
is discovered that the first cell’s value has been fixed to e0;
then the lemma P ∧ Φ ∧ ¬safe state(s, q) =⇒ (c0 = e0)
is generated. If this is consistent with the earlier assertion
arrq0 = arr target, the solver continues traversing the suc-
cessors of q; otherwise, the array theory solver will raise a
conflict, resulting in q’s successor states not being traversed.

A more detailed example and an evaluation of applying
the shared array pattern to a web-server application appears
in Section VII. An additional detailed example regarding the
verification of an RWB application for playing Tic-Tac-Toe
appears in Section D of the supplementary material [23].

VII. EXPERIMENTAL RESULTS

We evaluated our proof-of-concept tool, implemented as an
extension to CVC4, by comparing it to BPMC — a symbolic
model checker specifically designed for RWB programs [19],
[22] (the tool and experiments are available online [23]). Our
tool uses a portfolio approach: if the input program does not
match any of the known patterns, the tool simply invokes
BPMC (or any other model checker, for that matter). The
decision of whether or not to invoke BPMC is made within
seconds, rendering the performance of both tools effectively
the same in these cases. Hence, for the remainder of this
section we focus on inputs in which a pattern did apply and
theory-aided model checking was indeed attempted.

We first compared the tools using a benchmark suite of
over 120 hand-crafted RWB programs — some periodic,
and some containing shared arrays. The benchmarks’ sizes
ranged from a few hundred to over 10 million reachable states,
and contained both SAT and UNSAT instances. The results are
depicted and disucssed in Fig. 7.

Next, we set out to test our tool’s applicability to a large,
real-world system by using it to verify safety properties on a
web-server (implementing TCP and HTTP stacks) written in
BPC [16]. We were very curious to see whether our pattern
recognition mechanism would pick up any matching threads.

As it turns out, the shared array pattern proved useful in
verifying this application. Per the TCP protocol, the web-

server only accepts TCP push segments on active connections.
Slightly simplified, a connection to a client is active if the
client sent a syn segment but not a fin segment. This func-
tionality is implemented using blocking: for every connection,
a dedicated thread, named EnsureActiveConnection, blocks
push events while the connection is inactive. This blocking is
removed when a syn segment is received, and is restored when
a fin segment is received. Thus, the EnsureActiveConnection
threads were picked up as shared array cells by our tool:
they each had two states, labeled active and inactive, with
respective read events push and reject and write events syn
and fin. Interestingly, the programmers of the web-server did
not seem to have had this design pattern in mind [16].

We tested 10 safety properties on the web-server
(see Fig. 8). These properties included the proper re-
jection of messages on inactive connections, proper us-
age of allotted sequence numbers for outgoing segments,
and the detection and blocking of unstable clients, who
quickly and repeatedly opened and closed connections.

Figure 8: Experiments on the web-server.

The theory-aided approach
did better on 7 of 10 in-
stances (4 SATs and 3 UN-
SATs), demonstrating an
average speedup of 16%
over all instances. BPMC
did better on 2 SAT and
1 UNSAT instances, where
the property in question
and the discovered patterns
were disparate (e.g., prop-
erties involving proper usage of sequence numbers, that had
nothing to do with the EnsureActiveConnection threads).

These initial results are encouraging. We conclude that
(i) the theory-aided approach is viable, in the sense that the
stored patterns apply to real programs, sometimes significantly
reducing verification times; and (ii) that performance may be
further improved by enhancing the portfolio approach; i.e., if
we were able to more accurately characterize cases in which,
despite matching a stored pattern, a thread does not affect the
property in question, we could delegate those cases to BPMC
and achieve faster running times. This is left for future work.

VIII. RELATED WORK AND DISCUSSION

In this work, we proposed a framework for the automated
compositional verification of concurrent software. Our tech-
nique was based on casting the model checking problem into
the DPLL(T) framework used by the CVC4 SMT solver, and
then utilizing other theory solvers to prune the search space
in order to improve performance. Other theories were able to
affect the search through lemmas in their respective languages
that were generated by matching the input program’s threads
to presupplied patterns.

SMT solving has been used for various verification-related
tasks such as lemma dispatching [8], [26], reachability anal-
ysis [4] and model-checking concurrent programs [6], [27].
Our technique shares some of these aspects, but differs in
that the state exploration is driven by an SMT solver and
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# Instances Avg. # States Explored Avg. Time (milliseconds)
CVC4 BPMC Change CVC4 BPMC Change

Periodic SAT 11 9994 9236 +8% 18791 15894 +18%
Programs UNSAT 50 35299 184388 -80% 10247 15041 -31%

UNSAT† 6 59816 8195666 N/A 170673 809946 N/A
Timeout 2

Shared SAT 35 24416 293525 -91% 24882 168755 -85%
Arrays UNSAT 15 121133 511292 -76% 124911 292779 -57%

UNSAT† 6 267000 1989666 N/A 359324 1510028 N/A

Total 111 190842 998441 -80% 178831 492469 -63%

Figure 7: Experiments on a benchmark suite, conducted using an X230 Lenovo laptop with 16GB memory. The suite contained SAT and UNSAT instances of periodic RWB
programs and programs with shared arrays. The table compares our tool (CVC4 columns) to the BPMC tool, measuring the average number of explored states and average solving
time for each category. The Change columns measure the effectiveness of CVC4 in comparison to BPMC. The UNSAT† row indicates UNSAT instances on which CVC4 answered
correctly but on which BPMC ran out of space (but listing the number of states it was able to explore). The Timeout row indicates instances on which both tools ran out of space/time.
We did not encounter examples on which BPMC returned and CVC4 did not. The table reveals that for SAT queries on periodic programs, BPMC was able to outperform CVC4.
This is not surprising; indeed, the pattern for periodic programs is designed to quickly show that bad states are unreachable, which is not the case for SAT instances. In all other
categories, i.e. UNSAT queries on periodic programs and both types of queries on programs with shared arrays, CVC4 typically outperformed BPMC. Instances where BPMC did
better were either very small (the cost of thread analysis and pattern matching exceeded the cost of the actual model checking), or instances where the property in question had
nothing to do with the recognized patterns, making it impossible for our tool to trim the search space. The UNSAT† instances had too many states for BPMC to cover, but with the
theory-aided approach we were able to trim the search space down to a manageable size. Finally, the Timeout instances were too large to handle, even with theory-aided pruning.
The Total row sums up the instances solved by both tools, demonstrating an encouraging average speedup of 63%; these 111 instances are also the ones described in the graph.

in that lemmas are derived using stored patterns. A related
approach for circuit verification appears in [5], where the
input is analyzed to find unreachable states in advance. Our
framework follows a similar spirit, but extends the technique
to concurrent software and utilizies a modern SMT solver.

In [30], the authors extend the Z3 solver with an automaton
sort for symbolic automata over infinite alphabets. It would
be interesting to combine this technique with ours, enabling
it to reason about RWB programs with infinite event sets.

We evaluated our technique on two broad classes of RWB
programs: periodic programs and programs with shared arrays.
Specifically, we showed how the T S solver may leverage
CVC4’s arithmetic and array theory solvers in order to ex-
pedite the model checking process. Others have explored
SMT-based techniques for similar models; e.g., the validation
of guessed invariants in Lustre programs [21]. We consider
this as encouragement that applying SMT-based techniques to
synchronous, discrete event models may prove fruitful, and
intend to extend our technique to Lustre as well.

We find our initial results encouraging, and plan to continue
extending our pattern database. One direction that we are
presently pursuing is the addition of a new pattern matcher
that leverages CVC4’s string theory solver [24], by translating
constraints imposed by certain types of input threads into
regular expressions. Indeed, a prototype implementation we
have created shows interesting potential.
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Abstract—We present a compositional SMT-based algorithm
for safety of procedural C programs that takes the heap into
consideration as well. Existing SMT-based approaches are either
largely restricted to handling linear arithmetic operations and
properties, or are non-compositional. We use Constrained Horn
Clauses (CHCs) to represent the verification conditions where the
memory operations are modeled using the extensional theory of
arrays (ARR). First, we describe an exponential time quantifier
elimination (QE) algorithm for ARR which can introduce new
quantifiers of the index and value sorts. Second, we adapt the
QE algorithm to efficiently obtain under-approximations using
models, resulting in a polynomial time Model Based Projection
(MBP) algorithm. Third, we integrate the MBP algorithm into the
framework of compositional reasoning of procedural programs
using may and must summaries recently proposed by us. Our
solutions to the CHCs are currently restricted to quantifier-
free formulas. Finally, we describe our practical experience over
SV-COMP’15 benchmarks using an implementation in the tool
SPACER.

I. INTRODUCTION

Under-approximating a projection (i.e., existential quan-
tification), for example in computing an image, is a key
aspect of many techniques of symbolic model checking. A
typical (though not ubiquitous) approach to this is what we
call Model-based Projection (MBP) [17]: we generalize a
particular point in the space of the image (obtained using
a model) to a subset of the image that contains it. In some
cases, the purpose is to compute the exact image by a series
of under-approximations [12]. In other cases, such as IC3 [6],
the purpose of MBP is to produce a relevant proof sub-goal.
When the number of possible generalizations is finite, we say
that we have a finite MBP which allows us to compute the
exact image by iterative sampling, or to guarantee that the
branching in our proof search is finite.

The feasibility of a finite MBP depends on the underlying
logical theory. Finite MBPs exist for propositional logic [12],
[16] and Linear Integer Arithmetic (LIA) with a divisibility
predicate [17], and have been applied in both hardware and
software model checking. LIA is often adequate for software
verification, provided that heap and array accesses can be
eliminated. This can be done by abstraction, or by inlining
all procedures and performing compiler optimizations to lower

This material is based upon work funded and supported by by NASA Contract No. NNX14AI09G and the Department
of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. This material has been approved for public
release and unlimited distribution. DM-0002442.

memory into registers (e.g., [2], [15]). However, the inlining
approach has many drawbacks. It can expand the program size
exponentially, it cannot handle recursion, and it is not always
feasible to eliminate heap and array accesses.

We address this issue here by considering the problem of
MBP for the extensional theory of arrays (ARR). We find that
a finite MBP exists that can be computed in polynomial time
when only array-valued variables are projected. Projecting
variables of index and value sorts is not always possible, since
the quantifier-free fragments of the theory combinations are
not guaranteed to be closed under projection. We therefore take
a pragmatic approach to MBP that may not always converge
to the exact projection. This allows us to handle, for example,
the combination of ARR and LIA.

We test the effectiveness of this approach using the model
checking framework of SPACER [17]. This SMT-based frame-
work makes use of MBP to produce proof sub-goals for
Hoare-style procedure-modular proofs of recursive programs.
The ability to reason with ARR makes it possible to handle
heap-allocating programs without inlining procedures, as the
heap can be faithfully modeled using ARR [14]. This leads
to significant improvements in scalability, when compared
to the use of LIA alone with inlining, as measured using
benchmark programs from the 2015 Software Verification
Competition (SVCOMP 2015) [4]. Not inlining the programs
also has the advantage that we generate procedure-modular
proofs (containing procedure summaries) that might be re-
usable in various ways (e.g., [11]).

In summary, we (a) describe an exponential rewriting pro-
cedure for projecting array variables (Sec. III-A), (b) adapt
this procedure to obtain a polynomial-time (per model) finite
MBP for projecting array variables (Sec. III-B), (c) integrate
this with existing MBP procedures for Linear Arithmetic
(Sec. III-C) in the SPACER framework obtaining a new com-
positional proof search algorithm (Sec. IV), and (d) evaluate
the algorithm experimentally using SVCOMP benchmarks
(Sec. V).

II. PRELIMINARIES

We consider a first-order language with equality whose
signature S contains basic sorts (e.g., bool of Booleans, int
of integers, etc.) and array sorts. An array sort arr(I, V ) is
parameterized by a sort of indices I and a sort of values V .
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We assume that I is always a basic sort. For every array sort
arr(I, V ), the language has the usual function symbols rd :
arr(I, V )×I → V and wr : arr(I, V )×I×V → arr(I, V )
for reading from and writing to the array. Intuitively, rd(a, i)
denotes the value stored in the array a at the index i and
wr(a, i, v) denotes the array obtained from a by replacing the
value at the index i by v. We use the following axioms for
the extensional theory of arrays (ARR):

Read-after-write
∀a : arr(I, V ) ∀i, j : I ∀v : V

(i = j =⇒ rd(wr(a, i, v), j) = v)∧
(i 6= j =⇒ rd(wr(a, i, v), j) = rd(a, j))

Extensionality
∀a, b : arr(I, V ) · (∀i : I · rd(a, i) = rd(b, i)) =⇒ a = b
Intuitively, the first schema says that after modifying an

array a at index i, a read results in the new value at index
i and rd(a, j) at every other index j. The second schema
says that if two arrays agree on the values at every index
location, the arrays are equal. We use an over-bar to denote
a vector. We write x : S to denote that every term in vector
x has sort S, x(k) to denote the kth component of x, and
y ∈ x to denote that y is equal to some component of x, i.e.,∨|x|

k=1 y = x(k). Let i : I and v : V be vectors of index and
value terms of the same length m. We write wr(a, i, v) to
denote wr(wr(. . .wr(a, i(0), v(0)) . . . ), i(m), v(m)). Unless
specified otherwise, S contains no other symbols.

For arrays a and b of sort arr(I, V ), and a (possibly
empty) vector of index terms i, we write a =i b to denote
∀j : I ·

(
j 6∈ i =⇒ rd(a, j) = rd(b, j)

)
and call such formulas

partial equalities [20]. Using extensionality, one can easily
show the following

a =∅ b ≡ a = b (1)

wr(a, j, v) =i b ≡

(
j ∈ i ∧ a =i b

)
∨(

j 6∈ i ∧ a =i,j b ∧ rd(b, j) = v
) (2)

a =i b ≡ ∃v : V · a = wr(b, i, v) (3)

We write ϕ(x) for a formula ϕ with free variables x, and we
treat φ as a predicate over x. We also write ϕ[t] to to indicate
that a term or formula t occurs in ϕ at some syntactic position.

Given formulas ϕA(x, z) and ϕB(y, z) with x ∩ y = ∅ and
ϕA =⇒ ϕB , a Craig Interpolant [7], denoted ITP(ϕA, ϕB),
is a formula ϕI(z) such that ϕA =⇒ ϕI and ϕI =⇒ ϕB .

III. QE AND MBP FOR THE THEORY ARR

By projection of a variable we mean elimination of an
existential quantifier. Consider a formula ϕ of the form
∃x · ϕqf (x, y) where ϕqf is quantifier-free. The problem
of quantifier elimination (QE) in ϕ is to find a logically
equivalent quantifier-free formula ψ(y). In this case, we say
that ψ is the result of projecting x in ϕqf .

A model-based projection (MBP) for ϕ is an operator Proj
that takes a model M of ϕqf and returns a quantifier-free
formula ψM (y) such that M |= ψM and ψM entails ϕ. The

operator Proj is a finite MBP if its image is finite up to logical
equivalence (that is, over all models we obtain only finitely
many semantically distinct formulas).1 In this case, we obtain
the exact projection as the disjunction of the image of Proj .
We will refer to Proj (M) as a generalization of M .

In some cases, there is a trivial approach to MBP that we
will call the substitution approach. We simply substitute for
each variable x in ϕ a constant that is equal to x in the given
model M (for example, a numeric literal). This approach was
taken for propositional logic by Ganai et al. [12]. For theories
that admit models of unbounded size (e.g., LIA), however,
this does not yield a finite MBP, as the number of distinct
generalizations we obtain can be infinite.

Instead, we can take the approach used for Linear Real
Arithmetic and LIA in our earlier work [17]. Suppose that for
the given theory we have a QE procedure that produces a for-
mula with an exponential (or higher) number of disjunctions.
We can adapt this procedure to an MBP by always choosing
just one disjunct that is true in the given model M . The result
may be a procedure that is polynomial for any given model,
though the number of distinct generalizations is exponential.
We will show how to apply this idea for the projection of array-
valued variables in the theory of arrays ARR. When combining
this theory with LIA, we will find that some variables of index
and value sorts must be eliminated by the substitution method,
which gives us a useful MBP but not necessarily a finite MBP.

A. Quantifier elimination for ARR

Consider an existentially quantified formula ∃a :
arr(I, V ) · ϕ where ϕ is quantifier-free. We restrict our
discussion to infinite interpretations of I . While we cannot
always obtain an equivalent quantifier-free formula, our ob-
jective here is to obtain an equivalent existentially quantified
formula where every quantifier (if any) is of the sort V .

ARRAYQE(∃a · ϕ)
1 ϕ1 ← (ELIMWR∗)(∃a · ϕ)
2 ϕ2 ← (CASESPLITEQ∗; FACTORRD∗)(ϕ1)
3

(∨n
k=1 δk

)
← LIFTEQDISEQRD(ϕ2)

4 for k ∈ [1, n] do
5 ψk ← (ELIMEQ; ELIMDISEQ; ACKERMANN)(δk)

6 return
∨n

k=1 ψk

Algorithm 1: QE for ∃a · ϕ, where a is an array variable.

Our algorithm is inspired by the decision procedure for the
quantifier-free fragment of ARR by Stump et al. [20]. At a
high level, the QE algorithm proceeds in 3 steps: (i) eliminate
write terms using the read-after-write axiom schema and par-
tial equalities over arrays, (ii) eliminate (partial) equalities and
disequalities over arrays, and (iii) eliminate read terms over
arrays. Alg. 1 shows the pseudo-code for our QE algorithm
ARRAYQE using the rewrite rules in Fig. 1, 2, and 3. Each rule
rewrites the formula above the line to the logically equivalent
formula below the line. We use regular expression notation

1 MBP as defined in [17] corresponds to finite MBP here.
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ELIMWRRD
ϕ[rd(wr(t, i, v), j)]

(i = j ∧ ϕ[v]) ∨ (i 6= j ∧ ϕ[rd(t, j)])

ELIMWREQ
ϕ[wr(t1, j, v) =i t2](
j ∈ i ∧ ϕ[t1 =i t2]

)
∨(

j 6∈ i ∧ ϕ[t1 =i,j t2 ∧ v = rd(t2, j)]
)

PARTIALEQ
ϕ[t1 = t2]

ϕ[t1 =∅ t2]
ti’s have array sort TRIVEQ

ϕ[t =i t]

ϕ[>]
SYMM

ϕ[t1 =i t2]

ϕ[t2 =i t1]
t2 is a write term
but t1 is not

ELIMWR = (ELIMWRRD | ELIMWREQ | PARTIALEQ | TRIVEQ | SYMM)

Fig. 1: Rewriting rules to eliminate write terms. ELIMWR denotes one of the rules chosen non-deterministically.

CASESPLITEQ
∃a · ϕ[a =i t]

∃a · ((a =i t ∧ ϕ[>]) ∨ (¬(a =i t) ∧ ϕ[⊥]))
FACTORRD

∃a · ϕ[rd(a, t)]
∃a, s · (ϕ[s] ∧ s = rd(a, t))

s is fresh, t does not
contain array terms

Fig. 2: Rewriting rules to factor out equalities and read terms on the quantified array variable.

ELIMEQ
∃a · (a =i t ∧ ϕ)
∃v · ϕ[wr(t, i, v)/a]

where a does not appear in t and v denotes fresh variables

ELIMDISEQ

∃a ·

(
ϕ ∧

m∧
k=1

¬(a =ik
tk)

)
∃a · ϕ

where m ∈ N, a does not appear in any tk, and
a appears in ϕ only in read terms over a

ACKERMANN

∃a ·

(
ϕ ∧

m∧
k=1

sk = rd(a, tk)

)
ϕ ∧

∧
1≤k<`≤m

(tk = t` =⇒ sk = s`)

where m ∈ N and a does not appear in ϕ, sk’s, or tk’s
Fig. 3: Rewriting rules for QE of arrays.

to express sequences of rewrites. In particular, Kleene star
applied to a rule denotes the rule’s application to a fixed point.

Line 1 of ARRAYQE eliminates write terms using the
rewrite rules in Fig. 1. Here ELIMWR denotes a rule in Fig. 1
chosen non-deterministically. ELIMWRRD rewrites terms us-
ing the read-after-write axiom and ELIMWREQ rewrites partial
equalities using Eq. (2). PARTIALEQ converts equalities into
partial equalities using Eq. (1). TRIVEQ eliminates trivial
partial equalities with identical arguments and SYMM ensures
that write terms on the r.h.s. of equalities are also eliminated.

Line 2 of ARRAYQE rewrites the formula by case-splitting
on partial equalities on the array quantifier a (via CASES-

PLITEQ) followed by factoring out read terms over a by
introducing new quantifiers of sort V (via FACTORRD). Note
that, as presented, these two rules are not terminating as
the partial equalities and read terms are preserved in the
conclusion of the rules. However, one can easily ensure that a
given partial equality or read term is considered exactly once
by first computing the set of all partial equalities and read
terms in the formula and processing them in a sequential order.
The details are straightforward and are left to the reader.

LIFTEQDISEQRD on line 3 of ARRAYQE performs
Boolean rewriting and returns an equivalent disjunction such
that in every disjunct, the partial equalities, array disequalities,
and equalities over read terms appear at the end as conjuncts,
in that order. For each disjunct, line 5 applies the rules in
Fig. 3 to eliminate the array quantifier a. ELIMEQ obtains
a substitution term for a using the equivalence in Eq. (3).
ELIMDISEQ is applicable when the disjunct contains no partial
equalities and given that the domain of interpretation of I is
infinite, one can always satisfy the disequalities and hence,
they can simply be dropped. ACKERMANN performs the
Ackermann reduction [1] to eliminate the read terms.

Note that while the rewrite rules are applicable to all array
terms and equalities in the original formula, in practice, we
only need to apply them to eliminate the relevant terms
containing the array quantifier a. See Fig. 4 for an illustration
of ARRAYQE on an example.

Correctness and Complexity. We can show the following
properties of ARRAYQE.

Theorem 1: ARRAYQE(∃a : arr(I, V ) · ϕ) returns ∃v :
V · ρ, where ρ is quantifier-free and ∃v · ρ ≡ ∃a · ϕ.

Theorem 2: ARRAYQE(∃a · ϕ) terminates in time expo-
nential in the size of ϕ.
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∃a · (b = wr(a, i1, v1) ∨ (rd(wr(a, i2, v2), i3) > 5 ∧ rd(a, i4) > 0))

≡ ∃a ·
(i2 = i3 ∧ (b = wr(a, i1, v1) ∨ (v2 > 5 ∧ rd(a, i4) > 0)))∨
(i2 6= i3 ∧ (b = wr(a, i1, v1) ∨ (rd(a, i3) > 5 ∧ rd(a, i4) > 0)))

{ELIMWRRD}

≡ ∃a ·
(i2 = i3 ∧ ((a =i1 b ∧ rd(b, i1) = v1) ∨ (v2 > 5 ∧ rd(a, i4) > 0)))∨
(i2 6= i3 ∧ ((a =i1 b ∧ rd(b, i1) = v1) ∨ (rd(a, i3) > 5 ∧ rd(a, i4) > 0)))

{PARTIALEQ; ELIMWREQ}

≡ ∃a ·

(
a =i1 b ∧

(i2 = i3 ∧ (rd(b, i1) = v1 ∨ (v2 > 5 ∧ rd(a, i4) > 0)))∨
(i2 6= i3 ∧ (rd(b, i1) = v1 ∨ (rd(a, i3) > 5 ∧ rd(a, i4) > 0)))

)
∨(

¬(a =i1 b) ∧
(i2 = i3 ∧ (v2 > 5 ∧ rd(a, i4) > 0))∨
(i2 6= i3 ∧ (rd(a, i3) > 5 ∧ rd(a, i4) > 0))

) {CASESPLITEQ}

≡ ∃a, s3, s4 ·

(a =i1 b ∧
(i2 = i3 ∧ (rd(b, i1) = v1 ∨ (v2 > 5 ∧ s4 > 0)))∨
(i2 6= i3 ∧ (rd(b, i1) = v1 ∨ (s3 > 5 ∧ s4 > 0)))︸ ︷︷ ︸

ϕ1

 ∨
¬(a =i1 b) ∧

(i2 = i3 ∧ (v2 > 5 ∧ s4 > 0))∨
(i2 6= i3 ∧ (s3 > 5 ∧ s4 > 0))︸ ︷︷ ︸

ϕ2


)

∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)

{FACTORRD}

≡ ∃a, s3, s4 ·
(ϕ1 ∧ a =i1 b ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)) ∨
(ϕ2 ∧¬(a =i1 b) ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4))

{LIFTEQDISEQRD}

≡ ∃v, s3, s4 · (ϕ1 ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)) [wr(b, i1, v)/a] ∨ {ELIMEQ}
∃a, s3, s4 · (ϕ2 ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)) {ELIMDISEQ}

≡ ∃v, s3, s4 · (ϕ1 ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)) [wr(b, i1, v)/a] ∨
∃s3, s4 · (ϕ2 ∧ (i3 = i4 =⇒ s3 = s4)) {ACKERMANN}

Fig. 4: Illustrating ARRAYQE on an example.

B. Model Based Projection

In this section, we will assume that for a satisfiable formula
we can obtain a finite representation of a model of the formula
and that we can effectively evaluate the truth of any formula in
this model. This is possible for ARR and its combinations with
LIA and propositional logic. The ability to evaluate allows
us to strengthen a formula in a way that preserves a given
model. Suppose we have a formula ϕ[ψ1 ∨ ψ2] with model
M , where the sub-formula ψ1 ∨ ψ2 occurs positively (under
an even number of negations) in ϕ. If we also have M |= ψ1,
then M |= ϕ[ψ1] and clearly, ϕ[ψ1] entails ϕ. This gives us a
way to eliminate a disjunction while preserving a given model
and maintaining an under-approximation. If neither ψ1 nor ψ2

is true in M , we can similarly replace ϕ with ϕ[⊥]. These
transformations are expressed as MBP rewrite rules in Fig. 5.

For each QE rule R, we can produce a corresponding under-
approximate rule RM that preserves model M . This rule can
be written R ; (MBPLEFT | MBPRIGHT | MBPVAC)∗. In
practice, we can choose to only apply the MBP rules to
disjunctions introduced by the QE rules and not to those
originally occurring in ϕ. Correspondingly, we can convert
our QE algorithm ARRAYQE to ARRAYQEM by replac-
ing each rule R with RM . We can then obtain an MBP
ARRAYMBP(ϕ)(M) = ARRAYQEM (ϕ) and we can show

the following:
Theorem 3: For any quantifier-free formula ϕ in ARR,

ARRAYMBP(∃a : arr(I, V ). ϕ) is a finite MBP.
The fact that it is an MBP can be easily shown by induction

on the number of rewrites applied. The fact that it is finite
derives from the fact that there are only finitely many ways to
resolve the disjunctions in the QE result.

Moreover, assuming that the evaluation of a formula in
a model can be done in polynomial time, we can evaluate
ARRAYMBP(ϕ)(M) in time that is polynomial in the size of
M and the size of ϕ. This is because we can polynomially
bound the number of times each rule RM applies, and each
rule can only expand the formula size by a constant amount.
Fig. 6 shows an example of applying ARRAYMBP.

C. MBP for ARR+LIA

We now consider the combination of the ARR and LIA
theories. Assume that the only basic sorts are bool and
int. Furthermore, we only consider linear functions over int
along with a divisibility predicate (with constant divisors).
We developed a finite MBP for LIA in a previous work [17]
(call it LIAMBP). When the index sort I is int, one can
obtain a more efficient MBP with a slight modification of
ACKERMANNM (for eliminating array read terms) that utilizes
the predicate symbol <. Given a model M of the formula,
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∃a · (b = wr(a, i1, v1) ∨ (rd(wr(a, i2, v2), i3) > 5 ∧ rd(a, i4) > 0))

⇐ ∃a · (i2 6= i3 ∧ (b = wr(a, i1, v1) ∨ (rd(a, i3) > 5 ∧ rd(a, i4) > 0))) {WRRDM ,M |= i2 6= i3}
⇐ ∃a · (i2 6= i3 ∧ ((a =i1 b ∧ rd(b, i1) = v1) ∨ (rd(a, i3) > 5 ∧ rd(a, i4) > 0))) {PARTIALEQ; WREQM}
⇐ ∃a ·¬(a =i1 b) ∧ i2 6= i3 ∧ (rd(a, i3) > 5 ∧ rd(a, i4) > 0) {CASEEQM ,M 6|= a =i1 b}

⇐ ∃a, s3, s4 ·

¬(a =i1 b) ∧ i2 6= i3 ∧ (s3 > 5 ∧ s4 > 0)︸ ︷︷ ︸
ϕ2


∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)

{FACTORRD}

⇐ ∃a, s3, s4 · (ϕ2 ∧¬(a =i1 b) ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)) {LIFTEQDISEQRD}
⇐ ∃a, s3, s4 · (ϕ2 ∧ s3 = rd(a, i3) ∧ s4 = rd(a, i4)) {ELIMDISEQ}
⇐ ∃s3, s4 · (ϕ2 ∧ (i3 = i4 ∧ s3 = s4)) {ACKM ,M |= i3 = i4}

Fig. 6: Illustrating ARRAYMBP on the example of Fig. 4 with a given model M .

MBPLEFT
ϕ[ψ1 ∨ ψ2] M |= ϕ,ψ1

ϕ[ψ1]

MBPRIGHT
ϕ[ψ1 ∨ ψ2] M |= ϕ,ψ2

ϕ[ψ2]

MBPVAC
ϕ[ψ1 ∨ ψ2] M |= ϕ M 6|= ψ1, ψ2

ϕ[⊥]

Fig. 5: MBP rules for formulas in negation-normal form.

one can first partition the set of index terms tk’s according
to their interpretations in M and choose a representative for
each equivalence class. Then, the conjunction in the result of
the rule is modified as follows: (a) for every equivalence class,
add the equality tk = t` for every non-representative t`, where
tk is the representative, (b) linearly order the representatives
and add the corresponding inequalities. The modified rule (and
hence, the resulting MBP) is linear in time and space.

However, the combination of arrays and integers introduces
terms over the combined signature which need to be handled
as well. For example, there is no equivalent quantifier-free
formula for ∃i : int · rd(a, i) > 0. This implies that there
does not exist a finite MBP for the combination of LIA and
ARR. In the example, the only way to under-approximate the
quantification is to use the substitution method, replacing i
with its interpretation in a model M |= rd(a, i) > 0 as a
numeric literal.

Based on the above observations, we obtain an MBP for
ARR+LIA as follows. First, we apply ARRAYMBP, using the
modified ACKERMANNM above, to eliminate array quantifiers.
Then, we use LIAMBP to eliminate integer quantifiers that do
not appear in any array term. Finally, we use the substitution
method to eliminate any remaining integer quantifiers. When
the last step of substitution method is not necessary, the
resulting MBP will be finite.

IV. THE COMPOSITIONAL VERIFICATION FRAMEWORK

MBP plays a crucial role in enabling the search for compo-
sitional proofs. In this section, we will consider the role played
by MBP in a model checking framework called SPACER [17].
In this framework, MBP is used to create succinct localized
proof sub-goals that make it possible to reason about only
one procedure at a time. The proof goals take the form of
under-approximate summaries, either of the calling context of
a procedure or of the procedure itself. Without some form
of projection, SPACER would not be compositional, as it
would build up formulas of exponential size, in effect inlining
procedures to create bounded model checking formulas.

A. Modeling programs with CHCs

SPACER checks safety of procedural programs by reducing
the problem to SMT of a special kind of formulas known as
Constrained Horn Clauses (CHCs) [5], [17], [14]. We augment
the signature S with a set of fresh predicate symbols P . A
Constrained Horn Clause (CHC) is a formula of the form

∀x ·
m∧

k=1

Pk(xk) ∧ ϕ(x)︸ ︷︷ ︸
body

=⇒ head

where for each k, Pk is a symbol in P , xk ⊆ x and |xk|
is equal to the arity of Pk. The constraint ϕ is a formula
over S, and head is either an application of a predicate in
P or another formula over S. We use body to refer to the
antecedent of the CHC, as shown above. A CHC is called
a query if head is a formula over S and otherwise, it is
called a rule. If m ≤ 1 in the body, the CHC is linear and
is non-linear otherwise. Following the convention of logic
programming literature, we also write the above CHC as
head ← P1(x1), . . . , Pm(xm), ϕ(x).

Intuitively, each predicate symbol Pk represents an unknown
partial correctness specification of a procedure (that is, an
over-approximate summary). A query defines a property to be
proved, while each rule gives modular verification condition
for one procedure. A satisfying assignment to the symbols Pk
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is thus a certificate that the program satisfies its specification
and corresponds to the annotations in a Floyd/Hoare style
proof. In this work, we are interested in finding annotations
that can be expressed in the quantifier-free fragment of our
first-order language, to avoid the difficulty of reasoning with
quantifiers.

Any given set of CHCs encoding safety of procedural
programs can be transformed to an equisatisfiable set of just
three CHCs with a single predicate symbol (encoding the
program location using a variable). These CHCs have the
following form:

Inv(x)← init(x) ¬bad(x)← Inv(x)

Inv(x′)← Inv(x), Inv(xo), tr(x, xo, x′)
(4)

Intuitively, Inv is the program invariant, x denotes the pre-
state of a program transition, x′ denotes the post-state, and
xo denotes the summary of a procedure call (if one is made).
If there are no procedure calls, tr is independent of xo and
Inv(xo) can be dropped: in this case Inv denotes an inductive
invariant of an ordinary transition system. In the sequel, we
restrict to this normal form and consider only quantifier-free
interpretations of the predicate Inv .

It is useful to rewrite the above rules using a function F
that substitutes given predicates φA(x) and φB(x) for the
occurrences of Inv in the rule bodies. That is, let

F(ϕA, ϕB) ≡ (ϕA(x) ∧ ϕB(x
o) ∧ tr(x, xo, x′))

∨ init(x′)

The rules are thus equivalent to F(Inv , Inv) ⇒ Inv(x).
Abusing notation, we will also write F(ϕA) for F(ϕA, ϕA).

B. The SPACER framework

SPACER is a general framework that can be instantiated for
a given logical theory T by supplying three elements: (a) a
model-generating SMT solver for T , (b) an MBP procedure
MBP for T and (c) in interpolation procedure ITP for T .
Compared to other SMT-based algorithms (e.g., [3], [13], [10],
[18]), the key distinguishing feature of SPACER is compo-
sitional reasoning. That is, instead of checking satisfiability
of large formulas generated by program unwinding, SPACER
iteratively creates and checks local reachability queries for
individual procedures. In this way it is similar to IC3 [6], [9],
a SAT-based algorithm for safety of finite-state transition sys-
tems, and GPDR [16], its extension to Linear Real Arithmetic.
Like these methods, SPACER maintains a sequence of over-
approximations of procedure behaviors, called may summaries,
corresponding to program unwindings. However, unlike other
approaches, SPACER also maintains under-approximations of
procedure behaviors, called must summaries, to avoid redun-
dant reachability queries. Another distinguishing feature of
SPACER is the use of MBP for efficiently handling existentially
quantified formulas to create a new query or a must summary.
We note, however, that MBP is a general technique and can
be exploited in IC3/PDR as well.2

2Arguably sub-goal creation in IC3 is a simple MBP for propositional logic.

Alg. 2 gives a simplified description of SPACER as a solver
for CHCs in the form of (4) (though SPACER handles general
CHCs). It is described using a set of rules that can be applied
non-deterministically. Each rule is presented as a guarded
command “[ grd ] cmd”, where cmd can be executed only
if grd holds.

Input: Formulas init(x), tr(x, xo, x′), bad(x)
Output: Inductive invariant (FO interpretation of Inv

satisfying (4)) or UNSAFE

if (init ∧ bad) satisfiable then return UNSAFE
// initialize data structures
Q := ∅ // set of pairs 〈ϕ, i〉, i ∈ N
N := 0 // max level, or recursion depth
O0 = init ,Oi = >, ∀i > 0 // may summary sequence
U = init // must summary
forever non-deterministically do

(Candidate) [ (ON ∧ bad) satisfiable ]
Q := Q ∪ 〈ϕ,N〉, for some ϕ =⇒ ON ∧ bad

(DecideMust) [ 〈ϕ, i+1〉 ∈ Q , M |= F(Oi,U)∧ϕ′ ]
Q := Q ∪ 〈MBP(∃xo, x′ · F(Oi,U) ∧ ϕ′,M), i〉

(DecideMay) [ (ϕ, i+ 1) ∈ Q , M |= F(Oi) ∧ ϕ′ ]
Q := Q ∪ 〈MBP(∃x, x′ · F(Oi)∧ϕ′,M)[x/xo], i〉

(Leaf) [ (ϕ, i) ∈ Q , F(Oi−1) =⇒ ¬ϕ′, i < N ]
Q := Q ∪ 〈ϕ, i+ 1〉

(Successor) [ 〈ϕ, i+ 1〉 ∈ Q , M |= F(U) ∧ ϕ′ ]
U := U ∨MBP(∃x, xo · F(U) ∧ ϕ′,M)[x/x′]

(Conflict) [ 〈ϕ, i+ 1〉 ∈ Q , F(Oi) =⇒ ¬ϕ′ ]
Oj := Oj ∧ ITP(F(Oi),¬ϕ′)[x/x′], ∀j ≤ i+ 1

(Induction) [ (ϕ ∨ ψ) ∈ Oi, F(ϕ ∧ Oi) =⇒ ϕ′ ]
Oj := Oj ∧ ϕ, ∀j ≤ i+ 1

(Unfold) [ ON =⇒ ¬bad ] N := N + 1
(Safe) [ Oi+1 =⇒ Oi ] return invariant Oi

(Unsafe) [ (U ∧ bad) satisfiable ] return UNSAFE

Algorithm 2: Rule-based description of SPACER.

As shown in Alg. 2, SPACER maintains a set of reachability
queries Q , a sequence of may summaries {Oi}i∈N, and a
must summary U . Intuitively, a query 〈ϕ, i〉 corresponds to
checking if ϕ is reachable for recursion depth i, Oi over-
approximates the reachable states for recursion depth i, and U
under-approximates the reachable states. N denotes the current
bound on recursion depth. The sequence of may summaries
and N correspond to the trace of approximations and the
maximum level in IC3/PDR, respectively. For convenience,
let O−1 be ⊥. MBP(ϕ,M), for a formula ϕ = ∃v · ϕqf and
model M |= ϕqf , denotes the result of some MBP function
associated with ϕ for the model M .

Alg. 2 initializes N to 0 and, O0 and U to init . Candidate
initiates a backward search for a counterexample beginning
with a set of states in bad . The potential counterexample is ex-
panded using either DecideMust or DecideMay. DecideMust
jumps over the call Inv(xo), in the last CHC of (4), utilizing
the must summary U . DecideMay, on the other hand, creates a
query for the call using the may summary of its calling context.
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Successor updates U when a query is known to be reachable.
The other rules are similar to IC3 [6] and GPDR [16] and
we skip their explanation in the interest of space. SPACER is
sound and if MBP utilizes finite MBP functions, SPACER also
terminates for a fixed N [17].

C. Instantiation for ARR+LIA

In instantiating this framework for ARR+LIA, the key
ingredient is the MBP procedure of the previous section. An
interpolation procedure ITP can be trivially obtained by using
literal-dropping approach based on UNSAT cores, or a more
sophisticated approach can be taken (e.g., see [16], [18]).

Because we do not have a finite MBP, SPACER is not
guaranteed to terminate even for a fixed bound on the recursion
depth N . That is, it can generate an infinite sequence of
queries and must summaries. Note that MBP is used in 3
rules: DecideMay, DecideMust, and Successor. The elim-
ination of quantifiers in Successor is only an optimization
and can be avoided. This is not the case with DecideMay
or DecideMust without changing the structure of the queries,
the considerations of which are outside the scope of this paper.
In the following, we identify restrictions on the CHCs where
termination is still guaranteed and for the other cases, we
propose some heuristic modifications to MBP and ITP to help
avoid divergence.

1) Equality resolution in MBP: There are several cases
where terms over combined signatures appear in conjunction
with equality terms over the index quantifier, e.g., ∃i : int·i =
t ∧ rd(a, i) > 0 for a term t independent of i. In these cases,
the quantifier can be eliminated using equality resolution, e.g.,
rd(a, t) > 0 in the above example. Such cases seem to be
natural in the case of a single procedure, i.e., when tr in
(4) is independent of xo. Consider a disjunct δ in a DNF
representation of tr . Now, δ represents a path in the procedure
and typically, index terms (in reads and writes) in δ can be
ordered such that every index term is a function of the previous
index terms or the current-state variables x. This makes it
possible to eliminate any index variables in x′ using equality
resolution as mentioned above.

2) Privileging array equalities: Here is a simple example
that exhibits non-termination:

Inv(a, b)← a = b

⊥ ← Inv(a, b), rd(a, j) < 0, rd(b, j) > 0

Here, intuitively, Inv(a, b) denotes the summary of a proce-
dure which takes an array a as input and produces b as output
and we are interested in checking if there is sign change in the
value at an index j as a result of the procedure call. For this
example, DecideMay creates queries of the form rd(a, k) <
0∧ rd(b, k) > 0 where k is a specific integer constant. If ITP
returns interpolants of the form rd(a, k) = rd(b, k), it is easy
to see that SPACER would not terminate even for N = 0, even
though there is a trivial solution: a = b.

To alleviate this problem, we modify MBP and ITP to
promote the use of array equalities in interpolants. Let ψ be
the result of MBP for a given model M . For every pair of

array terms a, b in ψ, we strengthen ψ with the array equality
a = b or disequality a 6= b, depending on whether M |= a = b
holds or not. In the above example, the queries will now be
of the form rd(a, k) < 0 ∧ rd(b, k) > 0 ∧ a 6= b. However,
rd(a, k) = rd(b, k) continues to be an interpolant whereas
the desired interpolant is a = b. To reduce the dependence on
specific integer constants in the learned interpolants, and hence
in the may summaries, we modify ITP as follows. Suppose we
are computing an interpolant for ψ =⇒ ¬ϕ′ (as occurs in
Conflict). We let ϕ = ϕ1∧ϕ2 where ϕ2 contains all the literals
where an integer quantifier is substituted using its interpreta-
tion in a model. Using a minimal unsatisfiable subset (MUS)
algorithm, we can generalize ϕ2 to ϕ̂2 such that ψ∧(ϕ1 ∧ ϕ̂2)

′

is unsatisfiable and then obtain ITP(ψ,¬ (ϕ1 ∧ ϕ̂2)
′
). In the

above example, for N = 0 we have ψ = (a = b),
ϕ1 = (a 6= b), and ϕ2 = rd(a, k) < 0 ∧ rd(b, k) > 0.
One can show that ϕ̂2 is simply > and the only possible
interpolant is a = b. In our implementation, we add such
(dis-)equalities on-demand in a lazy fashion. Note that adding
such (dis-)equalities to the queries is only a heuristic and may
not always help with termination.

V. EXPERIMENTAL RESULTS

As noted in the introduction, the array theory allows us to
model heap references accurately. This eliminates the need to
inline procedures so that heap-allocated objects are reduced to
local variables. We hypothesize that the resulting increase in
modularity will allow SPACER to more efficiently verify pro-
cedural programs using ARRAYMBP, in spite of the potential
for divergence due to non-finiteness of the MBP.

We test this hypothesis using a prototype implementation
of SPACER with ARRAYMBP.3 To verify C programs, we
use SEAHORN [14], which uses the LLVM infrastructure to
compile and optimize the input program, then encodes the
verification conditions as CHCs in the SMT-LIB2 format.
SEAHORN can optionally inline procedure calls before encod-
ing, allowing us to test our hypothesis regarding modularity.

For reference, we also compare SPACER to the implemen-
tation of GPDR [16] in Z3 [8]. A key difference between
SPACER and GPDR is that the latter does not use must
summaries. Z3 also uses MBP, but is limited to equality
resolution and the substitution method. As a result Z3 GPDR
is effective only for inlined programs.

We use benchmarks from the software verification compe-
tition SVCOMP’15 [4]. We considered the 215 benchmarks
from the Device Drivers category where Z3 GPDR (with inlin-
ing) needed more than a minute of runtime or did not terminate
within the resource limits of SVCOMP [15]. All experiments
have been carried out using a 2.2 GHz AMD Opteron(TM)
Processor 6174 and 516GB RAM, running Ubuntu Linux. Our
resource limits are 30 minutes and 15GB for each verification
task. In the scatter plots that follow, a diamond indicates a
time-out, a star indicates a mem-out, and a box indicates an
anomaly in the implementation.

3https://bitbucket.org/spacer/code
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Fig. 7: Advantage of inter-procedural encoding using SPACER.
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Fig. 8: SPACER vs. Z3 on hard SVCOMP benchmarks with inlining.

The scatter plot in Fig. 7 compares the combined run time
for the CHC encoding and verification, when inlining is turned
on and off. A clear advantage is seen in the non-inlining case.
This shows that SPACER is able to effectively exploit the addi-
tional modularity that is made possible by ARRAYMBP, and
that this advantage outweighs any occurrences of divergence
due to non-finite MBP.4 We note that SPACER with only LIA
is able to handle only a small fraction of the non-inlined
benchmarks. This result confirms our hypothesis.

For reference, we also compare to the performance of
Z3 GPDR. We observed that without ARRAYMBP, Z3 is
very ineffective in the non-inlined case. We should mention,
however, that of the 7 unsafe programs verified by Z3, 5 could
not be verified by SPACER. Fig. 8 compares SPACER and Z3
with inlining on. This shows an overwhelming advantage for
SPACER, which is due to its more effective MBP approach.

VI. RELATED WORK

There are several SMT-based approaches for sequential
program verification that iteratively check satisfiability of
formulas corresponding to safety of various unwindings of the
program [3], [13], [10], [18]. However, these monolithic SMT
formulas can grow exponentially. In contrast, the SPACER
framework [17] we use allows us to do a compositional proof
search for safety. Such local proof search is also found in
the IC3 algorithm for hardware model checking [6] and its
extensions to software model checking (e.g., [16]), although

4Unfortunately, we have no way to distinguish divergence from timeouts.

SPACER is the first to use under-approximate summaries of
procedures for avoiding redundant proof sub-goals. Model-
based generalizations have also been used to obtain projections
efficiently in decision procedures for quantified formulas [19].

VII. CONCLUSION AND FUTURE WORK

We have presented a procedure for existentially projecting
array variables from formulas over combined theories of
ARR, LIA, and propositional logic. We have adapted the
procedure to a finite MBP for array variables. While existential
projection is worst-case exponential, the corresponding MBP
is polynomial. However, projecting arrays might introduce
new existentially quantified variables (whose sort is the same
as the index- or value-sort of the eliminated array). For
projecting these variables, a finite MBP need not exist. We
described heuristics for obtaining a practical (but not nec-
essarily finite) MBP procedure, obtaining an instantiation of
the SPACER framework for verification of safety of sequential
heap-manipulating programs. We show that the new variant of
SPACER is effective for constructing compositional proofs of
Linux Device Drivers. In the future, we plan to extend these
ideas for handling more complex heap-manipulating programs
that require universal quantifiers in the program invariants.
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Abstract—In recent years, the inductive, incremental verifi-
cation algorithm IC3 had a major impact on hardware model
checking. Also with respect to software model checking, a number
of adaptations of Boolean IC3 and combinations with CEGAR
and ART-based techniques have been developed. However, most
of them exploit the peculiarities of software programs, such
as the explicit representation of control flow, only to a limited
extent. In this paper, we propose a technique that supports this
explicit representation in the form of control flow automata, and
integrates it with symbolic reasoning about the data state space of
the program. It thus provides a true lifting of IC3 from hardware
to software model checking. By evaluating the approach on a
number of case studies using a prototypical implementation, we
demonstrate that our method shows promising results.

I. INTRODUCTION

IC3 [1] is an incremental algorithm that has originally been
designed for verifying invariant properties of finite transition
systems. It constructs an over-approximation of the reachable
state space by generating Boolean clauses that are induc-
tive relative to stepwise reachability information. During this
construction, candidate counterexamples are being disproved
using Boolean SAT-solving techniques. This approach has
turned out to be highly effective; in fact, it is considered to
be one of (if not the) most important contribution of bit-level
formal verification of hardware systems for the last decade.

There have been several attempts to lift Boolean IC3 to the
domain of software model checking. As this setting usually
induces infinite-state systems, more advanced symbolic rea-
soning techniques are required. The most prominent one is
Satisfiability Modulo Theories (SMT). Here, sets of states are
symbolically specified by first-order formulas over constraints
from the respective theory, and SMT-solving techniques are
employed to rule out spurious counterexamples.

One of the first integrations of SMT into IC3 has been
presented in [2]. In addition to the generalisation of SAT to
SMT solving, it exploits the partitioning of the program’s state
space as induced by its control flow graph. This is achieved
by unwinding the latter into an Abstract Reachability Tree
(ART) in which each node is associated with a control location
and a formula, resulting in an “explicit-symbolic” approach
named Tree-IC3. Candidate counterexamples are handled by
computing under-approximations of pre-images.

The advantages in comparison to Boolean IC3 are twofold.
First, Tree-IC3 eliminates the possible redundancy of subfor-

mulas partitioning of the control state space, the solver is
exposed to simpler and smaller formulas.

On the downside, the key idea underlying IC3, relative
inductiveness, cannot be directly applied in this setting due
to the partitioned representation that leads to a path-wise
unwinding of the transition system. The follow-up publica-
tion [3] therefore reverts to a monolithic transition relation,
replacing the pre-image computation by (implicit) predicate
abstraction. The latter is a standard abstraction technique [4]
that partitions the state space according to the equivalence
relation induced by a set of predicates. Its implicit variant
[5] allows to express abstract transitions without explicitly
computing the abstract system. In the IC3 setting, this avoids
theory-specific generalisation techniques.

In [6], Horn clauses are employed to represent recursive
predicate transformers. Proof obligations are generalised using
a specialised interpolation procedure for linear arithmetic.
However, the latter again does not exploit relative induction.

In summary, existing work exploits the peculiarities of
software programs only to a limited extent to support IC3-
style verification. In this paper, we develop an approach that
combines the advantage of explicitly handling the control flow
of a program, employing a corresponding automata model,
with relative inductive reasoning over a symbolic representa-
tion of its data space. It thus provides a true lifting of IC3 from
hardware to software model checking. We demonstrate the
applicability and efficiency of our method by evaluating it on
a number of case studies using a prototypical implementation.

The remainder of this paper is organised as follows. We start
by introducing some general concepts in Section II. Section III
sets the stage for our contribution with a description of the
original IC3 algorithm, which is then extended in Section IV
by taking control flow automata into account. Results of the
experimental evaluation are given in Section V. Section VI
concludes the paper with a summary and a description of
future work.

II. PRELIMINARIES

A control flow automaton (CFA) A = (L,G) consists of a
finite set of locations L = {0, . . . , n}, modeling the program
counter of a corresponding sequential code, and edges in
G ⊆ L × FO × L labeled with quantifier-free first-order
formulas over the set Var of program variables and their next-
state primed forms, Var ′ [7]. Priming of a formula, ϕ’, is
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the same as priming every variable in ϕ. Such a formula can
either encode a variable assignment, containing primed and
unprimed variables, or an assume statement in which case it
will only contain unprimed variables. We assume that for any
two locations there exists at most one edge between them.

Given a subset of variables X ⊆ Var , a cube over X is
defined as a conjunction of literals, each literal being a variable
or its negation in the propositional case and a theory atom or
its negation in the quantifier-free first-order case. The negation
of a cube, i.e. a disjunction of literals, is called a clause.

A program P = (A, l0, lE) consists of a CFA A represent-
ing the control flow, as well as an initial location l0 ∈ L and
an error location lE ∈ L. This representation allows to encode
arbitrary programs and assertions for safety verification. For
every assertion that has to be verified at location l, split l and
introduce an edge with the negated assertion to lE and an
edge with the positive assertion between the split nodes. This
way, checking the violation of assertions becomes checking
reachability of lE in A.

Given two locations l1, l2 ∈ L, we define the transition
formula

Tl1→l2 =

{
(pc = l1) ∧ t ∧ (pc′ = l2) , if (l1, t, l2) ∈ G
false , otherwise.

(1)

This yields the global transition formula as

T =
∨

(l1,t,l2)∈G

Tl1→l2 . (2)

Definition 1 (Relative inductiveness [1]): Given a transition
formula T , a formula ϕ is inductive relative to another formula
ψ if

ψ ∧ ϕ ∧ T ⇒ ϕ′ (3)

is valid.
Starting from Def. 1 we can refine relative inductiveness

to consider only a single transition rather than the whole
transition relation.

Definition 2 (Edge-relative inductiveness): Given a CFA A
and locations l1, l2 ∈ L, a formula ϕ is edge-relative inductive
to another formula ψ if

ψ ∧ ϕ ∧ Tl1→l2 ⇒ ϕ′ (4)

is valid.
Note that edge-relative inductiveness does also hold if

(l1, t, l2) /∈ G for every t. In this case, Tl1→l2 = false, which
makes (4) hold trivially, i.e. if we are in a state satisfying ϕ
and we cannot leave it via the considered edge, we remain in
a state satisfying ϕ.

To handle the possibly infinite state space over Var , we use
a symbolic representation through quantifier-free first-order
formulas.

Definition 3 (Data region): A data region is represented by
a quantifier-free FO formula s over Var and consists of all
variable assignments σ satisfying s, i.e., {σ | σ |= s}.

Based on Def. 3 we can augment a data region with a control
flow location l ∈ L. This information, sometimes referred to
as atomic region [8] is called region in the following.

Definition 4 (Region): We define a region r = (l, s) as a
pair consisting of location l ∈ L and data region s. Given such
a region r = (l, s), the corresponding formulas are defined
as {φ | φ ≡ (pc = l ∧ s)}. Analogously the corresponding
formulas for a negated region ¬r are defined as {φ | φ ≡
¬(pc = l ∧ s)}.

Given two regions r1, r2 and representatives of their corre-
sponding propositional formulas ϕ1, ϕ2, then r1 is inductive
relative to r2 iff ϕ1 is inductive relative to ϕ2. The analogue
can be defined for the special case of edge-relative inductive-
ness.

Using their corresponding formula, we can use relative and
edge-relative inductiveness for regions very similar to [1].

Even though it works for two non-negated regions as well,
the IC3 algorithm only makes use of the case where we check
whether a negated region ¬r2 is inductive edge-relative to a
non-negated region r1. Therefore we will only consider this
case in the following and inspect it in detail. We found two
different cases whose premise can be statically determined and
that simplify the SMT queries that we have to use.

Lemma 1 (Relative inductive regions): Assuming two re-
gions r1 = (l1, s1), ¬r2 = ¬(l2, s2), we can reduce edge-
relative inductiveness of ¬r2 to r1 to

s1 ∧ Tl1→l2 ⇒ ¬s′2 , if l2 6= l1 (5)
s1 ∧ ¬s2 ∧ Tl1→l2 ⇒ ¬s′2 , if l2 = l1 (6)

Proof 1: Given two regions r1 = (l1, s1) and r2 = (l2, s2)
with corresponding formulas ϕ1 and ϕ2, we have:

ϕ1 ≡ (pc = l1 ∧ s1) ¬ϕ2 ≡ ¬(pc = l2 ∧ s2)

Def. 2 yields:

(pc = l1 ∧ s1) ∧ ¬(pc = l2 ∧ s2) ∧ Tl1→l2

⇒ ¬(pc′ = l2 ∧ s′2)
≡ (pc = l1 ∧ s1) ∧ (pc 6= l2 ∨ ¬s2) ∧ Tl1→l2

⇒ (pc′ 6= l2 ∨ ¬s′2)

If l1 6= l2, this is equisatisfiable to

(true ∧ s1) ∧ (true ∨ ¬s2) ∧ Tl1→l2 ⇒ (false ∨ ¬s′2)
≡ s1 ∧ Tl1→l2 ⇒ ¬s′2

Otherwise, we obtain

(true ∧ s1) ∧ (false ∨ ¬s2) ∧ Tl1→l2 ⇒ (false ∨ ¬s′2)
≡ s1 ∧ ¬s2 ∧ Tl1→l2 ⇒ ¬s′2

�
In Proof 1, we can use the presented equisatisfiable trans-

formations because the transition from l1 and l2 implicitly
contains the atoms (pc = l1) and (pc′ = l2). Therefore in the
first case, where l1 6= l2, the atoms (pc = l1) and (pc′ 6= l2)
can be rewritten to true , while the atom (pc′ 6= l2) can be
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rewritten to false. The analogous holds for the case where
l1 = l2.

Given a program P , we can define a finite path π of length
n as a sequence l0, l1, . . . , ln, s.t. for every 0 ≤ i < n there
exists an edge (li, ti, li+1) ∈ G in P . A path π is called
feasible iff for every lj in π we can construct a region (lj , sj)
that is non-empty, i.e. sj 6≡ false, s.t. si ∧ Tli→li+1 ⇒ si+1

for 0 ≤ i < n.

III. ORIGINAL IC3 ALGORITHM

Let S = (X, I, T ) be a transition system over a set X of
Boolean variables, and I(X) and T (X,X ′) two propositional
formulas respectively describing the initial condition and the
transition relation over variables in X and next-state primed
successors X ′. Given a propositional property P (X), we want
to verify that every state in S that is reachable from a state in
I satisfies P . Sometimes also an inverted formulation is used
like in [9] where ¬P states are bad states and we want to
show that no bad state is reachable from the initial states. The
main idea of the IC3 algorithm [1] and the earlier finite state
inductive strengthening (FSIS [10]) is that if P is inductive,
i.e. I ⇒ P and P ∧ T ⇒ P ′, then P is also an invariant
on S. However, even if P is an invariant on S it may not be
inductive. Therefore the goal of IC3 and FSIS is to produce a
so called inductive strengthening F of property P , s.t. F ∧P
is inductive. This means that we can restrict the set of states
in P to a smaller set of states in the intersection of F and P ,
which still contains all states reachable from I , but excludes
unreachable states that will lead to a violation of induction.
While FSIS tries to come up with such a strengthening in one
step, IC3 proceeds in a more relaxed approach and constructs
F incrementally.

This incremental construction is based on a sequence of
frames F0, . . . , Fk for which

I ⇒ F0

Fi ⇒ Fi+1 , for 0 ≤ i < k

Fi ⇒ P , for 0 ≤ i ≤ k
Fi ∧ T ⇒ F ′i+1 , for 0 ≤ i < k

has to hold in order to produce an inductive invariant. The
algorithm starts with two initial checks for 0- and 1-step
reachable states in ¬P and afterwards initializes the first frame
F0 to I . The rest of the algorithm can be divided into an inner
and an outer loop, sometimes also referred to as blocking and
propagation phases, respectively.

The outer loop iterates over the maximal frame index
k, looking for states in Fk that can reach ¬P , so called
counterexamples to induction (CTI). If such a CTI exists, it
is analyzed in the inner loop, the blocking phase. If no such
CTI exists, IC3 tries to propagate clauses learned in frame Fi

forward to Fi+1. In the end it checks for termination, which
is given if Fi = Fi+1 for some 0 ≤ i < k.

The objective of the blocking phase is to decide whether a
CTI is reachable from I or not. For this purpose, it maintains

a set of pairs of frame indices and states, called proof obliga-
tions. From this set it picks the pair (i, s) with the smallest
frame index i. If there is more than one pair with this frame
index, the choice between those is arbitrary. For the chosen
state, IC3 checks whether ¬s is relative inductive to Fi−1,
using (3). If it is relative inductive, we can block s in frames
Fj for 0 ≤ j ≤ i+1. But rather than just adding ¬s, IC3 first
tries to obtain a clause that is a subset of ¬s and therefore
excludes more states. This clause, called a generalization of
¬s, is then added to the frames and afterwards the pair (i, s) in
the set of proof obligations is replaced by (i+1, s). If s is not
relative inductive to Fi−1 this means that there exists an Fi−1
predecessor p that can reach s. IC3 therefore adds (i − 1, p)
to the set of proof obligations. The blocking phase terminates
if either there exists an s in the set of proof obligations that
is relative inductive to an initial state at index 0, in which
case there exists a counterexample path, or for every proof
obligation the frame index i > k, i.e. there exists a j ≥ 0, s.t.
every predecessor of the original CTI is inductive relative to
Fj .

IV. IC3 ON CONTROL FLOW AUTOMATA

In this section we will present our IC3 algorithm for
control flow automata as annotated pseudocode, give a short
explanation and a proof of partial correctness, followed by an
example showing the benefits of our method.

The most straight-forward way to lift IC3 to software model
checking is to encode the control flow in an additional pc
variable representing the program location, as presented in
[2]. However, this approach introduces some tedious handling
of the implicit pc variable and is not very competitive. One
reason is that the control flow of the input program already
gives a very clear structure to the system, which is completely
disregarded when encoded inside a global transition formula.
Thus our approach tries to exploit as much of the structure
given in the input program as possible.

In [1] Bradley draws an analogy between the way IC3
proves properties on a transition system and how a human
analyzes a system - by producing a set of lemmas s.t. each
holds relative to a previous one and that all together imply
the property. It is that stepwise approach that makes IC3
so competitive and which motivated us to apply our version
of IC3 directly to a control flow automaton as an explicit
representation of a program’s possible execution steps.

With respect to the definition of programs we follow the
notion of [9] and reason about error states, rather than property
states.

The explicit representation of edges leads to a situation
where we can reduce the possible transitions for a region
r = (l, s) to those that are available from l in the program
P , which allows us to formulate significantly smaller solver
queries. Explicit initial and error states enable us to statically
check 0-step and (potential) 1-step reachability, as well as to
avoid initial and error conditions, which in turn reduces the
size of the solver queries even further.
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In analogy to bit-level IC3, we construct frame sequences
F0, . . . , Fk, but instead of using global frames, we use
location-local frames F(i,l) in every l ∈ G. We interpret those
F(i,l) as the set of, possibly overapproximating, data regions
reachable in at most i steps at location l.

Algorithm 1 Outer loop
Ensure: ret. value iff lE is reachable

function BOOL PROVE
if l0 = lE or ((l0, t, lE) ∈ G and sat(t)) then

return false
initialize frames
for k = 1 to . . . do

if not STRENGTHEN(k) then
return false

propagate
if termination then

return true

Alg. 1 works more or less like the original function prove
in [1]. In the initial checks, we can reformulate the 0-step
reachability query I∧¬P to the simple check whether l0 = lE .
Also for 1-step counterexamples, originally I ∧ T ∧ ¬P ′, we
can still check the necessary syntactic reachability condition
statically. If there exists an edge e = (l0, t, lE), then we
have to use the solver to check satisfiability of t. After those
initial checks are completed we initialize frames F0 and F1.
Exploiting the fact that only l0 is initial, we can set F(0,l0)

to true and F(0,l) to false for every l 6= l0. After the initial
phase, the algorithm starts the main loop with frame limit k
and tries to strengthen the new frame set. If the blocking phase
succeeds and finds a strengthening for k, the propagation phase
starts and tries to push learned data regions forward. The inner
loop ends with checking termination. Here we have to modify
the original termination condition Fi = Fi+1, for some i, to
F(i,l) = F(i+1,l) for some i and every l ∈ L \ {lE}.

Algorithm 2 Strengthening
Require: (a) k ≥ 1
Require: (b) ∀i ≥ 0, l ∈ L,F(i,l) ⇒ F(i+1,l)

Require: (c) ∀0 ≤ i < k, l, l′ ∈ L, s.t. (l, t, l′) ∈ G, F(i,l) ∧
Tl→l′ ⇒ F ′(i+1,l′)

Ensure: ∀i ≥ 0, l ∈ L,F(i,l) ⇒ F(i+1,l)

Ensure: if ret. value then ∀0 ≤ i < k, l, l′ ∈ L, s.t.(l, t, l′) ∈
G, F(i,l) ∧ Tl→l′ ⇒ F ′(i+1,l′)

Ensure: if ¬ret. value, there exists a counterexample path
function BOOL STRENGTHEN(k: int)

while ∃l, s.t. sat(F(k,l) ∧ Tl→lE ) do
@assert (b),(c)
s := predecessor data region
if not BACKWARDBLOCK(k, l, s) then

return false
@assert s 6|= F(k,l)

return true

The function STRENGTHEN in Alg. 2 also works similarly to
the original IC3. The main difference here is in the condition
of the while loop which checks whether there exists l ∈ L s.t.
e = (l, t, lE) ∈ G and t is satisfiable under F(k,l). If this is
the case, there exists a CTI. Note that in this paper we do not
tackle the whole topic of generalization and restrict ourselves
to computing weakest preconditions (WP) of the error state
w.r.t. to t. While this might not offer the best performance
possible, it is a safe approximation, as the WP is the smallest
overapproximation of CTI states. The so extracted predecessor
s is then analyzed in the function BACKWARDBLOCK, shown
in Alg. 3.

Algorithm 3 Inner loop
Require: (b),(c)
Require: sat(F(̂i,l̂′) ∧ ŝ ∧ Tl̂′→lE

)
Ensure: if ret. value, then ¬ŝ is inductive relative to F(̂i−1,l),
∀l, s.t. (l, t, l̂′) ∈ G

Ensure: if ret. value, then (b),(c)
Ensure: if ¬ret. value, there exists a feasible path l0  l̂′

function BOOL BACKWARDBLOCK(̂i: int, l̂′: location, ŝ:
data region)
Q.add(̂i, l̂′, ŝ)
while |Q| > 0 do

@assert ∀(i, l′, s) ∈ Q.0 ≤ i ≤ k
@assert ∀(i, l′, s) ∈ Q.∃ path (l′, s) (lE , true)
(i, l′, s) = Q.pop
if i = 0 then

return false
else

@assert (l′,¬s) is inductive relative to F(j,l),
∀0 ≤ j < i, l ∈ L\{lE}

for each l, s.t. (l, t, l′) ∈ G do
if l = l′ and sat(F(i−1,l) ∧ ¬s ∧ Tl→l′ ∧ s′) then

generate predecessor c of s
@assert ∀(i, l′, s) ∈ Q, c 6= s
add (i− 1, l, c) and (i, l′, s) to Q

else if l 6= l′ and sat(F(i−1,l) ∧ Tl→l′ ∧ s′) then
generate predecessor c of s
@assert ∀(i, l′, s) ∈ Q, c 6= s
add (i− 1, l, c) and (i, l′, s) to Q

else
block s in frames F(j,l′) for 0 ≤ j ≤ i

return true

While Alg. 1 and 2 are based on [1], we decided to present
the inner loop similarly to the representation in [9] as we found
it easier to comprehend. The function BACKWARDBLOCK gets
as parameter a frame index î, a location l̂′ ∈ L and a data
region ŝ. Following [9] we add this initial proof obligation to
a priority queue Q, s.t. the obligation with the lowest i will
get popped first. While the queue is non-empty, we start the
inner loop by picking the obligation with the smallest i. If i =
0, we can immediately stop with a counterexample because
l′ has to be initial. If it were not initial, the previous proof
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obligation at level 1 would have included the frame F(0,l),
which is false for every non-initial location l. If i 6= 0 we have
to check whether the region ¬(l′, s) is inductive edge-relative
to F(i−1,l) of any predecessor l by solving the query (5) or
(6), depending on whether l = l′ or not. If ¬(l′, s) is inductive
edge-relative to F(i−1,l) for every predecessor l, we can block
s in all F(j,l′), 0 ≤ j ≤ i. If, on the other hand, ¬(l′, s) is not
inductive edge-relative to F(i−1,l) for some l, then there must
exist a predecessor that can reach (l′, s). We therefore take the
WP c of s w.r.t. the transition formula and add the new proof
obligation (i−1, l, c) to the obligation queue. We also add the
old obligation (i, l′, s) to the queue for future re-inspection.
The inner loop terminates with true in case that Q is empty
or with false in case there exists an obligation at frame 0.

Note that Alg. 3 slightly differs from the idea of blocking a
region r iff r is edge-relative inductive to all incoming edges.
However, the presented algorithm behaves correctly: Due to
the ordering of the obligation queue, the algorithm proceeds
in a kind of depth-first search manner. Even if r has been
blocked at level i via one edge, another obligation r′, that
is a predecessor of r, at level i − 1 will be chosen. Here
we can distinguish two cases: Either r′ is the last step on a
counterexample path from l0 to r at level i or it is not, in
which case all regions explored will be blocked. In both cases
r at level i will not be reconsidered before backtracking to an
obligation at level i + 1, in which case r at level i has been
blocked.

In the following we will show that our algorithm is partially
correct, i.e. it is correct given its termination. We construct
our proof bottom-up by first proving that Alg. 3 is correct.
As we use weakest preconditions, we can actually show full
correctness, because termination is achieved for the following
reason: Given an initial obligation (i, l, s) we have to construct
at most ni proof obligations, where n is the maximal in-degree
of locations in L. This upper bound can be established because
a WP of s covers all, possibly infinitely many, predecessor
data regions that can reach s w.r.t. the transition. Therefore we
cover all data regions in one step and only have to construct
predecessor regions until we reach frame level 0, i.e., after
doing this i times.

Lemma 2: Function BACKWARDBLOCK returns true iff ¬ŝ
is inductive relative to F(̂i−1,l) for all locations l that are a
predecessor of l̂′.

Proof 2: Function BACKWARDBLOCK starts the while loop
by examining the proof obligation in the queue that has the
lowest frame index i. If the frame index is zero, then l̂′ must
be l0, because F(0,I) is the only region with frame index 0 to
which any other region is relatively inductive, by construction.
This way, there must exist a feasible path from l0 to l̂′.

If there exists no feasible path from l0 to l̂′ given F0, ..., Fk,
then every path of length j ending in l̂′ starts in a location l,
s.t. the region (l,¬s) is inductive relative to F(k−j−1,lx) for
all lx, s.t.(lx, t, l) ∈ G. This means that every proof obligation
added to Q is ultimately inductive relative to its predecessors
and thus also ¬ŝ is inductive relative to F(̂i−1,l).

0

1

2lE

x := 10

x++;

x 6= 9x = 9

Fig. 1. Example for non-termination of Alg. 1

We continue by proving correctness of Alg. 2. Here we can
guarantee termination for the same reason as for BACKWARD-
BLOCK. Because we only search for CTIs, we have at most
nE of them, where nE is the number of predecessor locations
of lE in P . As we compute exact pre-images by weakest
preconditions, every data region has exactly one predecessor
data region per edge.

Lemma 3: Function STRENGTHEN terminates with result
true iff there exists an inductive strengthening for the frames
F(k,l) in all locations l in the CFA.

Proof 3: Assume a call of function STRENGTHEN returns
false, then there must have been a call to BACKWARDBLOCK
with some (k, l, s), such that BACKWARDBLOCK returned
false. From Lemma 2 we know that in this case, there exists a
feasible path of length k from l0 to l that ends up in data region
s. Because l is a predecessor of lE and s is a precondition
under Tl→lE , there exists a counterexample path of length
k + 1. Otherwise every call of BACKWARDBLOCK returned
true, which means that every predecessor location (and data
region) of lE is unreachable in the current frame sequence.
Thus every predecessor of lE was excluded from their frames
at level k which yields an inductive strengthening for Fk.

After proving correctness of Alg. 2 and 3, we have to
drop termination for Alg. 1. The reason is that there might
exist infinite ascending or descending chains that we cannot
generalize. This is exemplified in the simple program in Fig. 1.
While there exist an inductive strengthening, e.g., (x ≥ 10),
for every maximal frame index k our algorithm will block a
region (1, 9− (k − 1)) of which there can be infinitely many
for unbounded integers, such that there will never exist an
i for which F(i,1) = F(i+1,1). Note that in the following,
as all statements over F(i,l) always concern all non-error
locations, we will slightly abuse notation and use Fi in place
of F(i,l),∀l ∈ L\{lE}.

Lemma 4: In case function PROVE terminates, it returns true
iff there exists an inductive strengthening F for P , s.t. F ∧P
is inductive.

Proof 4: Assume PROVE terminates with true, then every
call of STRENGTHEN for every j < k must have returned true
and there must exist a frame with index i < k, s.t. Fi = Fi+1,
i.e. the frame Fi is inductive, because Fi∧T ⇒ F ′i . Therefore
there cannot exist a counterexample path of length k (more
precise of length i) or less and there cannot exist one of length
greater than k, because Fi is inductive.
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l0

1

2lE

x :=?;
y := x

x++;
y++

x = yx 6= y

l:
i:

0 1 2

l0 true true true
1 false x = y x = y

Fig. 2. Example program and resulting frames

Now assume that PROVE returns false: Then there must exist
a k, s.t. for no i < k, Fi is inductive and STRENGTHEN for
k returns false, i.e. there exists a path of length k from the
initial to the error state.

Theorem 1: If the algorithm terminates, it returns true iff P
is an invariant on S.

Proof 5: By Lem. 2-4 the theorem holds. �

Example

In the remainder of this section we show by example how
our lifting of IC3 to control flow automata works and what its
benefits are. We start with the program from Fig. 2 as input.
Note that in our presentation we omit the computation steps
for l = 2, as lE is not reachable from that location. As shown
in Alg. 1 we start by the two static checks for 0- and 1-step
counterexamples. As they are both obviously not satisfied, we
proceed to initializing F(0,l0) to true and F(0,1) to false.
F(1,l) is set to true for both locations l ∈ {l0, 1}.

We now start our algorithm with k = 1 and try to construct
a strengthening. There exists exactly one l s.t. (l, t, lE) ∈ G,
namely l = 1, which yields the initial proof obligation
(1, 1, x 6= y) for the priority queue Q in Alg. 3. As i is not 0,
we start the blocking phase by searching for a predecessor
of 1 and find location l0, which means we have to apply
query (5) and check sat(F(0,l0) ∧ y′ = x′ ∧ x′ 6= y′), which
is obviously not satisfiable. Next we check l = 1. As this
is a self-loop we can use the stronger query (6) to check
sat(F(0,1) ∧ x = y ∧ x′ = x+ 1 ∧ y′ = y + 1 ∧ x′ 6= y′).

This query shows two improvements over existing tech-
niques: First, we initialized F(0,1) to false because it is not
initial, which allows us to block the obligation one step earlier
and also make the query non-satisfiable immediately. Second,
even without any information learned in F(0,1) the query is
not satisfiable due to the stronger edge-relative inductiveness
of (6).

We continue the execution by blocking x 6= y in F(1,1), i.e.
add ¬(x 6= y) to F(1,1). Afterwards there is no entry in Q
and we leave BACKWARDBLOCK. As by the blocking there
is no more CTI at index 1, we also leave STRENGTHEN and
continue with major iteraton k = 2.

The function call STRENGTHEN(2) enters BACKWARD-
BLOCK with the initial obligation (2, 1, x 6= y). For predeces-
sor l0, we check sat(F(1,l0)∧y′ = x′∧x′ 6= y′), which is again
unsatisfiable, as well as sat(F(1,1)∧x = y∧x′ = x+1∧y′ =
y+1∧ x′ 6= y′) for location 1, which is not satisfiable either.
We can therefore block x 6= y in frame F(2,1), too.

Again we have an empty Q and no more CTI at level 2.
We check for termination and find F(1,l0) = F(2,l0) as well
as F(1,1) = F(2,1), which means that we found an inductive
strengthening F = (1, x = y) s.t. lE is not reachable in the
CFA.

V. BENCHMARKS

In this section we start with details of our implementation,
followed by an evaluation and end with a discussion of the
presented results.

Implementation

We implemented our IC3CFA algorithm on top of an
existing proprietary model checking framework. A flow chart
of the framework is shown in Fig. 3. The framework makes
use of the LLVM project enable parsing a wide range of input
languages and translate them into the LLVM intermediate
representation (IR) [11]. To close the gap between compiler
oriented semantics of C as assumed by LLVM and verification
semantics that was encountered in the development of the UFO
model checker we use the approach of initializing variables
with a call to an external function as presented in [12].
We translate this IR into our own intermediate verification
language (IVL) that is more suitable for verification, e.g. no
SSA form, no three-adress code. On the IVL code we execute
some optimization stages that are also widely used in other
model checkers, e.g. the Kratos software model checker [13],
like program slicing, expression propagation and bisimulation
minimization, as well as Steensgaard’s pointer analysis [14]
to rewrite simple pointer expressions. The bit-precise memory
model (similar to the one of CBMC [15]) supports limited
pointer operations, including array-element and record-field
addressing. After reaching a fixpoint of these optimizations,
we construct the program’s control flow graph, labeled with
instructions of a guarded command language similar to that
of [16]. This allows for efficient construction of weakest
preconditions [16], [17]. The results of our preprocessing are
in line with the CFAs produced by Kratos and only differ
by one or two locations. While the presented approach is
fully theory unaware and can be used for infinite-domain
theories such as linear real arithmetic (LRA) we use the
finite-domain theory of bit vectors. Our tool supports the
Z3 and MathSAT SMT solvers; all following benchmarks
were executed using the Z3 solver. To minimize overhead
and reduce unnecessary pushing attempts we implemented the
efficient pushing strategy of [18]. For storing frames efficiently
we implemented the delta encoding approach of [9] which,
in our experiments, reduced memory consumption as well
as runtime significantly. For some benchmarks the reduction
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no
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Fig. 3. Tool flow

in runtime was almost 20 times. Generalization of computed
preimages is not implemented, yet.

Evaluation

For evaluation of our algorithm and to compare it to others
we used a subset1 of 28 programs from the set of bench-
marks used in [2], originating from different domains such
as device drivers, communication protocols, SystemC designs
and textbook algorithms, some of which are contained in the
set of benchmarks of the software verification competition
(http://sv-comp.sosy-lab.org/2015/). One out of four programs
contains a bug.

All presented results can be reproduced by our tool via
the web-interface at http://www-i2.informatik.rwth-aachen.de/
mctools/vplc/fmcad15/ .

All experiments have been executed on a cluster using a
single core per instance, running at 2.1 GHz with a memory
limit of 4GB per file and a timeout of 1200 seconds.

We briefly compare our implementation to the IC3SMT,
Tree-IC3 and Tree-IC3-ITP algorithms of [2]. Scatter plots
in Fig. 4 give a graphical idea of how IC3CFA compares
time-wise against each of these algorithms while the appended
table gives statistics of the overall performance of the four
algorithms. The second column highlights the number of
solved instances of the 28 benchmark programs. The third
column shows the time in seconds for solved instances only,
while the last column also takes timeouts into account.

IC3SMT, the implementation of the straight-forward lifting
of IC3 to SMT as described in the beginning of Sec. IV
is clearly the one that performs worst from all four. This
comparison is in line with the observations from [2] and shows
that IC3CFA benefits from using the explicit representation of
control flow over the implicit representation using a dedicated
pc variable. IC3CFA is able to solve nine more instances than
IC3SMT and does so in almost 9% of the time.

The comparison of IC3CFA with the Tree-IC3 implementa-
tion shows the effect of constructing frames for control flow

1Currently we do not support assignment of nondeterministic values inside
a loop, due to limitations in our current memory model.
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Algorithm # solve solve t total t
IC3SMT 13/28 6328s 24328s
Tree-IC3 21/28 1752s 10152s
Tree-IC-ITP 28/28 3107s 3107s
IC3CFA 22/28 584s 7784s

Fig. 4. Comparison of Tree-IC3 and IC3CFA

locations, rather than unrolling the ART, as both algorithms are
based on a very similar representation of control flow automata
and both use weakest preconditions to construct the preimage
of a state. IC3CFA is able to solve one more instance than
Tree-IC3 in a third of the time.

Besides these two direct comparisons we also evaluated
our implementation against the Tree-IC3-ITP implementation
that almost resembles Tree-IC3 with the only difference in
the computation of preimages, where Tree-IC3-ITP uses in-
terpolants. This comparisons shows the advantage of using
interpolants over weakest preconditions, as Tree-IC3-ITP is
able to solve six more instances than IC3CFA.
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Results
From the results in Fig. 4 we can come to three conclusions.

First, as already discovered in [2], the IC3SMT approach,
while easy to lift, is very inefficient and is not competitive
to control flow based techniques. Second, while the TreeIC3
approach is, in very rare cases, slightly more efficient on
very small examples, the absence of overhead in ART un-
rolling makes our approach much faster on medium to large
scale examples. Third, the effect of how predecessors are
constructed, i.e. weakest preconditions against interpolants,
is another important factor that has to be considered when
evaluating the performance of IC3 based software model
checking algorithms.

VI. CONCLUSION

In this paper we have presented an approach to lift the
application domain of the inductive, incremental verification
algorithm IC3 from hardware to software model checking. In
resemblance to other adaptations of IC3 to software verifi-
cation, it supports the handling of infinite-state systems by
generalising SAT to SMT solving. Its distinguishing feature,
however, is the explicit consideration of a program’s control
flow by maintaining location-specific frames for storing ap-
proximate reachability information. In comparison to more
implicit approaches such as Tree-IC3, which is based on an
unrolling of the ART, this allows to apply a stronger form of
relative inductiveness than obtained in comparable algorithms.
The gain in efficiency is demonstrated by experimental eval-
uations against different implementations of existing, control
flow based IC3 algorithms. Due to the novelty of IC3 there is
a wide range of future research on this field. One particularly
interesting perspective that we intend to investigate are the po-
tentialities of using generalization as a way to overapproximate
the exact preimages that we use up to now.
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Abstract—Acceleration is a technique for summarising loops
by computing a closed-form representation of the loop behaviour.
The closed form can be turned into an accelerator, which is a
code snippet that skips over intermediate states of the loop to
the end of the loop in a single step.

Program analysers rely on invariant generation techniques
to reason about loops. The state-of-the-art invariant generation
techniques, in practice, often struggle to find concise loop
invariants, and, instead, degrade into unrolling loops, which is
ineffective for non-trivial programs. In this paper, we evaluate
experimentally whether loop accelerators enable existing pro-
gram analysis algorithm to discover loop invariants more reliably
and more efficiently. This paper is the first comprehensive study
on the synergies between acceleration and invariant generation.
We report our experience with a collection of safe and unsafe
programs drawn from the Software Verification Competition and
the literature.

I. INTRODUCTION

Consider the program in Fig. 1. It contains a simple assertion,
which follows the while loop. An automated proof of safety for
this assertion requires a technique that is able to discover the
loop invariant sn = sn+ (n− i) ∗ a. State-of-the-art software
model checkers either fail to prove the program or even if
they do (for a bounded value of n), they do so by completely
unwinding the loop, which does not scale for large n.

# d e f i n e a 2

i n t main ( ) {
unsigned i n t i , j , n , sn = 0 ;
j = i ;
whi le (i < n ) {
sn = sn + a ;
i++;

}
assert ( (sn == (n−j ) *a ) | | sn == 0) ;

}

Fig. 1: Sample Safe Program

The simple recurrent nature of the assignments in the
loop of program makes it amenable to acceleration [1]–[4].

This research was supported by ERC project 280053 (CPROVER).

Acceleration is a technique used to compute the effect of
repeated iteration of statements. Specifically, the effect of k
loop iterations in the example program is that the variable sn
is increased by k ∗a. The idea is to replace, wherever possible,
a loop with its closed form to obtain an equivalent accelerated
program that is hopefully easier to verify.

Acceleration in the general case is, of course, as difficult
as the original verification problem. Practical applications
of acceleration are therefore typically restricted to particular
special cases. For instance, Jeannet et al. [4] consider the case
of deterministic linear loops over continuous variables. As
there are very few cases in which the transitive closure is
effectively computable, it is frequently not possible to obtain
an accelerator that captures the behavior of the loop precisely.
Thus, acceleration can be over-approximative (most references)
or under-approximative (e.g. [5]). Acceleration frequently spe-
cialises in particular application domains, e.g., control software.
Furthermore, acceleration techniques are frequently tuned to
a particular analysis technique (e.g., abstract interpretation or
predicate abstraction) that is applied subsequently.

The conjectures of this paper are: 1) accelerators support
the invariant synthesis that is performed by program analysers,
irrespective of the underlying analysis approach, and 2) anal-
ysers supported by acceleration not only do better than the
original ones, they also outperform other state-of-the-art tools
performing similar analysis. We aim to test these hypotheses by
performing an evaluation over an extensive set of benchmarks
and a variety of tools. Since all our benchmarks are C programs,
we require an acceleration technique that is applicable to C
programs and the fixed-width machine integers that they use.
We use a template-based method published at CAV 2013 [5]
to obtain the accelerators, and add them to the programs as
additional paths. This transformation preserves safety i.e., the
acceleration neither over- nor under-approximates. We are
unable to pass the accelerated programs to all common off-the-
shelf analysers, but we nevertheless compare with other tools
in our experiments to quantify the advantage that acceleration
provides over the state of the art.

Recall our example program. The program with accelerator
added is given as Fig. 2. The instrumented code in Fig. 2 can
be used instead of the original code for model checking state
properties, as they have equivalent sets of reachable states.
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i n t nondet_int ( ) ;
unsigned nondet_unsigned ( ) ;

# d e f i n e a 2

i n t main ( ) {
unsigned i n t i , j , n , sn , k = 0 ;
j = i ;
whi le (i < n ) {

i f (nondet_int ( ) ) { / / a c c e l e r a t e
k = nondet_unsigned ( ) ; sn = sn + k*a ;
i = i + k ;
assume (i <= n ) ; } / / no o v e r f l o w

e l s e { / / o r i g i n a l body
sn = sn + a ; i++; }

}
assert ( (sn == (n−j ) *a ) | | sn == 0) ;

}

Fig. 2: Program from Fig. 1 with accelerator

We observe that several model checkers that failing on the
original program are able to verify the accelerated program
successfully.

The core contribution of this paper is an experimental study,
with the goal to validate our conjectures stated earlier. We
quantify the benefit of accelerators when using commodity
program analysers. We use two analysers in our experiments
to substantiate the first claim (that accelerators aid existing
analyzers). CBMC [6] is the model checker used in [7]; as
a bounded analyser, it makes no attempt to infer invariants
and is only able to conclude correctness if the program is
shallow. IMPARA [8] is a C program verifier based on the
LAWI-paradigm. IMPARA generates invariants using a very
basic approach that relies on weakest preconditions, and does
not employ a powerful interpolation engine.

Both IMPARA and CBMC are characterised by very weak
invariant inference, and are thus expected to benefit substan-
tially from acceleration. To relate the outcome to the best
invariant generation techniques, towards validating our second
claim, we include two other analysers: CPAchecker [9] and
UFO [10]. These tools implement a broad range of invariant
generation methods, including various abstract domains and
interpolation. The comparison is performed on over 200
benchmarks, including those used in the Software Verification
Competition 2015.

Although acceleration has successfully been combined with
interpolation-based invariant construction [11], to the best of
our knowledge, there has not been a thorough experimental
study that quantifies the benefits of using it in tools that
aim to prove correctness. While [5] did integrate acceleration
within a framework where paths in the CFG were explored
lazily with refinement, the emphasis of their experiments was
to accelerate bug detection for unsafe programs. Recently,
a loop over-approximation technique based on acceleration
was proposed in [12] but this technique is not applicable to

unsafe programs. Moreover, there is no refinement to eliminate
spurious counterexamples arising from the over-approximation
in [12]. The experiments in [7] focus on bounded model
checking and do not include state-of-the-art interpolation-based
tools.

The rest of the paper is organized as follows. The next
section gives an overview of each of the tools used in our
experiments and of the acceleration method from [5], [7] and
its scope and restrictions. Section III contains experimental
data and a discussion of the results.

II. OVERVIEW OF THE ANALYSIS TOOLS

We start this section with a brief informal introduction of
the different tools used for our experiments.

UFO [10] combines the efficiency of abstract interpretation
with numerical domains with the ability to generalize by means
of interpolation in an abstraction refinement loop. UFO starts
by computing an inductive invariant for the given program
and checks if the invariant implies the given property. If the
implication does not hold, UFO employs SMT solvers to check
the feasibility of counterexample produced. If the error path is
found to be infeasible, an interpolation technique guided by
the results of an abstract interpretation is used to strengthen
the invariant.

CPAchecker [9] is a tool and framework that aims
at easy integration of new verification components. Every
abstract domain, together with the corresponding operations,
implements the interface of configurable program analysis
(CPA). The main algorithm is configurable to perform a
reachability analysis on arbitrary combinations of existing
CPAs. The framework provides interfaces to SMT solvers
and interpolation procedures, such that the CPA operators can
be written in a concise and convenient way. CPAchecker uses
MATHSAT as an SMT solver, and CSISAT and MATHSAT as
interpolation procedures. It uses CBMC as a bit-precise checker
for the feasibility of error paths, JAVABDD as the BDD package
and provides an interface to an Octagon representation as well.

CBMC [6] is a bounded model checker for ANSI-C
programs. It works by jointly unwinding the transition relation
encoded in the given program and its specification, to obtain a
first-order formula that is satisfiable if there exists an error trace.
The formula is then checked using a SAT or SMT procedure.
If the formula is satisfiable, a counterexample is extracted from
the satisfying assignment provided by the SAT procedure. The
tool also checks that sufficient unwinding is done to ensure that
no longer counterexample can exist by means of unwinding
assertions. This enables CBMC to prove correctness if the
program is shallow.

IMPARA [8] extends the IMPACT algorithm to support asyn-
chronous concurrent processes using an interleaved semantics.
IMPARA, which analyses concurrent C programs with POSIX
or Win32 threads, efficiently combines partial-order-reduction
with the IMPACT algorithm. This paper highlights the benefits of
combining IMPARA with acceleration for sequential programs.

The IMPARA algorithm returns either a safety invariant for
a given program, finds a counterexample or diverges. To this
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end, it constructs an abstraction of the program execution
in the form of an Abstract Reachability Tree (ART), which
corresponds to an unwinding of the control-flow graph of the
program, annotated with invariants. To prove a program correct
for unbounded executions, a criterion is needed to prune the
ART without missing any error paths. A covering relation
assumes this role.

The tool constructs an ART by alternating three different
operations on nodes: EXPAND, REFINE, and CLOSE. EXPAND
takes an uncovered leaf node and computes its successors
along a randomly chosen thread. REFINE takes an error node v,
detects whether the error path is feasible and, if not, restores a
safe tree labeling. First, it determines whether the unique path π
from the initial node to v is feasible by checking satisfiability
of the transition constraints along π. If it is satisfiable, the
solution gives a counterexample in the form of a concrete
error trace, showing that the program is unsafe. Otherwise, an
interpolant is obtained, which is used to refine the labels and
update the cover relation. CLOSE takes a node v and checks if
v can be added to the covering relation. As potential candidates
for pairs to be a part of the covering relation, it only considers
nodes created before v. This is to ensure a stable behavior, as
covering in arbitrary order may uncover other nodes, which
may not terminate.

A. Overview

The acceleration procedure used in this paper is based on
the method described in [5]. This method relies on a constraint
solver to compute the accelerators. We first provide an overview
of the steps of the acceleration procedure, and subsequently
provide additional detail. From a high-level perspective, the
procedure implements the following steps:

1) Choose a path π through the loop body to be accelerated.
2) Construct a path

 
π whose behaviour under-approximates

the effect of repeatedly executing π an arbitrary number
of times.

3) The construction also generates conditions under which
the acceleration is an under-approximation. These con-
ditions are given in the form of two constraints – a
feasibility constraint, which denotes the condition under
which

 
π can be applied, and a range constraint, which

constraints the number of iterations. These constraints
are included as assume statements in

 
π .

4) By construction, the assumptions and constraints in
 
π may contain universal quantifiers ranging over an
auxiliary variable that encodes the number of loop
iterations. The procedure uses a few simple techniques
to eliminate these quantifiers that work under certain
restrictions. The path is not accelerated if it is not able
to eliminate the quantifiers.

5) Augment the control flow graph of the original loop
body with an additional branch corresponding to

 
π with

a non-deterministic choice in the branch.
6) The accelerated paths subsume some (or sometimes

all) paths in the original program. The augmented loop
structure generated in the previous step is analyzed to

build a trace automaton that filters some of the redundant
paths. The result of this step is used to generate a final
program with fewer paths.

The acceleration procedure, after executing the above steps,
produces an instrumented code with the modifications described
in the last two steps. For a program with several loops, possibly
nested, the acceleration procedure processes the loops one at
a time, inside-out for nested loops. In our experiments we
analyse the instrumented code that is produced, without further
modifications. This process of acceleration may succeed, fail or
time out. The last two outcomes imply that either a closed form
solution with a given template does not exist or acceleration
was unable to find one.

In the following, we give a few more details of the procedure,
the form of the accelerated paths produced and explain the
conditions under which the procedure works.

B. Accelerating Scalar Variables in a Path

For scalar variables, the acceleration is generated by fitting
a particular polynomial template. If X = {x1, . . . ,xk} is
the vector of variables in π, then the accelerated assignment
generated for each variable is represented by the following
polynomial function:

fx(X〈0〉, n) def=
k∑

i=1

αi · x〈0〉i

+
( k∑

i=1

α(k+i) · x
〈0〉
i + α(2·k+1)

)
· n

+ α(2·k+2) · n2

Here, n is the number of loop iterations that are summarized,
x〈0〉1 , . . . ,x〈0〉k are the initial values for the variables and the
αi with 0 ≤ i ≤ 2k + 2 are the unknown coefficients.

The acceleration for a path is performed in two steps. In the
first step, the procedure solves for the coefficients αi. This is
done by considering only the assignments in the path π, i.e., by
ignoring all the conditions, including the loop condition. This
employs a combination of linear algebra techniques to first
uniquely solve for the coefficients and then makes queries to
SMT solver to inductively check that the generated polynomial
for each variable is consistent with loop execution for an
arbitrary number of iterations. If, for some xi, the inductive
check fails, then it means there is no acceleration possible that
fits the template.

In the second step the procedure considers the path with
all the conditions, and generates the feasibility constraint, i.e.,
the condition under which the path is feasible. The feasibility
constraint is essentially the negation of wlp(πn; false), where
wlp is the weakest liberal precondition. Intuitively, a cumulative
path πn would be infeasible iff any intervening path π in the n-
iteration cycle, starting from the state given by the accelerator, is
infeasible. That is, πn is infeasible if for any j < n the first time
frame of the suffix π(n−j) is infeasible (time frame refers to an
instance of π in πn). Thus, checking whether wlp(πn, false)
holds is equivalent to checking if, for some j between 0
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and n, wlp(π, false) holds (after substituting every variable
in π by its accelerated closed form expressions). Thus, the
feasibility constraint for πn will, in general, contain a universal
quantifier ranging over the number of loop iterations. This can
be eliminated if the predicate in the body of the formula
is monotonic over the quantified parameter. The procedure
reduces the monotonicity check in a conservative fashion to
a SMT query by defining a representing function that returns
the size of the set of states for which a predicate is false. No
acceleration is performed if the monotonicity check fails.

C. Range Constraints

Since closed-form expressions and the derived feasibility
constraints usually contain the number of iterations n in them,
an overflow is likely to break the monotonicity requirement
when bit-vectors or modular arithmetic are used. Also, since
the behaviour of arithmetic over- or under-flow in C is not
specified for signed arithmetic, we conservatively rule out all
occurrences thereof in the accelerated path. This is done by
adding range constraints in the form assume statements, which
enforce that none of the arithmetic expressions that involve n
overflow.

D. Accelerating Array Assignments

Acceleration of array assignments is challenging, as under-
approximating closed-form solutions for them can often only
be expressed by formulas that contain quantifier alternation
(existential inside universal) ranging over the number of loop
iterations and the domain (index) of the array. It has been
shown in [5] that for array assignments of the form a[x] := e
such a quantifier pattern can be eliminated under the following
sufficient conditions.
• There exist accelerated closed-form expressions for the

index variable x and the expression e.
• The function fx defining the closed-form solution for the

index variable is linear in the number of loop iterations.
Under the above conditions one can derive a closed form
representing an under-approximation of the array assignments.

E. Eliminating Redundant Paths using Trace Automata

The instrumentation of the accelerators described in the
introduction preserves the unaccelerated paths in the program
along with the newly added accelerated paths – for instance,
the else branch in Fig. 2. Note that the added paths subsume
some of the previously existing program paths.

The idea presented in [7] is to eliminate executions that are
subsumed by some other execution of the program. For instance,
taking the same accelerated path twice in a row is equivalent
to taking it just once (for instance, in Fig. 2, executing the if
block twice for values k1 and k2 is the same as executing it
once with the value of k equal to k1 + k2 – which is possible
because k is chosen non-deterministically in each iteration).

Similarly, taking the unaccelerated path immediately after
taking the accelerated path is subsumed by taking the accel-
erated path just once (with the value of k being one more
its previously chosen value, in Fig. 2). The elimination of

i n t nondet_int ( ) ;
unsigned nondet_unsigned ( ) ;

# d e f i n e a 2
i n t main ( ) {

unsigned i n t i ,j , n , sn , k = 0 ;
bool g = * ;
j = i ;
whi le (i < n ) {

i f (nondet_int ( ) ) { / / a c c e l e r a t e
assume ( !g ) ;
k = nondet_unsigned ( ) ; sn = sn + k*a ;
i = i + k ;
assume ( i <= n ) ; / / no o v e r f l o w
g = true ;}

e l s e { / / o r i g i n a l body
sn = sn + a ; i++;
g = false ;}

}
assert ( (sn == (n−j ) *a ) | | sn == 0) ;

}

Fig. 3: Program from Fig. 2 with instrumented trace automaton

these redundant paths is done by encoding the redundancies
as a regular expression, which is then translated into a trace
automaton [13]. When the accelerated program executes, the
states in this automaton are also updated and it is ensured
that this automata never reaches a reject state. An optimized
version of the accelerated code for the running example is
given in Fig. 3. This is achieved by introducing an auxiliary
variable g that determines whether the accelerator was traversed
in the previous iteration of the loop. This flag is reset in the
non-accelerated branch, which, however, in our example is
infeasible.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

We ran our experiments on a set of 201 benchmarks (138 safe,
63 unsafe) collected from the sources listed in [14] (published at
CAV 2014) and SV-COMP 2015. We have eliminated examples
that had syntax errors and the ones that were not supported by
the accelerator (array examples, for instance). We compare the
performance of UFO, CPAchecker, CBMC (with and without
acceleration) and IMPARA (with and without acceleration). The
unwinding depth used for experiments with CBMC was 100
for unaccelerated programs and 3 for accelerated programs.
All experiments were run on a dual-core machine running at
2.73 GHz with 2 GB RAM, with a timeout limit of 60 seconds.

We elaborate on the benchmarks and the tools used to aid
reproducibility. The benchmarks were collected from [15]–[17],
the loops category in SV-COMP 2015 and the acceleration
examples in the regression suite of CBMC (revision 4503). The
tools used in the experiment were UFO (the SV-COMP 2014
binary), CPAchecker (release 1.3.4, with sv-comp14.properties
as the configuration file), CBMC (built from revision 4503,
used with Z3 as the decision procedure) and IMPARA (version
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i n t main ( void ) {
unsigned i n t x = 0 ;
whi le (x < 268435454) {

i f (x < 65520){
x++;

} e l s e {
x += 2 ;

}
}
assert ( ! ( x % 2) ) ;

}

Fig. 4: A safe benchmark showing the need for acceleration.

0.2, used with MiniSat). The benchmarks, the exact commands
used to invoke the tools, and the full results are available at
http://www.cmi.ac.in/∼madhukar/fmcad15.

Table I summarizes the performance of each of the tools. We
record the number of safe instances reported as safe (correct
proofs), the number of safe instances reported as unsafe (wrong
alarms), the number of unsafe instances reported as unsafe
(correct alarms), the number of unsafe instances reported as
safe (wrong proofs), the number of instances which could not
be decided by the tool (no result), the number of instances on
which the tool reported the correct result in the least amount
of time (fastest), the number of instances on which the tool
was the only one to report the correct result (unique) and a
score for each tool, calculated using the scoring scheme of
SV-COMP 2015.1

B. Example

Before we discuss the results, we present an example to
demonstrate the effectiveness of acceleration. Consider the
safe example shown in Figure 4. All the tools involved in our
experiments fail to prove this example safe. Even when the
timeout is increased to 15 minutes, the tools still timeout. In
general, one needs a loop invariant strong enough to prove
the assertion outside the loop, to avoid unwinding the loop
to the full. None of the tools were able to find such a loop
invariant. Upon acceleration, a closed form for the variable
x is generated: x = 1 ∗ k + 2 ∗ l. The additional constraint
generated for k, that k = 65520, along with the closed form
for x (and negation of the loop termination condition) is strong
enough an invariant to prove the property.

In some circumstances, acceleration uses quantifiers in
the accelerated programs. These are not the ones arising
from the feasibility or range constraints that we discussed in
Section II (those get eliminated during the acceleration). These
quantifiers appear while encoding the overflow constraints in
the accelerated program. Suppose we want to construct a closed
form for a variable being modified in a loop, by assuming
that the loop executed i times. In this case, we need to assure
that there is no overflow that was caused during any of these

1Score = (2·correct proofs)−(12·wrong proofs)+correct alarms−(6·wrong
alarms)

i iterations. In some cases, it is sufficient to assume that ith

iteration does not lead to an overflow. An instance is example 4,
as the loop condition is (x < 268435454). Thus, if the ith

iteration does not lead to an overflow, none of the previous
iterations do. However, if we change the loop condition to
(x 6= 268435454) this does not hold any more. Therefore,
it must be ensured separately for every k ∈ [0, . . . , i] that
there is no overflow after k iterations. In our experiments,
there were 40 benchmarks (roughly 25 %) that use quantifiers
in their corresponding accelerated programs. The presence
of quantifiers makes the verification task difficult as none of
the tools is able to instantiate the quantifiers correctly. More
effective quantifier handling will yield further results in favor
of acceleration.

C. Discussion of Results

IMPARA + Acceleration clearly outperforms IMPARA without
acceleration, UFO and CPAchecker. This underlines the benefit
of acceleration as an auxiliary method for invariant generation.
Note that we see an increase in the number of correct proofs
as well as correct alarms. CPAchecker comes close in terms
of the correct proofs, which we credit to its broad portfolio
of techniques for generating invariants, including interpolation,
abstract interpretation and predicate abstraction. The wrong
proofs CPAchecker generates are partly caused by missing
overflow situations.

When compared to CBMC + Acceleration, IMPARA + Accel-
eration does better for the following reason: The accelerators
themselves are not helpful to CBMC for generating proofs – it
simply unwinds the program CFG and makes a single decisive
query to the solver. A large number of our benchmarks are
safe, and CBMC only benefits from accelerators if the trace
automaton is able to prune the original paths. By contrast, even
without trace automata, acceleration may improve convergence
of IMPARA, as acceleration can lead to “better” interpolants.
Without acceleration an interpolation procedure is presented
an unwinding of the loop body. It is well-known, see e.g. [18],
that this can lead to overly specific interpolants that rule out
only this particular unwinding. By contrast, in the accelerated
program, the interpolation procedure is presented with the
transitive closure of the loop; it thus is forced to compute
an interpolant for a much larger number of unwindings. For
instance, IMPARA without acceleration fails to generate a loop
invariants for Figure 5, and thus falls back to loop unwinding,
whereas, on the accelerated program, unwinding is avoided,
and the tool generates the invariant x+ y = n.

The overall score drops when combining CBMC with
acceleration. This is due to the wrong alarms generated by
the combination, which is heavily penalized according to the
scoring rules at SV-COMP. There is a substantial increase in
the number of correct proofs and correct alarms, however. The
advantages of combining acceleration with CBMC and IMPARA
(note that CBMC and IMPARA are very different tools) strongly
suggests that a similar advantage could be obtained with other
tools as well. An investigation of the cause for the increase in
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TABLE I: Comparison of tools

Tools
Number of instances

Scorecorrect wrong correct wrong no fastest uniqueproofs proofs alarms alarms results
CPAchecker 1.3.4 83 16 35 14 53 18 11 −75
UFO SV-COMP 2014 52 2 18 2 127 4 2 86
CBMC r4503 32 0 35 0 134 16 1 99

+ Acceleration 53 0 45 12 91 28 9 79
IMPARA 0.2 78 1 36 15 71 73 0 90

+ Acceleration 86 0 47 12 56 36 6 147

i n t main ( ) {
unsigned i n t n = nondet_uint ( ) ;
i n t x = n ;
i n t y = 0 ;

/ / l oop i n v a r i a n t : x + y == n
whi le (x > 0) {
x = x − 1 ;
y = y + 1 ;

}
assert (y == n ) ;

}

Fig. 5: Acceleration can improve generalisation in LAWI.

number of wrong alarms for CBMC and a precise quantification
of the benefit of combining other tools is future work.

The fact that acceleration helps CBMC and IMPARA on
unsafe instances is unsurprising; the technique we use was
designed to aid counterexample detection [5]. The experimental
results confirm that in addition, acceleration helps to generate
invariants. Invariant generation techniques, in practice, often
struggle to find concise loop invariants, and, instead, degrade
into unrolling loops completely, which leads to poor perfor-
mance and defeats the purpose of invariant generation. Our
experiments demonstrate that there is a synergy between the
two techniques, i.e., acceleration leads to better invariants,
and invariant generation also helps finding bugs faster. We
conjecture that the invariants steer the search for the bug away
from irrelevant parts of the state space.

While CPAchecker employs a bit-accurate tool – by default
CBMC – to verify counterexamples, its invariant-generation
engine works over mathematical integers, i.e., invariants may
hold over mathematical integers but are not checked with
respect to integer overflow. Wrong proofs observed with
CPAchecker mainly arise from deriving mathematical-integer
invariants that do not hold in presence of overflow. In such
situations, acceleration cannot help. This can be explained as
follows. The accelerator represents a transitive closure of the
loop body. It follows easily by induction that the result of
CPAchecker, if the tool terminates, must be the same as for the
unaccelerated program, since both programs are semantically
equivalent.

IV. CONCLUSION AND FUTURE WORK

In this paper we have quantified the benefit of acceleration
for checking safety properties. We report the results of a
comprehensive comparison over a number of benchmarks,
which shows that the combination of acceleration and a
safety checker indeed outperforms existing techniques. The
performance enhancement is visible for both safe and unsafe
benchmarks, shown by an increase in the number of correct
alarms as well as the correct proofs reported by the tool.

The source-level transformation of programs enables inte-
gration with futher invariant generation techniques. As a future
work, we plan to investigate the interplay between acceleration
and invariant generation to minimize the number of wrong
alarms and to handle more cases correctly, including those
that involve arrays. We also believe it would be worthwhile
to investigate whether the accelerator can be assisted with
additional invariants generated using some other technique. Our
initial experiments suggest that some of these invariants, even
over the interval domain, may help us rule out the possibility of
overflows, thereby increasing the precision of the accelerator.
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Abstract—In the early phases of the design of safety-critical
systems, we need the ability to analyze the safety of different
design solutions, comparing how different functional allocations
impact the overall reliability of the system. To achieve this
goal, we can apply formal techniques ranging from model
checking to model-based fault-tree analysis. Using the results
of the verification and safety analysis, we can compare different
solutions and provide the domain experts with information on
the strengths and weaknesses of each solution.

In this paper, we consider NASA’s early designs and functional
allocation hypotheses for the next air traffic control system for
the United States. In particular, we consider how the allocation of
separation assurance capabilities and the required communica-
tion between agents affects the safety of the overall system. Due
to the high level of details, we need to abstract the domain while
retaining all of the key properties of NASA’s designs. We present
the modeling approach and verification process that we adopted.
Finally, we discuss the results of the analysis when comparing
different configurations including both new, self-separating and
traditional, ground-separated aircraft.

I. INTRODUCTION

By 2025 the airspace will be full [1]; demand for flights will
exceed the maximum number of planes that can fly at one time.
This problem is not due to a space limitation; there is room
for more planes in the air. We will instead exceed the ability
of our current system to safely separate commercial aircraft
and provide on-the-fly conflict detection and resolution. This is
because our current system relies heavily on human air traffic
controllers and there is a limit to the number of planes humans
can reason about simultaneously. We can solve this problem by
adding automation and enabling computers to compute routes
and resolutions to maintain safe separation between planes;
we already have implementations of optimized algorithms for
doing this [2]. But human controllers do much more than
3D geometric reasoning; the entire web of communications
between agents in the system, the distributed control structure,
and the logical system design all play integral roles in making
air traffic control so safe and reliable. If we design a new, more
automated system, how do we allocate all of the functions it
must perform in a way that upholds at least the current level
of safety? This is the functional allocation question.

Thanks to the Flight Trajectory Dynamics and Controls Branch of NASA
Ames Research Center and NASA’s Functional Allocation Project for sup-
porting this work. All models and specifications are available at https:
//es-static.fbk.eu/projects/nasa-aac/.

The functional allocation question is first and foremost
about safety: our goal is to create a partial order on the set of
ways to allocate system functions such that system designers
can choose a most safe configuration and then optimize for
secondary goals, such as cost, scheduling, fuel efficiency, ease
of use, and environmental impact.

To this purpose, we considered the requirements specifica-
tion described in the NASA research plan [3] and interacted
with NASA engineers to formalize the functions in different
allocation configurations, as well as several system require-
ments to be analyzed. Model checking these properties on
different configurations gives us a first means for comparing
and ranking the design choices. As a second step, we analyzed
functional allocation by extending the model with faults and
analyzed the resulting fault trees [4]. Fault trees are commonly
used [5] in safety critical contexts, such as aerospace [6], in
order to understand which combination of faults can lead to
a violation of a safety property. On top of the fault trees,
we compute multiple metrics (including probabilistic ones) to
compare the different allocation configurations.

We use the NUXMV [7] for model checking and XSAP [8]
for fault-tree analysis. Together with the models, the artifacts
produced by these tools provide information that goes beyond
a mere pass/fail result, providing a rich characterization of the
conditions under which properties pass or fail. This enables
design choices that minimize the impact of faults on the overall
system. To our knowledge, this is the first time that such
artifacts have been utilized in the conceptual phase of a real
design, when requirements are still blurred and there is no
existing concrete design solution to compare with.

Related Work

The complexity of safety-critical systems is continuously
increasing. Yet, the current state-of-the-practice is largely
characterized by manual approaches, which are error prone,
and may ultimately increase the costs of certification. This has
motivated, in recent years, a growing interest in techniques
for Model-Based Safety Assessment [9]. The perspective of
model-based safety assessment is to represent the system by
means of a formal model and perform safety analysis, both
for the preliminary architecture and at system level, using
formal verification techniques. The integration of model-based
techniques allows safety analysis to be more tractable in terms
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of time consumption and costs. Such techniques must be able
to verify functional correctness and assess system behavior in
the presence of faults [10], [11], [12].

Formal analysis techniques have been applied in the context
of NASA’s Automated Airspace Concept (AAC) in [13].
That work focuses on analyzing the design proposed in [14]
in which the current techniques for Air Traffic Control are
extended with automated on-ground support (i.e., TSAFE
and Autoresolver). [13] opens the way to the application
of symbolic model checking techniques in this context; the
analysis is then applied in a probabilistic setting in [15]. In
this paper, we start from a more preliminary design proposal
(described in NASA research plan [3]) in which we consider
the distributed nature of separation assurance in systems were
both ground- and self-separated aircraft coexist. To capture the
interaction between the different agents, we develop a different
modeling abstraction. Moreover, to provide interesting com-
parative information related to the safety of the designs, we
apply safety assessment techniques, such as fault tree analysis.

Other works, e.g., [16], [17] focused on the formal verifica-
tion of specific functions such as collision avoidance. In this
paper, we assume that such functions are correct and we focus
on the safety analysis of the overall system.

Another case study using the same tools is presented in [18].
In that case, an avionic wheel braking system is modeled
and analyzed according to the standard AIR6110. Different
architectures are considered following the process described in
the standard. The main differences are that first it is applied on
a well-established architecture and not on a design still in the
conceptual phase; second, it describes an architecture where
the controller is fixed and localized to a specific component
instead of relying on a distributed and variable system; finally,
the focus on functional allocation addressed in this paper gives
more emphasis on some techniques such as the functional
analysis of the system reliability in different configurations
with respect to the failure probability of a function.

Contributions

The main contribution of this paper is the adaptation of
model checking and model-based safety analysis to formally
compare different scenarios of an early system design, as
required by NASA’s functional allocation question. This re-
quired a careful definition of the methodology for modeling
and fault-tree analysis with the aim of comparing different
configurations keeping an abstract view of the single functions.
In particular, we handle modeling subtleties in creating a
realistic model, such as receptiveness of faults, shadowing, and
multiple disjoint communications. Moreover, we verified a list
of functional safety features, and computed artifacts describing
the reliability of the system with respect to function failures.
The outcome of this work allowed us and NASA to reach a
better understanding of the design space. Thus, helping NASA
shape the work of research groups.

Outline

The rest of the paper is organized as follows: Section II lists
the functions and agents that define the functional allocation
question and the steps that we followed in the modeling
and analysis process; Section III describes the formal model,
including the architecture and the abstraction of the real
system based on conflict areas and time windows; Section IV
describes the properties used to validate the model; Section V
describes the formal properties used to characterize the con-
figurations; Section VI explains the use of fault-tree analysis
to compare the configurations; Section VII covers modeling
subtleties and lessons learned while Section VIII concludes.

II. FUNCTIONAL ALLOCATION FOR THE AUTOMATED AIR
TRAFFIC CONTROL SYSTEM

A. Problem description

NASA is tasked with designing the next, more automated,
air traffic control system for the United States. A major safety
goal is to minimize Loss of Separation (LoS), resolve any
such situations immediately, and never call upon collision
avoidance. LoS occurs when two or more aircraft become too
close to each other, i.e., they are below a defined safe distance
of 1000 feet vertical and 5 nautical mile horizontal separa-
tion. If LoS is not resolved immediately, collision avoidance
is necessary. The functional allocation question asks which
separation assurance (SA) capabilities to require and how to
distribute the functions of the design in combination with a
subset of these capabilities on top of a set of agents, in order to
minimize the number of LoS and the use of collision avoidance
techniques [3]. We consider the following agents, functions,
and capabilities:
Functions:

• Strategic Separation addresses short-term conflicts from
20 minutes in the future down to 3 minutes out from
a predicted LoS. Strategic separation is implemented in
software and can be running on a central computer on the
ground, on-board individual aircraft, or some combination
thereof. It uses the trajectories of each known aircraft in
the airspace, detecting any conflicts, and outputting res-
olution maneuvers for any aircraft involved in conflicts.

• Tactical Separation addresses near-term conflicts pre-
dicted to occur less than 3 minutes in the future. It
is also implemented in software running on either a
ground computer, an on-board computer, or a combina-
tion thereof. Tactical separation must employ a different
algorithm from strategic separation because the conflicts
it addresses are more imminent and different details must
be considered when generating resolution maneuvers.

• Collision Avoidance addresses possible collisions less
than 30 seconds in the future. Its presence is required by
Federal Aviation Administration (FAA) mandate, there-
fore, TCAS (and in the future ACAS-X), software runs
on-board every aircraft, detects possible collisions using
a transponder installed in the aircraft, and must operate
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totally independently from on-ground systems. A system
safety objective is to never trigger collision avoidance.

Agents:

• Self-Separating Aircraft (SSEP) carry a separation as-
surance software on-board.

• Ground-Separated Aircraft (GSEP) rely on SA soft-
ware running on a central on-ground computer transmit-
ting to the aircraft.

• Air Traffic Control (ATC) Provides on-ground separa-
tion of GSEPs and, when needed, of SSEPs.

Capabilities:

• ADS-B Out (Automatic Dependent Surveillance-
Broadcast Out) is required on-board all aircraft by FAA
mandate by 2020; it broadcasts position information
to ADS-B ground stations and other aircraft within
transmission range.

• ADS-B In is optional by FAA regulations; it receives
ADS-B broadcasts from ground stations and other air-
craft.

Depending on who is in charge of what, and the available
resources, we can describe different designs. Different designs
will have different characteristics. Our goal is to provide some
qualitative measure of the goodness of each solution along
different dimensions. For example, in a scenario in which
both GSEP and SSEP aircraft are involved, we might want to
know whether a solution in which SSEPs perform both tactical
and strategic separation on-board is “better” than a solution in
which tactical separation is handled on-ground.

B. Overview of the process based on formal techniques

We approach the problem described above using formal
methods. We adopted the following four steps process.

1) Modeling (Sec. III): we formalized the system scenar-
ios described in [3]; the informal specification is very
abstract and includes only the aspects related to the
interaction among the agents; therefore our formalization
must choose the right level of abstraction capturing the
relevant aspects.

2) Validation (Sec. IV): we performed sanity checks to
validate that the formalization of model and properties
captures their informal descriptions; in particular, the for-
mal model describing aircraft and controllers are analyzed
separately to validate that certain behaviors are allowed.

3) Verification (Sec. V): we formalized the requirements
into temporal properties and verified them in the different
configurations; some properties must be satisfied by all
configurations, but others are used to distinguish and
compare different configurations.

4) Safety analysis (Sec. VI): in the previous step, we eval-
uated the models under nominal conditions, i.e., each
component behaves correctly; in the fourth step, each
component was extended by adding faulty behaviors, and
we evaluated the safety and reliability of the configura-
tions using fault-tree analysis. To compare the different
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Fig. 1: Scenario instances

configurations, we analyzed under which failure condi-
tions the system can violate the system requirements.

III. FORMAL MODELING FOR COMPARATIVE ANALYSIS

A. System Architecture

In this section, we described the model used to analyze and
compare different configurations of the functional allocation.
The model describes different possible configurations on the
number of aircraft. It does not consider the whole airspace, but
only the set of aircraft that can be in a conflict on intended
trajectories. Both SSEPs and GSEPs aircraft types are taken
into account, in addition to ATC and a communication network
at airborne level. Figure 1 provides an overview of our model,
which allows us to describe a variety of scenarios by enabling
or disabling some specific aircraft: only GSEPs or only SSEPs
operations (by disabling respectively all SSEPs or all GSEPs),
or mixed GSEPs/SSEPs scenario. All SSEP aircraft perform
self-separation for the strategic separation with a Conflict
Detection and Resolution (CD&R) onboard function, while
they rely on the ATC for tactical separation. GSEPs always
rely on ground ATC for both tactical and strategic separation.
In case an SSEP experiences problems, it is able to ask the
ground for strategic separation, thus being treated as a GSEP.
The aircraft communicate directly with the ATC while they
broadcast messages to other aircraft using the ADS-B. The
broadcast is handled by the communication network.

It is important to define the right level of abstraction in order
to guarantee that all the relevant aspects are taken into account.
In the following sections, we detail what variables define the
state of the system, how time passes, and how this influences
the change in the state. Note that our analysis focuses on the
protocol level and thus, in absence of faults, we assume each
component implementation to be correct.

B. Trajectory Intentions and Conflict Areas

The basic information that is relevant for our analysis are
the trajectories that the aircraft intend to follow, and more
specifically if their intentions are in conflict with each other.
The actual detail of the trajectories (i.e., the 3D position as a
function of time) is not part of our model. In fact, we reason
about the system at the architectural level, focusing on the
interaction between the components rather than on the precise
behavior of the components. We are not interested in which
specific trajectory an aircraft should follow to avoid a collision,

114

ISBN: 978-0-9835678-5-1. Copyright owned jointly by the authors and FMCAD, Inc.



AC1	
  

AC2	
  

X	
  

Tj1	
  

Tj2	
  

Tj3	
   Tj4	
  

Tj5	
  

X	
  

Fig. 2: Conflict Areas abstraction

but only in whether their intentions are in conflict or not.
Therefore, we abstract away the detailed trajectory information
by introducing Conflict Areas (CA). Intuitively, two aircraft are
in the same CA, if their trajectories intersect in a given interval
of time. In this way, we can abstract the problem of separation
into the simpler problem of checking that two aircraft are not
in the same conflict area. Figure 2 shows an example when
two aircraft have to reach two separate destinations. In this
example we consider Tj1 and Tj2 for AC1, and Tj3, Tj4,
Tj5 for AC2. Figure 2 shows that AC1 and AC2 are in the
same CA if their intended trajectories are respectively Tj1
and Tj5, or Tj2 and Tj3. In all other cases, they are into
different CAs, representing the absence of conflicts. CAs are
used throughout our models anytime we talk about aircraft
intentions and resolutions sent by controllers.

C. Time windows

Most scenarios in [3] divide the responsibility of the
separation-assurance agents based on time windows. In partic-
ular, we consider four time windows: Current, Near, Mid and
Far. They represent symbolically consecutive time intervals.
Therefore, the trajectory intention of the aircraft define which
aircraft are in the same CA in each time window, as defined
in the previous section.

The Current window represents the immediate intention of
the aircraft, i.e., within 30 seconds. This window is managed
by Conflict Avoidance algorithms, e.g., TCAS, and is therefore
the key to the definition of LoS: two aircraft are currently in
LoS if they share the same conflict area in the Current window.
The tasks of tactical and strategic separation are then mapped
into the Near- and Mid-window (Tactical) and the Far-window
(Strategic). If two aircraft share the same conflict area in the
same window, we say that we have a predicted LoS.

In our model, the intention of aircraft is represented by
assigning each airplane with a CA for each window. Figure 3
shows an example with two aircraft. In this example, the
aircraft are in different CAs apart from the Far window. So,
we have a predicted LoS in that time window.

Intuitively, the windows shift with the passage of time: the
old Near information will became the new Current information
(Figure 3), while the intention for the other time windows
change according to the interaction among the agents. There-
fore, if we manage to resolve all predicted LoS, e.g., in the
Mid window, we will not have LoS. In order for conflicts
to be detected and resolved, we need to take into account

Current Near Mid Far 

Conflict Avoidance Tactical Strategic 

Current Near Mid Far 

Conflict Avoidance Tactical Strategic 

Time 0 

Time 1 

CA1 CA1 CA1 CA1 CA2 

CA2 CA2 CA3 CA1 CA1 

….. 

….. 

Current Near Mid Far 

Conflict Avoidance Tactical Strategic 

Time 2 

AC1 

AC2 

Fig. 3: Near, Mid, Far windows, and their shifting

the communication between aircraft and the ATC and when
it occurs. In the model, passing of time is divided into two
main phases that alternate constantly: communication and
maneuvering.

During the maneuvering phase, windows are shifted (Fig-
ure 3). During the communication phase, the different agents
are able to exchange intentions and resolutions. For example,
the aircraft is able to provide its intention to the ATC, and
receive a suggestion for a new trajectory. We introduce a
bound on the number of communications during this phase, in
order to better understand whether multiple iterations between
agents can improve the reliability of the system. This inter-
leaving model may seem unintuitive. However, this choice is
justified by reality since we can only apply a maneuver after
deciding it, and it simplifies the modeling.

D. Scenarios Instantiation

As described in Sec. II, our exemplary scenario allows self-
separating aircraft (SSEP), which defines three sub-scenarios:
i) non-mixed operations with only GSEPs (current approach);
ii) mixed operations with both GSEPs and SSEPs; iii) non-
mixed operations with only SSEPs.

We consider a “four aircraft” scenario, where at most four
aircraft can be involved in a single conflict at one time. This
realistically covers the actual system since conflicts involving
more than two aircraft are exceedingly rare [14].

All possible configurations are represented by relying on
a single formal model, where each configuration is modeled
by enabling or disabling a subset of the components. For
instance, considering the model representation shown in Fig. 1,
the mixed operation scenario with 2 GSEPs and 1 SSEP is
obtained by disabling SSEP 2 and 3.

On top of that, our exemplary scenario describes different
possible implementation choices at the communication level
that can be enabled (E) or disabled (D):
• GSEP-far: GSEPs send far intentions over ADS-B Out;
• SSEP-far: SSEPs send far intentions to ATC.
Table I shows the size of the different scenarios in term of

Boolean variables and AND gates using And-Inverter Graphs
(AIG). The last row contains the biggest configuration, which
is composed of 353 bits and 4110 AND gates. The first column



defines the code used in the rest of the paper to refer to specific
scenarios.

Scenario Components # Bool. vars # AND gatescode GSEPs SSEPs ATC
PA 3 3 7 283 2226
G 3 0 3 122 1119

M1 3 1 3 185 1767
M2 2 2 3 193 1908
M3 1 3 3 201 2050
S 0 3 3 146 1413

ALL 3 3 3 353 4110

TABLE I: Scenario instances (AIG format)

IV. VALIDATION

The scenarios that are taken into account in this work
represent the interaction between a controller (the Air Traffic
Control and the CD&R on-board of the SSEPs, i.e., the gray
components in Fig. 1), and the controlled system (the set
of aircraft). The objective of this work is to analyze how
the Separation Assurance agents control the aircraft. In order
to avoid a vacuous verification, we first need to validate
separately controllers and system.

A. Validation Properties Formalization

In order to validate the system we identified the following
requirements:

VAS-1: It is always possible to reach a LoS.
VAS-2: It is always possible to have no LoS.
VAS-3: It is always possible for an aircraft to maintain the

same current intention.
VAS-4: It is always possible for an aircraft to change its

intention.

The CTL formalization of the validation requirement VAS-
1 is exemplified in (1). More specifically, we want to define
that for every state of the system it is always possible to
reach a state where Loss of Separation (LoS) holds. The LoS
condition applies when at least two aircraft are in the same
current conflict area.

VAS-1 := AG(EF (LoS))

LoS :=
∨
i6=j

aci.current = acj .current (1)

The expected behavior of the controllers is then defined by
the following requirements:

VAC-1: The controller should accept any possible trajectory
intent from every aircraft.

VAC-2: The controller should always send a correct resolu-
tion.

We validated the model using nuXmv [7], and the results
were positive for all 37 properties that formalize the validation
requirements.

V. VERIFICATION

The next phase starts with the formalization of a set
of properties gathered from the requirements document [3].
We then check whether different configurations satisfy the
formal properties. The results of these checks provide us
with additional information on the difference between the
configurations.

A. Requirements Formalization

We consider the following requirements:
VE-1 It is never possible to reach a Loss of Separation (LoS).
VE-2 It is never possible to have a predicted LoS in the Near-,

Mid-, or Far-Window.
VE-3 Every predicted LoS in the Near-, Mid-, or Far-Window

is detected by at least one SA agent.
VE-4 Every predicted LoS is detected by at least one SA

agent.
VE-5 Resolutions sent by the agent resolve the predicted LoS.
VE-6 Each aircraft must correctly apply the resolution.

The requirement formalization required 93 LTL properties,
and their consistency has been validated using the Requirement
Analysis Tool [19].

The formal interpretation of the verification property VE-2
is shown in (2), as a composition of the constraints on the
near, mid, and far window.

VE-2 := VE-2near ∧ VE-2mid ∧ VE-2far

VE-2{near,mid,far} :=
∧
i6=j

aci.{near,mid,far} 6= acj .{near,mid,far}

(2)

B. Formal Property Verification

All properties are evaluated against all models using
nuXmv [7]. The outcome of this evaluation is a table where
each cell expresses whether a scenario configuration satisfies
a specific property. This allows for a classification of the
different possible configurations, and distinguish between the
different main aspects that characterize them.

An interesting result is obtained when considering different
amount of information that are exchanged between agents. In
particular, taking into account the scenario M2, and compar-
ing the configurations E/E and D/D for GSEP-far/SSEP-far
implementation choices. In the first case the verification of
the requirement VE-2 is fully satisfied, while the latter does
not satisfies the sub-requirement over the far window. The
motivation of this fact is that each SSEP has the responsibility
for the strategic separation, and it requests an ATC support
only if it is not able to resolve the conflict. In addition to that,
each SSEP computes its intent according to the information
provided by other aircraft far intents, but in this case the
GSEPs are not providing this information. The result is that
each SSEP has not enough information to resolve the conflicts
(with GSEPs) in the far window, and the ATC will not provide
a backup support because the SSEPs are not requesting the
ground support.
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TABLE II: Fault descriptions

Comp. Fault Description

GSEP/
SSEP

fault apply near Impossibility to apply the sug-
gested trajectoryfault apply mid

fault apply far
fault comm atc par Communication failure with

ATC (partial or total)fault comm atc tot

fault comm adsb ADS-B In and Out not
functional

ATC
fault near res Failure on providing a correct

resolutionfault mid res
fault far res

SSEP.
CD&R

fault resolve Failure on generating the
resolution

fault resolve detection Failure on detecting a
resolution problem

VI. SAFETY ANALYSIS

Performing safety analysis of a formal model requires ex-
tending the nominal behavior case, i.e., when everything goes
as expected, by allowing undesirable behaviors, i.e., failures.
The formal model is a representation of a set of requirements,
so the occurrence of a fault describes a violation of a system
requirement. For instance the constraint describing that each
SSEP shall send its trajectory intentions to the ATC holds
under nominal conditions, but not in case of a failure (triggered
by a specific fault). The safety analysis will then evaluate
which faults combinations can lead to an unwanted condition,
represented by the negation of a system property, such as
Loss of Separation between two aircraft. In safety analysis,
such undesired condition is called Top Level Event (TLE).
The set of all faults combinations, namely the Cutsets, are
usually represented with a tree where leaf nodes are failures,
intermediate nodes are AND/OR boolean operators, and the
root is the TLE. This artifact is called Fault Tree [4]. A
general application of the Fault Tree Analysis considers only
the Minimal Cutsets (MCS), and more specifically, a cutset
is called minimal if every additional failure will not prevent
such undesired behavior.

A. Faults Definition

In this case study, we added several faults for each sub-
component (Table II), in order to check the robustness of
each system. For example, we consider different types of
communication failure. Aircraft equipped with ADS-B can
permanently lose the ability of sending (ADS-B Out) and
receiving (ADS-B In) messages (fault comm adsb). Similarly,
aircraft might lose the ability of communicating with the ATC.
In this case, however, we study two different ways in which we
can lose communication: permanently (fault comm atc tot) or
temporarily (fault comm atc par).

As defined in the requirements documentation, we assume
that the components may have the ability to detect the occur-
rence of some specific faults. For example, a communication
link might provide some sort of heartbeat. In these cases, it
makes sense to consider some built-in resilience capabilities
for the system. For example, if an SSEP realizes that it cannot

communicate with the other SSEPs, it will request support
from the ATC. The ATC also assumes that if an aircraft does
not provide any new intentions due to a failure, then it will
follow the most recent ones.

B. Formal Fault Tree Analysis

The analysis of an artifact like a fault tree is important to
understand the dependencies between each single component,
how they interact, and what is necessary to go wrong in order
to not guarantee a necessary behavior of the system.

For instance, we expect that the communication failure
of the radio transmission of the ATC can cause a loss of
separation between two GSEP aircraft (even if it would be
highly improbable). However, we may expect that the loss of
communication of a single GSEP cannot cause a LoS, because
the ATC would be able to maneuver all the other aircraft in
order to avoid him.

For each combination of scenario configuration we com-
puted the associated Fault Tree using xSAP [8], [20]. In the
case of property verification, the comparison between two
different system configurations is simple, because the property
is either satisfied or not. Differently, the fault tree analysis
provides very rich artifacts, and there are several techniques
that allow us to compare them and define a partial order over
the different configurations.

1) Minimal Cutsets Comparison: A common practice in
Fault Tree Analysis consists in comparing the size of cutsets
of the same cardinality. This approach is based on the intuition
that the fewer the single point of failures in the system
the higher is the overall reliability. This approach can be
extended also to the cutsets of higher cardinality e.g., double
failures. This approach provides an intuitive understanding of
the relation between different fault trees, however, it is not
always precise, since a single failure might be less probable
than a double failure.

An example of this analysis is presented in Table III, which
compares the results of the FTA on the model instances M1,
M2, and M3 (see Table I) when varying the ability to share
far intention on the GSEPs (configuration GSEP-far), with the
negation of VE-1 as TLE. In this example, the number of
single point of failures does not vary for every configurations
(i.e., 5), while the number of double failures decreases when
the GSEPs share their far intentions with SSEPs aircraft.
Important fact, however, is that the number of triple failures
increases when GSEP-far is enabled. This behavior in the
fault tree analysis results is typical when adding redundant
components. In fact the idea behind redundancy is to increase
the fault tolerance, and essentially what is a single point of
failure becomes a double (or higher) failure.

Further analysis on fault trees can be performed by evaluat-
ing the minimal cutsets that are not in common. An example
of this analysis can be done by considering the configuration
M2 in Table I, and comparing the fault trees obtained with
the TLE “there is a LoS between SSEP1 and GSEP1”, when
varying GSEP-far.
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TABLE III: MCS, ¬VE-1 as TLE, and GSEP-far (E/D)

Card. 3G-1S (M1) 2G-2S (M2) 1G-3S (M3)
E D E D E D

1 5 5 5 5 5 5
2 12 15 12 16 12 15
3 33 24 35 23 36 27

. . . . . . . . . . . .

The results of this evaluation shows that if
GSEP-far is disabled then the fault configuration
FC = {G1.F comm ATC tot, S1.F comm ATC tot}
can cause the occurrence of the TLE. Differently,
when GSEP-far is enabled, FC is no more a necessary
condition to reach the TLE because the CD&R on
the SSEP is able to react to that situation. In fact, if
GSEP-far is enabled then FC requires to be combined
respectively with {ATC.F far res},{ATC.F future res},
{G1.F comm adsb}, and {S1.cdr.F future resolve,
S1.cdr.F resolve detection} to cause the occurrence of
the TLE. Thus, the enabling of GSEP-far turned a minimal
cutset of cardinality 2 into 3 cutsets of cardinality 3 and 1 of
cardinality 4.

2) Reliability Function Evaluation: A Fault Tree represents
all the faults configurations that are necessary to cause the
occurrence of the TLE. Assigning a probability of failure to
each fault event, and assuming that they are independent, it is
then possible to compute the overall probability to reach the
undesirable event. More specifically, this approach is based
on the generation of the closed form of the reliability function
presented in [21]. Such function PTLE(f1, f2, . . . , fn) relates
the probability of occurrence of the TLE with the failure
probability of each fault fi.

We formally analyze the set of possible AAC designs early
in the system design phase, before specific module implemen-
tations or probabilities of failures are fully defined. However,
we can evaluate how the reliability functions compare to each
other by analyzing different possible probability values. For
instance, if we take into account the probability of reaching
a LoS between two aircraft of the same type (for instance
GSEP1/2 and SSEP1/2 in the scenario M2), then we expect
that the failure of the ATC will affect more the GSEPs than the
SSEPs. This can be assumed considering that SSEP aircraft
rely on ATC for strategic separation only as a backup, while
they are self-separating otherwise. However, the CD&R on-
board SSEPs highly depends on the ADS-B system and its
possible failure. Fig. 4 compares the probability of having a
LOS (y-axis) between two GSEP (G-G) and two SSEP (S-S),
by varying the probability of failure of the ATC (x-axis). We
plot the probability functions for different values of the ADS-B
failure probability. For the GSEP case, not influenced by ADS-
B failures, we obtain a single line, while for the SSEP case we
show three different functions. By looking at the intersection
points (vertical dashed lines in Fig. 4) this analysis shows us
when one solution dominates the others.

The aim of this evaluation is to provide the functions that re-
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Fig. 4: Reliability comparison between different aircraft types

late the probability of the TLE occurrence to the probability of
failures of each component, and not the actual values of failure
probability. In fact, the outcome of the reliability evaluation is
a set of functions in Matlab format that can be analyzed using
common numerical analysis tools. The remarkable aspect of
such type of artifacts is that they do not need to be recomputed
when the real component implementation will be defined.

VII. LESSONS LEARNED

Several subtle technical challenges must be surmounted to
complete a realistic, comparative formal analysis on a set of
scenarios.

a) Receptiveness of faults: During the fault tree analysis
we noticed that some fault configurations were not necessary
to cause the reachability of the unwanted condition e.g., LoS.
The problem was caused by a chain of relational dependencies
through the model, and under some conditions a set of faults
f1, ..., fn imposed fk to be true. Essentially, we expected both
cutsets cs = {f1, ..., fn} and cs′ = {fk} to belong to the
fault tree FT , thus being minimal cutsets. However, the model
implicitly defined the formula f1∧ ...∧fn → fk, meaning that
if cs can cause the TLE then cs ∪ cs′ ∈ FT . Clearly, cs′ is
a strict subset of cs ∪ cs′ which means that even if cs′ can
cause the occurrence of the TLE then it will not belong to FT ,
because cs′ is not minimal. The solution to this problem was
to perform specific receptiveness checks that evaluate if some
variables, in this case the fault variables, are always allowed
to be assigned to every possible value.

b) Coarse faulty behaviors: Originally, communication
faults between ATC and aircraft were not constrained to
any specific behavior. This situation caused shadowing in the
results of the fault tree analysis. For example, our modeling
considers three different time windows: near, mid, and far. For
each time window, every aircraft has a trajectory intention
and the ATC (or other CD&R components) resolves every
conflict in the intentions for every time window. Intuitively,
the objective of this design aims to describe a design where a
single communication failure in the far window will not cause
a Loss of Separation, because it will be possible to resolve
the conflict either in the mid or the near window. However,
there exists a system execution where the communication
failure causes a LoS i.e., when it is total and permanent.
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In standard fault tree analysis, each extension of the cutset
{fault communication} will not be considered due to the
fact it would be not minimal. The solution to this problem
is to refine the model with an additional communication
failure, called partial, constrained to a maximum number of
occurrences thus providing a more realistic evaluation.

c) Management of multiple communication steps: This
work significantly extends the modeling methodology in [13];
for validation, we also modeled the scenario in [13] using the
modeling approach described in Sec. III in order to prove that
the additional level of detail is able to preserve the previous
model’s expressiveness. This task was important to discover
a weakness in the level of abstraction that defined commu-
nication aspects. In fact, in a previous version of the model,
the aircraft were allowed to perform a maneuver at every step
having a single possible communication step between each
maneuver. However, in [13] there is a counterexample where
multiple communications directed to an aircraft from different
separation assurance agents cause the violation of a property.
This system execution, however, is only possible if there are
more than one communication steps between each maneuver.
Thus, we explicitly allow multiple communication steps.

d) Coarse Top-Level Events: The standard fault tree
analysis is strongly characterized by the assumption that each
cutset is minimal. This assumption allows us to represent
all possible configurations in a compact and intuitive way.
However, the choice of a top-level event needs to pay par-
ticular attention to this aspect, because the results may not be
informative enough. In our analysis we performed the FTA
by providing as TLE the negation of a system requirement.
For example, our analysis of the requirement that no LoS
are allowed between any aircraft provided per se fair results,
representing all fault configurations that may cause a LoS.
However, the refinement of this top-level event, by expressing
each pairwise LoS, provided additional results that were not
taken into account previously. More specifically, we expected
that the LoS between two aircraft AC1 and AC2 can be caused
only faults that apply to AC1, AC2, and ATC. However, this
assumption was not valid in mixed operations when each SSEP
aircraft is aware fact that there exists an aircraft that is not
able to send the trajectory intentions through ADS-B. In this
situation a failure on the aircraft AC3 can change the behavior
of both aircraft AC1 and AC2 if they are of SSEP type. As
part of this analysis we then decided to enable the possibility
to choose if SSEPs aircraft are aware or not of ADS-B failures.
The result of the FTA was shadowing important details due to
a coarse definition of the TLE, and the solution to this issue
was to define more fine-grained TLEs.

VIII. CONCLUSIONS AND FUTURE WORK

This case study provides a first step towards the anal-
ysis of the Functional Allocation question. We highlighted
a methodology and a series of tools that can be used to
analyze and compare different design solutions. In particular,
we base the comparison on a set of properties that pass in
some configurations and fail in others, on the minimal cut

sets obtained with fault-tree analysis, and on the functional
dependency of system failure on the failure of single functions.
Our approach is expressive, and sufficiently scalable to reason
about NASA’s full-scale preliminary design space. Important
challenges for the future include considering more dimensions
of the design space, additional types of faults, and more
complex interactions between the agents of the system.
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Abstract—We address the problem of synthesizing efficient
and correct synchronization for programs running under the
C++ relaxed memory model. Given a finite-state program P
and a safety property S such that P satisfies S under a
sequentially consistent (SC) memory model, our approach auto-
matically eliminates concurrency errors in P due to the relaxed
memory model, by creating a new program P with additional
synchronization. Our approach works by automatically exploring
the space of programs that can be created from P by adding
synchronization operations. To explore this (vast) space, our
algorithm: (i) explores bounded error traces to detect memory
access patterns that can occur under the C++ memory model but
not under SC, and (ii) eliminates these error traces by adding
appropriate synchronization operations.

We implemented our approach using CDSCHECKER as an
oracle for detecting error traces and Z3 to symbolically explore
the space of possible solutions. Our tool successfully synthesized
synchronization operations for several challenging concurrent
algorithms, including a state of the art Read-Copy-Update (RCU)
algorithm.

I. INTRODUCTION

We address the problem of synthesizing efficient and cor-
rect synchronization for programs running under the C++
relaxed memory model (C++ RMM) [13]. The crucial task
of writing correct and efficient low-level concurrent programs
in C++ under this model is known to be very challenging: the
model’s complexity is such that it eludes even veteran systems
programmers and requires the attention of formal semantics
experts [7], [8], [23], [26].

Under C++ RMM, each operation on an atomic object is
annotated with a memory order. The memory order ranges
from being fully relaxed to being fully sequentially consistent
(for that atomic object), with a few more subtle modes between
these two extremes. To maintain efficiency, the programmer
wants the most relaxed synchronization required to preserve
correctness, and nothing more (even when it simplifies reason-
ing). Unfortunately, manually finding the right synchronization
is extremely difficult, as it requires the programmer to reason
about subtle interactions of the memory model. Our goal is
to assist the programmer by automatically synthesizing the
required synchronization.

A. The Problem
Given a finite-state program P and a safety property S such

that P |= S under a sequentially consistent (SC) memory
model, we aim to automatically synthesize a program P ′,
whose behaviors are a subset of P ’s behaviors, s.t. P ′ |= S
under C++ RMM in bounded executions.

B. Our Approach: Pattern Based Synthesis of Synchronization

Our synthesis algorithm automatically explores the (vast)
space of programs that can be created from P by modifying
memory access synchronization. It does so by: (i) inspecting
P ’s (bounded) error traces to detect memory access patterns
that can occur under C++ RMM but not under SC, and
(ii) eliminating these error traces by preventing the occurrence
of the detected violation patterns using as little synchronization
as possible.

More specifically, our algorithm exhaustively explores the
traces of P under C++ RMM, and looks for error traces—
traces which do not satisfy the specification S. If it finds an
error trace, it searches it for instances of violation patterns,
behaviors that may occur under C++ RMM but not under SC
and that we know how to avoid. (Recall that P satisfies S
under SC. Hence, violations of S must be due to behaviors
introduced by the weak memory model.) The algorithm then
constructs a constraint which encodes all possible avoidance
templates that can be used to eliminate that particular error
trace. (Avoidance templates are strategies to synthesize mem-
ory order annotations of memory instructions such as load,
store, and cas.) The algorithm accumulates the constraints
required to eliminate the error traces and passes them to a
SAT solver in the form of a CNF formula ϕ. Every satisfying
assignment of ϕ represents a different way to synthesize the
desired memory order synchronization.

The algorithm then checks which of the resulting programs
satisfies S. The check is required because our set of violation
patterns and avoidance templates is not complete. (In fact,
we believe that devising a complete set is nontrivial, if at all
possible). This means that a program P ′ with no violation
patterns may still violate the original specification S.

C. Main Contributions

The contributions of this paper are as follows:
• A novel approach for detecting missing synchronization

using violation patterns, patterns of memory accesses that
can occur under C++ RMM but not under SC.

• A technique for synthesizing synchronization by elimi-
nating violation patterns using avoidance patterns, a set
of predefined synchronization strategies.

• An algorithm which, given a program P and a specifi-
cation S, synthesizes synchronization to ensure that P
satisfies S in bounded executions.
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• An implementation of our approach and an empirical
evaluation in which we successfully synthesized synchro-
nizations for several challenging concurrent programs,
including a program using a state of the art Read-Copy-
Update (RCU) algorithm.

II. OVERVIEW

In this section, we provide an informal overview of our ap-
proach using our running example, Dekker’s mutual exclusion
algorithm for two threads [12].

A. Running example

Fig. 1 shows one of the many variants of Dekker’s al-
gorithm. The load (read) and store (write) commands are
subscripted with memory order annotations. For now, these
annotations can be ignored. The algorithm is comprised of: an
entry section (lines 1–7) and an exit section (lines 9–10). The
critical section itself (line 8) is irrelevant, and thus elided. The
algorithm enforces mutual exclusion using variables flag[0]
and flag[1], and ensures deadlock and starvation freedom
using variable turn.

To enter the critical section, thread i, where i is either 0
or 1, needs to execute its entry section: First, it sets the value
of variable flag[i] to 1 (line 1), thus signaling its intentions
to the other thread. Then, it inspects the value of flag[1−i]
to check whether the other thread is also trying to enter the
critical section or is already in it (line 2). If not, it proceeds to
the critical section. Otherwise, it sets its own flag to 0 (line 4),
thus letting the other thread proceed, and waits for its turn to
enter the critical section (line 5). Upon leaving the critical
section, thread i executes the exit section, where it gallantly
gives precedence to the other thread by setting turn to 1− i
and signals that it left the critical section by setting the value
of its flag to 0.

It is important to note that: (i) as long as a thread executes
the critical section, its flag is set to 1; and (ii) a thread enters
the critical section only after it ensures that the other thread’s
flag is set to 0 while its own flag is set to 1. The above
observation suffices to ensure mutual exclusion under SC,
since, in this memory model, there is a total order between
all the load and store commands and reading the value of
a variable x returns the last value written to x. Thus, if two
threads compete on entering the critical section, at least one
must notice in line 2 that the flag of the other is set to 1.

Unfortunately, under C++ RMM this is no longer the case.
The reason for this unintuitive behavior can be understood
from the following simple program involving only two store

and two load commands.
Example 1: Consider the following program and assume

that both flag[0] and flag[1] are initialized to 0, that r0 and
r1 are initialized to 2, and that r0 and r1 are each local to
the respective thread.

storeW (flag[0], 1); r0 = loadX(flag[1]) ‖
storeY (flag[1], 1); r1 = loadZ(flag[0]) .

Under SC, at the end of the program the only possible
values of r0 and r1 are 0 and 1. Furthermore, at most one

of them can be 0. Under C++ RMM, r0 and r1 can be 0
simultaneously, for certain memory order annotations W,X, Y,
and Z. This is because under C++ RMM a store operation
can behave as if it writes its value to a thread-local store
buffer, leaving the other threads to read the value stored in the
global memory.(C++ RMM exhibits x86-TSO behaviors).

The above example shows that mutual exclusion can only
be ensured by adding synchronization to the program. One
way to do it in C++ RMM is to explicitly annotate the load

and store operations with the required synchronization type.
Using strong synchronization primitives (e.g., requiring all
load and store operations to be sequentially consistent) is
expensive. Using synchronization primitives that are too weak,
however, leads to unexpected behaviors. Thus, determining
correct and efficient annotations is challenging. In contrast, our
tool was able to determine that the program shown in Fig. 1
is safe if the memory operations in lines 1, 2, 3, and 9 are
sequentially consistent, and the store in line 10 is memory
order release 1. (See Section III.)

Note 1: The load in line 5 is not synchronized (i.e., it is
annotated with RLX). However, as we show in Section V, our
result is still verified by our underlying model checker.

B. Synthesizing synchronization

Our approach rests on the insight that we can turn a
program that is safe under SC into one that is safe under a
weak memory model (C++ RMM in our case) by removing
behaviors that cannot occur under SC. We face three main
challenges in implementing this approach: (i) detecting such
behaviors, (ii) determining a (cheap) way to remove them, and
(iii) verifying that the resulting program is safe.

Addressing the first challenge We overcome the first challenge
by exhaustively searching the program state space for an
error trace, developing all the concrete traces possible under
C++ RMM. We allow safety properties to be specified as:
(a) assertions on the final state, (b) properties of thread-
local variables, and (c) races on non-atomic locations (see
Section III). The search is guaranteed to terminate because
we only follow bounded traces of finite state programs.

Addressing the second challenge If we find an error trace,
we look for instances of violation patterns, memory behaviors
involving a small number of load and store actions possible
under C++ RMM but not under SC and which we know
how to prevent. Once we discover such an instance, we add
synchronization annotations to the relevant memory operations
using a predefined avoidance template that blocks the violation
pattern, thus eliminating the error trace.

We describe the inferred synchronization annotations using
a propositional formula and ask a SAT solver to find the sets
of minimal satisfying assignments. (Note that a trace might
contain several instances of violation patterns and thus can
be eliminated using different avoidance patterns.) From each
assignment, we generate a program and repeat the process

1To the best of our knowledge, our solution is the only one to use memory
order synchronizations and not fences.
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i.1 storeSC(flag[0], 0);

i.2 storeSC(flag[1], 0);

i.3 storeSC(turn, 0);

Thread 0: Thread 1:
1 storeSC(flag[0], 1);
2 while( loadSC(flag[1])==1 ){
3 if( loadSC(turn)==1 ){
4 storeRLX(flag[0], 0);
5 while( loadRLX(turn)==1 )yield();
6 storeRLX(flag[0], 1);
7 } }
8 ... // critical section
9 storeSC(turn, 1);

10 storeREL(flag[0], 0);

1 storeSC(flag[1], 1);
2 while( loadSC(flag[0])==1 ){
3 if( loadSC(turn)==0 ){
4 storeRLX(flag[1], 0);
5 while( loadRLX(turn)==0 )yield();
6 storeRLX(flag[1], 1);
7 } }
8 ... // critical section
9 storeSC(turn, 0);

10 storeREL(flag[1], 0);

Fig. 1. Dekker’s mutual exclusion algorithm. Variables flag[0], flag[1] and turn are declared as atomic locations and initialized to 0. The subscripts
indicate the synchronization (consistency) annotations synthesized by our tool.

until no bad trace is found. We use the verified solutions as a
starting point in a new round of synthesis in which we raise
the bound on the explored traces.

The algorithm is guaranteed to terminate because we con-
sider only finite state programs, the number of memory anno-
tations is finite, and every change only increases the degree of
synchronization (see Section III).

Example 2: Fig. 2 shows a trace of the Dekker algorithm
that violates mutual exclusion. The trace contains two violation
patterns, store buffering (SB) and load buffering (LB). The
former, which we discussed in Example 1, is manifested here
by the initialization store actions in lines 1 and 2, and the
load actions in lines 5 and 8. (An rf -annotated arrow from a
store action to a load action indicates that the latter read the
value written by the former.) This instance of the SB pattern is
blocked by synthesizing a SC annotation to the corresponding
memory operations in the algorithms (lines i.1, i.2, 1, and 2
in Fig. 1.)

Note 2: The list of violation patterns and their corresponding
synchronization templates is given as an input to the algorithm.
Our algorithm is parametric in that list. The specific patterns
and templates that we use in our implementation are given in
Section IV-B.
Addressing the third challenge Our set of violation patterns
and avoidance templates is not complete. Thus, after synthe-
sizing the programs, we simply explore the state space again.
The synthesis procedure terminates if the offered solution
contains only sequentially consistent memory accesses and
is thus correct by our assumption, or when no error trace
is found. This ensures that the program satisfies the desired
properties in executions in which every thread performs no
more instructions than the explored bound.

III. C++ RELAXED MEMORY MODEL IN A NUTSHELL

A memory model defines the possible behaviors of instruc-
tions such as load and store in the program. Arguably, the
most intuitive (and restrictive) memory model is Sequential
Consistency (SC) [19], in which there is a total order on the
load and store instructions, and every load from location
l reads the last value stored in l. (For simplicity, we treat

1. init.store
SC

flag[0], 0 1. init.storeSC flag[0], 0

2. init.storeSC flag[1], 0 2. init.storeSC flag[1], 0

3. init.storeSC turn, 0 3. init.storeSC turn, 0

4. T0.storeRLX flag[0], 1 4. T0.storeRLX flag[0], 1

5. 0← T0.loadRLX flag[1] 5. 0← T0.loadRLX flag[1]

6. // T0 enters CS 6. // T0 enters CS

7. T1.storeRLX flag[1], 1 7. T1.storeRLX flag[1], 1

8. 0← T1.loadRLX flag[0] 8. 0← T1.loadRLX flag[0]

9. // T1 enters CS 9. // T1 enters CS

10. // T0 exits CS 10. // T0 exits CS

11. T0.storeRLX turn, 1 11. T0.storeRLX turn, 1

12. T0.storeRLX flag[0], 0 12. T0.storeRLX flag[0], 0

13. // T1 exits CS 13. // T1 exits CS

14. T1.storeRLX turn, 0 14. T1.storeRLX turn, 0

15. T1.storeRLX flag[1], 0 15. T1.storeRLX flag[1], 0

(a) (b)

rf

rf

rfrf

Fig. 2. An error trace containing two violation patterns: (a) store buffering
(SB) and (b) load buffering (LB). These patterns were detected by our tool
when analyzing Dekker’s algorithm.

the initial state as if it were produced by explicit store

operations.)
The C++ Relaxed Memory Model is relational: (i) without

relations no order of executing instructions is guaranteed; and
(ii) a load can read from arbitrary stores. In addition, the model
distinguishes between atomic locations, where racy accesses
are allowed, and non-atomic locations, where the behavior
of races is undefined. The locations we discuss next will be
atomic. Below, we provide a (greatly simplified) overview of
the part of C++ RMM relevant to our work.

We shall use Fig. 3(SB) as a C++ Relaxed Memory execu-
tion trace example, though it was not intended as such and in
Section IV-B will be referenced in a different context. Assume
a two-threaded program where: variables x and y are initialized
to zero; one thread sets the value of x to 1 and another sets
the value of y to 1; finally, each thread reads the variable set
by the other thread.

The first relation we consider is read from (rf ), denoted
by →rf , which relates store instructions to load instruc-
tions reading from them. The next relation we consider is
happens before (hb), denoted by →hb . For our purpose it is a
transitively-closed union of the following relations (in general,
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in C++RMM, hb can be non-transitive): (i) sequence before
(sb), denoted by →sb , which places an irreflexive total order
on the actions executed by the same thread; (ii) additionally
synchronized with (asw ), which relates instructions executed
before thread creation to those executed by the thread, denoted
by a dotted line separation; (iii) synchronized with(sw ), which
indicates instruction synchronizaion.

The model ensures that the only possible executions are
ones in which these relations satisfy certain constraints. First,
hb must be acyclic. Second, rf and hb should not contradict
each other: a load cannot read from a store that (i) depends
on it, i.e., follows it in the hb relation, or (ii) is masked
by another write, i.e., there exists a store2 operation such
that store →hb store2 →hb load. Third, the hb induced
instruction order should not contradict the modification order,
which defines a total order on all store operations to the same
location.

Note 3: Note that in Fig. 3(SB) the aforementioned restric-
tions do not prevent reading values from initialization.

In addition, the hb relation should not contradict the memory
order annotation. Every memory operation is annotated with
a memory order annotation that specifies its consistency level:
the level of synchronization and the ordering it requires. We
consider three types of annotations:

(i) SC, whereby memory actions must be totally ordered;
(ii) ACQ/REL whereby a loadACQ that gets its value from

a storeREL imposes additional synchronization, and
(iii) RLX, whereby operations do not place additional restric-

tions on the hb relation.
Note 4: For item (ii) above, these annotations induce a sw

relation, and for item (i) sc (total order) relation is induced.

IV. SYNTHESIS OF SYNCHRONIZATION

In this section we describe our synthesis algorithm (Sec-
tion IV-A) and review the violation patterns and respective
avoidance templates (Section IV-B) that we implemented and
experimented with. We also present two abstract violation
patterns that go beyond concrete litmus tests: we identify
patterns involving a small number of memory operations on
a single location, and describe how to block them by placing
a chain of dependencies going through an unbounded number
of accesses to (possibly) different locations (Section IV-C).

A. Atomic memory access synchronization synthesis

Our synthesis procedure is comprised of two nested loops.
The inner one synthesizes synchronization for a given program
and the outer one keeps refining the set of solutions by
gradually increasing the bound on the length of the explored
traces.

Algorithm 1 implements the inner loop of the synthesis
procedure. It takes as input a program P and a specification
S, and produces a set of programs P ′ which satisfy S under
C++ RMM using different forms of synchronization.

The algorithm first checks whether P satisfies S, and if so
returns it (line 2). Otherwise, it goes over the set of traces
which violate the specification (line 5) and looks for violation

1 Procedure SynSync(P , S)
2 if P |= S then return {P}
3 ϕ = true

4 P = ∅
5 foreach e ∈ errorTraces(P,S) do
6 β = blockOccurr(e, AcqRelFix())
7 if β then continue

8 β = blockOccurr(e, SCFix())

9 if ¬β then return allSC(P)
10 ϕ = ϕ ∧ β

11 ϕ = ϕ ∧
∧
impliedSync(ϕ)

12 avoidance = SAT(ϕ)

13 foreach annotation ∈ avoidance do
14 P ′ = addSync(P,annotation)

15 P = P ∪ SynSync(P ′, S)

16 return P
17 blockOccurr(e,patterns)
18 β = false

19 foreach (p,c) ∈ patterns do
20 foreach i ∈ occurrence(p, e) do
21 β = β ∨ blockPattern(i,c)

22 return β

23 impliedSync(ϕ) = {a→ b | a, b ∈ vars(ϕ)
24 ∧ (SC ∈ annot(a))
25 ∧ (REL ∈ annot(b)∨ACQ ∈ annot(b))
26 ∧ (instr(a) == instr(b))}

Algorithm 1: The inner loop of the synthesis procedure.

1 Procedure PSynSync(P , S, N)
2 Cinit, C0, . . . , Cm = getCmds(P)

3 P1 = SynSync(Cinit ; (C0 ‖ . . . ‖ Cm) , S)
4 for n = 2 to N do
5 Pn = ∅
6 foreach P ′ ∈ Pn−1 do
7 Cinit, C0, . . . , Cm = getCmds(P ′)

8 Loop0 = “for i0 = 1 . . . n do C0”

9 · · ·
10 Loopm = “for im = 1 . . . n do Cm”

11 P ′′ = “Cinit; (Loop0 ‖ . . . ‖ Loopm)”

12 Pn = Pn ∪ SynSync(P ′′, S)
13 return PN

Algorithm 2: The synthesis procedure. Program P is com-
prised of an initialization command Cinit followed by a
parallel composition of m+1 threads, where thread i executes
command Ci for N times.

patterns in each trace. First, it searches for patterns which can
be prevented using Acquire-Release synchronization (line 6);
and only if no such patterns are found in the trace does
it search for patterns that can be prevented using the more
expensive Sequential Consistency synchronization (line 8).

The search for instances of violation patterns and the
corresponding avoidance template is done by the auxiliary
procedure blockOccur(·) (Lines 19, 20). If there is an
instance i of a pattern p in trace e, then the avoidance template
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is instantiated according to the instance i and recorded in β as
one way to eliminate trace e (line 21). Technically, an instance
of an avoidance-template is a conjunction of pairs (instr,
annot), where instr is a load or a store in P and annot
is the suggested synchronization for that instruction: either SC,
REL, or ACQ. The conjunction records the memory order
annotations pertaining to the actions forming the detected
instance i, which suffice to prevent it. Formula β is constructed
as a disjunction of ways to eliminate the trace e. The blocking
formulae pertaining to all the error traces are accumulated as
a conjunctive formula ϕ (line 10.)

Finally, we record in ϕ that every constraint enforced
by a REL or ACQ synchronization is also enforced by an
SC synchronization by adding the corresponding implications
(line 11), thus increasing the set of possible solutions.

Every satisfying assignment to the program correction for-
mula generates a different program, P ′, which has more
restrictive synchronization than P (line 13). We determine
whether P ′ complies with the specification S, or requires
further synchronization, by calling SynSync recursively.

If blockOccur(·) does not find a way to eliminate an
error trace, we annotate all memory operations as SC (line 9).

Algorithm 2 implements the outer loop of the synthesis
procedure. For simplicity, we assume that the input program
is comprised of an initialization command C0 followed by a
parallel composition of m + 1 loops, where loop i repeats
executing a sequential command Ci N times.

The algorithm takes the original program P , a specification
S, and the loop bound N , and generates a set of programs
PN that restrict the synchronization in P so that it satisfies
S. Because the number of behaviors rapidly grows as loop
iteration is increased, we take an incremental approach: we
iteratively construct a sequence of sets of programs Pn, which
satisfy the specification S when each loop performs only n
iterations (lines 3 and 12). The programs in Pn are used as a
starting point in synthesizing programs with n + 1 iterations
(line 6). Upon termination we return a set of different programs
that refine P using different memory order synchronization
such that P is compliant with S.

B. Patterns of weak memory behavior.

As mentioned previously, C++ RMM allows certain behav-
iors for a load that are not possible under SC. Below, we
list some patterns of such behaviors and explain how they can
be prevented using appropriate memory order annotations [7],
[8]. The patterns can be seen in Fig. 3. We intuited the patterns
from what are often referred to as litmus tests [8].

Store Buffering (SB): This is the pattern from Fig. 2(a).
In this pattern, two threads first write to two different locations
and then try to determine the value of the location written by
the other one. It is possible that each thread will not observe
the store executed by the other. This behavior can occur
when the stores of one thread are not immediately visible to
the other.
Pattern prevention. This pattern can be prevented only by
making all the load and store instructions SC.

store x, 1

store x, 2

load x(1)

rf

R

R

load y(1)

store y, 1

rf

R

(RD_1) (RD_2)
Fig. 4. Abstract patterns of behaviors possible under C++ RMM but not
under SC.

Independent Reads of Independent Writes (IRIW):
Here two threads write to two different locations and the other
two threads see those writes in different orders.
Pattern prevention. The above pattern can be prevented only
by making all the load and store instructions SC.

Load Buffering (LB): This is the pattern from Fig. 2(b).
This pattern indicates that every thread can see later (according
to the sb relation) writes of the other threads. Note that as the
store might actually be dependent on the load, this pattern
indicates that each thread can “magically” satisfy the needs of
the other. Hence, this pattern is also called satisfaction cycles
or reading values out-of-thin-air.
Pattern prevention. Adding one of the rf edges to hb would
prevent this pattern. This can be done by annotating the
store and load instructions of that edge with REL and ACQ,
respectively.

Message Passing (MP): Here, one thread writes to two
different locations, and the other thread sees the value written
by the second store (to y), but misses the first store (to x).
Pattern prevention. Annotating the store to y with REL and
the load from y with ACQ would add the rf edge to the hb
relation and prevent the pattern.

Write-to-Read Causality (WRC): This pattern is similar
to the message passing pattern, but involves three threads.
Here, the value written to x by the first thread is read by the
second thread, which then, according to the sb order, writes
a value to y. The third thread sees the value written by the
second thread but not by the first.
Pattern prevention. Annotating the load and store with REL
and ACQ respectively would prevent this pattern.

C. Abstracting the patterns

The presented pattern list captures several behaviors of
C++RMM. Instances of those patterns were observed in almost
all of our benchmarks but there are still C++RMM behaviors
not captured by the previous list. What’s more, the patterns
share some similarities. In an attempt to bring us closer to
completeness, we drew on that resemblance and extracted the
commonalities into abstract patterns.

Using the RD property in (RD_1, RD_2): The
following patterns are motivated by the RD property defined in
[7]. The relation R can be instantiated in two different ways:
first as a transitive closure of rf and hb relations, and second
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store x, 0 store y, 0

store x, 1 store y, 1

load y(0) load x(0)

rf

rf
sb sb

store x, 0

store x, 1 load y(1)

store y, 1 load x(0)

rf

sb sb
rf

store x, 0

store x, 1 load x(1) load y(1)

store y, 1 load x(0)

rf

rf
sb

rf
sb

(SB) (MP) (WRC)

load x(1) load y(2)

store y, 2 store x, 1

sb rf sb
rf

store y, 0 store x, 0

store y, 1 store x, 1 load x(1) load y(1)

load y(0) load x(0)

sb sb
rf

rf

rf

rf

(LB) (IRIW)
Fig. 3. Patterns of behaviors possible under C++ RMM but not under SC. Every column depicts the actions of one thread. We denote by store x, 1 a write
of value 1 to location x and by load x(1) a read of value 1 from x. We assume that the initial value of x and y is 0.

as a possible total order on the involved instructions.
For the first instantiation, the relation R is the transitive

closure of rf ∪ hb. Making all load instructions ACQ and all
store instructions REL across the path will add all the rf
edges along the path in R to hb, forming a sequence violating
the RD property in [7] and preventing that behavior.

When we cannot find such instantiation of the relation R
in the error trace, we try to instantiate it as a possible total
order of instructions, and prevent the error trace using SC.
In our implementation we chose to attempt instantiation of
R as the scheduler choice made by CDSCHECKER. One such
scheduling choice, exemplified in Fig. 2(a) as the index of
instructions 1-15, is a possible total order which the SB pattern
violates. Forcing total order of instructions involved in the
pattern (making the memory order access SC) will cause the
load to violate the RD property.

The following points should also be noted: 1) RD_1 with R
as rf ∪ hb transitive closure is an abstraction of the message
passing(MP) pattern. 2) RD_2 with R as rf ∪ hb transitive
closure is an abstraction of the load buffering (LB) pattern.
3) RD_1 with R as a possible instruction total order is an
abstraction of the store buffering (SB) pattern. 4) RD_2 with
R as a possible instruction total order is a read from future
C++ relaxed behavior.

V. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We implemented our approach in a tool called PSYNSYN,
which is based on CDSCHECKER [20]. Our tool computes a
symbolic formula that captures possible fixes, and uses Z3
to find minimal satisfying assignments. Then, we thoroughly
evaluated the tool on a number of challenging concurrent
algorithms. For all benchmarks our tool found a nontrivial
solution with non-SC memory accesses. All experiments were
conducted on an AMD Opteron Processor 6376 with 128GB

RAM and 64 cores, but using only a single thread per
benchmark execution. The synthesized solutions and visual
tools that explain our work are available at [1].

The results of the experimental evaluation are summarized
in Table V. Most table columns are self-explanatory, but we
elaborate on the following:
• The N column shows the maximal number of iterations

we attempted for each thread.
• The patterns observed column shows for each algorithm

the instances of patterns described in Section IV-B and
C.

• The # solutions column shows the number of solutions
we found for the benchmark. Unless otherwise specified,
the solutions are for maximal N attempted.

• The # bad traces for N=1 column shows the number of
bad traces CDSCHECKER found in the original benchmark
with each process doing 1 iteration.

• The inferred synch column shows the number of memory
access synchronizations of every type suggested by our
tool in every solution. Due to space restrictions, we
present synchronization of up to 3 solutions per bench-
mark and use “. . . ” if more solutions exist.

All our benchmarks, when having an error trace, exhibited
one of the patterns. For the RD_1 and RD_2 patterns, SC
notation is used when the relation R was instantiated by a
possible instruction scheduling and SC synchronization was
required to prevent the error trace. In addition, the RD pattern
occurrences are reported only if they could not be captured by
patterns from Fig. 3.This is the case, for example, for pattern
instances that are similar to MP but whose path from store
x,1 to load x(0) involved more than three sb ∪ rf edges and
so can only be classified as RD_1 and cannot be classified as
MP.

For abp we can see that the original algorithm was verified
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Algorithm N time space # calls patterns observed # solutions # bad traces inferred synch
(s) (Mb) ToZ3 for N=1 (SC, REL, ACQ, RLX)

Alternating Bit 5 20s.89 22 1 MP(SC), RD_1 5 (N=1,2) 0, (5, 0, 0, 1)
Protocol (abp) RD_4 (N=3) 1 (4, 0, 0, 2)

. . .
dekker [12] 1 3m:22 22 3 MP, LB, SB, 13 631 (10, 1, 0, 8)

RD_1, RD_2, (13, 0, 1, 5)
RD_1(SC), RD_4 . . .

d-prcu-v1 [6] 3 3m:14 19 20 LB, SB, RD_2, 7 5 (7, 2, 1, 0)10
RD_1(SC), RD_2(SC), (7, 1, 0, 2)

. . .
d-prcu-v2 [6] 3 3h:53m 22 88 MP, LB, RD_2, 17 8 (9, 2, 1, 4)

RD_1(SC), RD_2(SC), (12, 1, 1, 2)
. . .

kessel [15] 3 57m:16 22 5 MP, LB, SB, RD_1, 2 85 (13, 1, 0, 0)
RD_2, RD_1(SC), RD_2(SC) (14, 0, 0, 0)

peterson [22] 3 26m:41 22 3 MP, LB,RD_2, (N=1) 2* 37 (11, 1, 0, 1)
RD_1(SC) , RD_2(SC) (N=2,3) 2 *(12, 1, 0, 0)

(13, 0, 0, 0)
bakery [18] 2 10m:21 33 3 MP, LB, (N=1) 6 974 (16, 1, 1, 0)

RD_1,RD_2, (N=2)4 (17, 0, 1, 0)
RD_1(SC), RD_2(SC) . . .

ticket [5] 4 1m:08 19 7 RD_1(SC), RD_2(SC) 4 8 (9, 0, 0, 1)
(8, 0, 0, 2)

. . .
treiber stack [24] 1 1h:05 23 1 MP 1 160 (0, 5, 3, 4)

TABLE I
RESULTS OF SYNCHRONIZATION SYNTHESIS

when each process performed 1 iteration. It was not until each
process performed 3 iterations that a violation of the checked
property was encountered. At that point 1 error trace was
found but it exhibited several patterns; therefore several ways
of preventing it were found. We found 5 solutions that verified
for 3 iterations of abp, and those solutions verified for 4 and
5 iterations as well.

In fact, for almost all our benchmarks, solutions once
found, remained verified solutions when more iterations per
thread were attempted. This was not the case for peterson, as
indicated by the “*” in the last column. Here the solution (11,
1, 0, 1) (which are (SC, REL, ACQ, RLX) respectively) found
in 1 iteration had a mutual exclusion breach when attempted
with 2 iterations, and the solution was further restricted by
making the one relaxed memory access SC, thus turning it
into the solution marked with “*”. That solution later verified
for 3 iterations.

For bakery, the 6 solutions in iteration 1 reduced to a subset
of 4. For all other benchmarks the solutions in the last column
were found with 1 iteration per process and remained verified
for the maximal number of iterations attempted.

Previous attempts (e.g. [26]) were made to verify RCU
under C++RMM, but the version we verified was the first one
where an update waits only for the reads whose consistency
it affects, and does not wait for the completion of all existing
reads.

For Dekker’s algorithm, we are not aware of any previous
attempt to synthesize the correct version of it using memory
accesses instead of fences (one such fence solution is a bench-
mark of CDSCHECKER). The solution found by our tool seems
more restrictive than the fence based solution: for example, in
our solution, the load of flags at the while condition creates

fences (when translated to intermediate code) at the exit and at
the entry of the loop; in the fenced version, however, a fence
appears only after the loop exit and not at the entrance. What’s
more, where the fence placements do correlate, ours are still
more restrictive, perhaps due to the incompleteness of our set
of patterns and corrections.

For Treiber’s stack algorithm, CDSCHECKER had a synchro-
nized verified version. For it, our proposed solution was more
restrictive than the manual one provided by CDSCHECKER.

VI. RELATED WORK

In this section, we review some closely related work,
including synthesis of synchronization, automatic verification,
bounded model checking, and dynamic analysis.

Fence Synthesis for x86-TSO and PSO Existing techniques
for synthesizing synchronization for relaxed memory models
have focused on hardware memory models. Kuperstein et
al. [16] presented a framework for fence inference in hardware
memory models such as PSO and TSO. Their framework is
based on a simple operational semantics that explicitly tracks
store buffers to capture effects of the relaxed memory model.
They later [17] extended their technique using abstractions
of unbounded store buffers. This allowed them to scale their
technique and handle a larger set of algorithms. Abdulla et
al. [3] infer memory fences for infinite-state programs under
x86-TSO by combining predicate abstraction with abstractions
of store buffers. Dan et al. [11] used an analysis based on
numerical domains to synthesize minimal fence placements
under PSO and TSO, utilizing various heuristic search op-
timizations to minimize the solution space. Our technique
synthesizes synchronization for the C++ relaxed memory
model. We note that the memory behavior under TSO and
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PSO is captured by the SB violation pattern.

Formalizing C++ RMM Batty et al. [8], [9] formalized
the C++ RMM and proved correctness of compilation onto
TSO and Power [2]. These works inspired our definition of
violation patterns and avoidance templates. We also intu-
ited from the formal model when generalizing the concrete
violation patterns into abstract ones. Their tool, CPPMEM,
bears some similarity to CDSCHECKER, which we use in our
implementation. Thus, we believe that it would be possible to
incorporate CPPMEM in our synthesis procedure.

Program Logics for C++RMM Vafeiadis et al. [25], [27]
developed a Hoare-style program logic verification technique
that extends separation logic [21], [28] to C++ RMM. Batty et
al. [7] provided an extension of linearizability and verified that
an implementation of Treiber’s stack [24] corresponds to an
abstract stack under C++ RMM. These works allow for manual
verification. Our synthesis procedure is based on Bounded
Model Checking. However, if these works pan out to automatic
verification techniques, it should be fairly straightforward to
combine them with our technique as a final stage in which we
verify the synthesized solutions.

Fence Synthesis for x86-TSO, PSO and IBM Power C++
RMM was developed with underlying hardware in mind.
The following works should therefore shed some light on
the behaviors it allows. Joshi et al. [14] introduced Reorder
Bounded Model Checking. Their approach is based on in-
struction reordering, and their tool synthesizes minimal fence
placement. We, on the other hand, synthesize memory order
synchronization. It would be interesting to see whether our
technique can be combined with theirs. Musketeer, developed
by Algave et al. [4], provides a flexible scheme for fence
synthesis to ensure robustness, i.e., that every concurrent
execution be observationally equivalent to a serial execution.
CheckFence of Burckhardt et al. [10] also ensures robustness
by converting a program into a form that can be checked
against an axiomatic model specification. Our technique makes
it possible to verify user-provided safety properties.

CONCLUSION

We present the first synthesis procedure for inferring ef-
ficient memory order synchronizations for C++ RMM. Our
procedure ensures that a program complies with a user-
provided safety property in bounded executions. We introduce
a novel approach for detecting missing synchronization by
searching for violation patterns, behaviors possible under C++
RMM but not under SC. We generalize concrete patterns to
abstract ones, thus significantly improving the applicability of
our approach because the abstract patterns allow us to detect an
infinite number of concrete patterns. We provide a technique
to eliminate program executions that do not comply with the
given safety property by blocking the violation patterns they
contain using generic avoidance patterns. We successfully syn-
thesized nontrivial memory order synchronization for several
challenging concurrent algorithms, including a state of the art
Read-Copy-Update (RCU) algorithm.

Our set of violation patterns and avoidance templates is
not complete, and thus our algorithm might fail to find any
solution except the trivial one, where all memory operations
are sequentially consistent. In fact, we believe that coming up
with a complete set is nontrivial, if at all possible. We plan to
address this challenge in future work.
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Abstract—In Satisfiability Modulo Theories (SMT), the theory
of arrays provides operations to access and modify an array at
a given index, e.g., read and write. However, common operations
to modify multiple indices at once, e.g., memset or memcpy of the
standard C library, are not supported. We describe algorithms to
identify and extract array patterns representing such operations,
including memset and memcpy. We represent these patterns in our
SMT solver Boolector by means of compact and succinct lambda
terms, which yields better lemmas and increases overall perfor-
mance. We describe how extraction and merging of lambda terms
affects lemma generation, and provide an extensive experimental
evaluation of the presented techniques. It shows a considerable
improvement in terms of solver performance, particularly on
instances from symbolic execution.

I. INTRODUCTION

The theory of arrays, which for instance has been axiom-
atized by McCarthy [7], enables reasoning about “memory”
in both software and hardware verification. It provides two
operations read and write for accessing and modifying arrays
on single array indices. While these two operations can be used
to capture many aspects of modeling memory, they are not
sufficient to succinctly encode array operations over multiple
indices or a range of indices, e.g., memset or memcpy from the
standard C library. Such array operations can therefore only
be represented verbosely by means of a constant number of
read and write operations. It is further impossible to reason
about a variable number of indices e.g., a memset operation
of variable size (without introducing quantifiers).

To overcome these limitations, Seshia et. al. [1] introduced
an approach to model arrays by means of restricted lambda
terms. This also enabled their SMT solver UCLID [10] to
reason about ordered data structures and partially interpreted
functions. However, UCLID employs the eager SMT approach
and thus eliminates all lambda terms as a rewriting step prior
to bit-blasting the formula to SAT, which might result in an
exponential blow-up in the size of the formula [10].

An extension to the theory of arrays by Sinz et.al. [5] uses
lambda terms similarly to UCLID in order to model memset
and memcpy operations as well as loop summarizations, which
in essence are initialization loops for arrays. As UCLID, this
approach suffers from the problem of exponential explosion
through eager lambda elimination.

To avoid exponential lambda elimination, in [9] we intro-
duced a new decision procedure, which lazily handles non-
recursive and non-extensional lambda terms. That decision
procedure enabled us to succinctly represent array operations

Supported by Austrian Science Fund (FWF), NFN S11408-N23 (RiSE).

such as memset and memcpy as well as other array initializa-
tion patterns by means of lambda terms within our SMT solver
Boolector. Lambda terms also allow to reason about variable
ranges of indices without the need for quantifiers.

In this paper, we continue this thread of research and
describe various patterns of operations on arrays occurring
in benchmarks from SMT-LIB (http://www.smtlib.org). We
provide algorithms to identify these patterns, and to extract
succinct lambda terms from them. Extraction leads to stronger,
as well as fewer lemmas. This improves performance by
orders of magnitude on certain benchmarks, particularly on
instances from symbolic execution [2]. We further describe a
technique called lambda merging. Our extensive experimental
evaluation shows that both techniques considerably improve
the performance of Boolector, the winner of the QF ABV
track of the SMT competition 2014.

II. PRELIMINARIES

We assume the usual notions and terminology of first order
logic and are mainly interested in many-sorted languages,
where bit vectors of different bit width correspond to different
sorts, and array sorts correspond to a mapping (τi ⇒ τe) from
index sort τi to element sort τe. We primarily focus on the
quantifier-free theories of fixed size bit vectors and arrays.
However, our approach is not restricted to the above.

In general, we refer to 0-arity function symbols as constant
symbols. Symbols a, b, i, j, and e denote constants, where a
and b are used for array constants, i and j for array indices,
and e for an array element. We denote an if-then-else over bit
vector terms with condition c, then branch t1, and else branch
t2 as ite(c, t1, t2), which is interpreted as ite(>, t1, t2) = t1
and ite(⊥, t1, t2) = t2. We identify operations read and write
as basic array operations (cf. select and store in SMT-LIBv2
notation) for accessing and modifying arrays. A read operation
read(a, i) denotes the element of array a at index i, whereas a
write operation write(a, i, e) represents the modified array a
with element e written to index i. The non-extensional theory
of arrays is axiomatized by the following axioms originally
introduced by McCarthy in [7]:

i = j → read(a, i) = read(a, j) (A1)
i = j → read(write(a, i, e), j) = e (A2)
i 6= j → read(write(a, i, e), j) = read(a, j) (A3)

Axiom (A1) asserts that accessing array a at two indices
that are equal always yields the same element. Axiom (A2)
asserts that accessing a modified array on the updated index i
yields the written element e, whereas axiom (A3) ensures that
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the unmodified element of the original array a at index j is
returned if the modified index i is not accessed.

A write sequence of n (consecutive) write operations of
the form a1 = write(a0, i1, e1), . . . , an = write(an−1, in, en)
is denoted as (ak := write(ak−1, ik, ek))nk=1 with array a0 as
the base array of the write sequence. In the following we use
an = write(a, ī, ē) as shorthand for write sequences.

In [9] we use uninterpreted functions (UF) and lambda
terms to represent array variables and array operations, re-
spectively. Consequently, a read on an array of sort τi ⇒ τe
is represented as a function application f(i) on either an
UF f or a lambda term f := λj . t, where function f maps
terms of sort τi to terms of sort τe. Furthermore, write
operations write(a, i, e) are represented as lambda terms
λj . ite(i = j, e, a(j)), where given an array a, a function
application yields element e if j is equal to the modified
index i and the unchanged element a(j), otherwise. Lambda
terms allow us to succinctly model array operations such as
memset and memcpy from the standard C library, or arrays
initialized with a constant value. For example, memset with
signature memset (a, i, n, e), which sets each element of
array a to e within the range [i, i + n[, can be represented
as λj . ite(i ≤ j < i+ n, e, a(j)). In this paper, we use read
operations and function applications interchangeably.

III. EXTRACTING LAMBDAS

Currently, the SMT-LIBv2 standard only supports write
operations for modifying the contents of an array at one
index at a time. Hence, quasi-parallel array operations like
memset or memcpy usually have to be represented as a fixed
sequence of consecutive write operations, where copying or
setting n indices always requires n write operations. Further,
modeling such array operations with a variable range is not
possible (without quantifiers), since it would require a variable
number of write operations. Lambda terms, however, provide
means to succinctly represent parallel array operations, and
further allow to model these operations with variable ranges.
For example, modeling memset(a, i, n, e) with a sequence
of writes for some fixed n produces n nested write operations
write(write(. . . (write(a, i, e), i+1, e) . . .), i+n−1, e) which
could be represented in a more compact way by means of a
single lambda term λj . ite(i ≤ j < i+ n, e, a(j)).

In the following, we describe several array operation pat-
terns we identified by analyzing QF ABV benchmarks in
the SMT-LIB benchmark library. These patterns can not be
captured compactly by means of write and read operations
alone, but they can be succinctly represented using lambda
terms. For each pattern identified in a formula, lambda terms
are extracted and used instead of the original array operations,
which are defined as follows.

A. Memset Pattern

The probably most common pattern is the memset pattern
modeling the memset (a, i, n, e) operation, which updates n
elements of array a within range [i, i+n[ to a value e starting

from address i. This is the pattern already described above,
and it is represented by the lambda term

λmset := λj . ite(i ≤ j < i+ n, e, a(j)).

Lambda term λmset yields value e if index j is within the
range [i, i + n[, and the unmodified value from array a at
position j otherwise. Note that in actual benchmarks, e.g.,
those from SMT-LIB, the upper bound n is constant, while
indices, as well as values are usually symbolic.

B. Memcpy Pattern

The memcpy pattern models the memcpy(a, b, i, k, n) op-
eration, which copies n elements from source array a starting
at address i to destination array b at address k. If arrays a and
b are syntactically distinct, or if the source and destination
addresses do not overlap, i.e., (i + n < k) or (k + n < i),
memcpy can be represented as

λmcpy := λj . ite(k ≤ j < k + n, a(i+ j − k), b(j)).

Lambda term λmcpy returns the value copied from source
array a if it is accessed within the copied range [k, k + n[,
and the value from destination array b at position j otherwise.

Assume arrays a and b are syntactically equal, then aliasing
occurs. Writing to array b at overlapping memory regions
modifies elements in a to be copied to the destination address.
This is not captured by lambda term λmcpy , since λmcpy

behaves like a memmove operation. It ensures that elements of
a at the overlapping memory region are copied before being
overwritten. The following lambda term λmcpyo can be used
to model memcpy applied to potentially overlapping memory
regions.

λmcpyo := λj . ite(k ≤ j < k + n,

ite(i ≤ k < i+ n,

a(i+ ((j − k) mod (k − i))),
a(i+ j − k)),

b(j)).

If condition i ≤ k < i+ n holds, source and destination mem-
ory regions overlap and consequently, the elements of the over-
lapping memory region always contain the repeated sequence
of the elements of array a in range [i, k[. This corresponds to
the value a(i+ (j − k) mod (k − i)), where k − i represents
the size of the non-overlapping memory region and thus, the
number of elements that occur repeatedly. If the memory
regions do not overlap, the behavior of lambda terms λmcpyo

and λmcpy is equivalent. For the rest of this paper, we focus
on memcpy with non-overlapping memory regions.

C. Loop Initialization Pattern

The loop initialization pattern models array initialization
operations that can be expressed with the following loop

for (j = i; j < i+ n; j = j + inc) {a[j] = e; },

where, starting from index i, the loop counter is incremented
by a constant inc greater than one. Consequently, every inc-th
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element of an array a is modified within the range [i, i + n[.
The above loop pattern corresponds to the lambda term

λi→e := λj . ite(i ≤ j ∧ j < i+ n ∧ (inc | (j − i)), e, a(j)).

The memset pattern is actually a special case of this pattern
with inc = 1. Further, the divisibility condition inc | (j − i)
makes sure that there exists a c such that index j = i+ c · inc
or equivalently ((j − i) mod inc = 0).

It is also possible that the value written on an index i
depends on i itself. We found two such patterns in benchmarks.
They can be expressed with the following loops

for (j = i; j < i+ n; j = j + inc) {a[j] = j},
for (j = i; j < i+ n; j = j + inc) {a[j] = j + 1}

or equivalently with the following lambda terms

λi→i := λj . ite(i ≤ j ∧ j < i+ n ∧ (inc | (j − i)),
j, a(j))

λi→i+1 := λj . ite(i ≤ j ∧ j < i+ n ∧ (inc | (j − i)),
j + 1, a(j)).

Note that with inc = 1, the condition inc | (j−i) is redundant
and can be omitted. Further, this set of patterns is of course
just a subset of all possible structures in benchmarks for which
lambdas can be extracted. The ones discussed in this paper are
those that we observed in actual benchmarks, and which turn
out to be useful in our experiments.

D. Lemma Generation

Extracting lambda terms from write sequences does not only
yield more compact array representations but improves the
lemmas generated during search. As an example, consider a
memset operation with range [i, i + n[ and value e, which is
represented as a sequence of write operations

b := write(write(. . . (write(a, i, e), i+1, e) . . .), i+n−1, e).

A read operation on array b at index j may produce a conflict
on index i, where read(b, j) 6= e. As a consequence, the
following lemma is generated.

(
n−1∧
k=1

j 6= i+ k) ∧ j = i→ read(b, j) = e

In the worst case, this might be repeated for all the indices
i + k with k ∈ [1, n[, which also results in n lemmas of the
above form. However, if we use a lambda term to represent
memset, then a conflict produces a single lemma of the form

i ≤ j ∧ j < i+ n→ read(b, j) = e,

which is more succinct and stronger as it covers an index range
instead of single indices. This effect can be observed in our
experiments in Sect. IV-B as well. If applicable, the number
of generated lemmas is reduced. This improves runtime and
more instances are solved.

E. Algorithms

Figure 1 depicts the main lambda extraction algorithm
extract_lambdas. The purpose of this procedure is to
initially identify and extract array patterns from each sequence
of write operations in formula φ (lines 5-7). The identified
patterns are then used to create lambda terms on top of each
other resulting in a new lambda term b, which is equisatisfiable
to the original write sequence an (lines 8-16), and is used to
substitute an in φ. Figures 2, 3, and 4 depict the algorithms for
identifying and extracting the actual array patterns. In essence,
they all can be split into the following three steps. Given a
sequence of write operations,

1) group write indices w.r.t. the corresponding pattern,
2) identify index sequences in these grouped write indices,
3) and create new pattern for identified index sequence.

In the following we describe the algorithms for identifying
and extracting array patterns in more detail.

A high level view of the main lambda extraction al-
gorithm extract_lambdas is given in Fig. 1. Given a
formula φ, for any write sequence an = write(a, ī, ē) with
distinct indices i1, . . . , in, extract_lambdas initially gen-
erates a map ρi→e, which maps indices i1, . . . , in to values
e1, . . . , en (line 4), and is then used to extract memset (pset),
memcpy (pcpy), and loop initialization patterns (ploop)
(lines 5-7). Note that procedures find_mset_patterns,
find_mcopy_patterns, and find_lp_patterns re-
move all index/value pairs included in extracted patterns from
ρi→e. As a consequence, at line 8, map ρi→e contains all
index/value pairs for which no pattern was extracted. The
actual memset, memcpy, and loop initialization lambda terms
are then created on top of each other with base array a0
of write sequence an as the initial base array (lines 8-
14). For the remaining index/value pairs in ρi→e, lambda
terms representing write operations are created on top of the
previously generated lambda terms, and the resulting term b
is then used to substitute the original write sequence an.

Note that indices i1, . . . , in are required to be distinct
constants (line 3) as otherwise, reordering write sequence an
does not result in an equisatisfiable sequence. As an example,
assume indices i and j are equal and values ei and ej are dis-
tinct. Accessing sequence aij := write(write(a, i, ei), j, ej)
at index j yields value ej . However, accessing sequence
aji := write(write(a, j, ej), i, ei) at index j yields ei since
i = j. Thus, aji is not equisatisfiable to aij .

Figures 2, 3, and 4 illustrate the algorithms for the actual
pattern extraction, which we describe in more detail in the
following. Procedure find_mset_patterns as in Fig. 2
extracts memset patterns, i.e., in essence, it identifies index
sequences that map to the same value. Given map ρi→e, the
procedure initially generates a reverse map ρe→i, which maps
values to indices and therefore groups indices that map to
the same value (lines 3-4). For each index group indices in
ρe→i, find_mset_patterns sorts indices in ascending
order (line 6) and identifies index sequences s := (ik)uk=l with
ik := ik−1 + 1 within lower bound l (il := indices[l]) and
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1 procedure extract_lambdas(φ)

2 for write sequence an := write(a, ī, ē) in φ \

3 and i1, . . . , in are distinct

4 ρi→e := index_value_map(an)

5 pset := find_mset_patterns(ρi→e)

6 pcpy := find_mcopy_patterns(ρi→e)

7 ploop := find_lp_patterns(ρi→e)

8 b := a0
9 for p in pset

10 b := mk_memset(b, p.i, p.n, p.e)

11 for p in pcpy
12 b := mk_memcopy(p.a, b, p.i, p.k, p.n)

13 for p in ploop
14 b := mk_loop_init(b, p.i, p.n, p.inc)

15 for i, e in ρi→e

16 b := mk_write(b, i, e)

17 φ := φ[an/b]

Fig. 1. Main lambda extraction algorithm in pseudo-code.

1 procedure find_mset_patterns(ρi→e)

2 patterns := [], ρe→i := {}

3 for index,value in ρi→e

4 ρe→i[value].add(index)

5 for value,indices in ρe→i

6 indices := sort(indices)

7 l, u := 0

8 while u < len(indices)

9 while u + 1 < len(indices) \

10 and indices[u + 1] - indices[u] = 1

11 u += 1

12 if l 6= u

13 Pattern p

14 p.i := indices[l]

15 p.n := indices[u] - indices[l] + 1

16 p.e := value

17 patterns.add(p)

18 ρi→e := ρi→e \ {indices[i] | ∀i ∈ [l, u]}
19 l := u + 1 /* next sequence */

20 u += 1

21 return patterns

Fig. 2. Memset pattern extraction algorithm in pseudo-code.

upper bound u (iu := indices[u]) (lines 7-19). If sequence s
includes at least two indices (i.e., u 6= l), a new memset pattern
p with start address p.i, size p.n and value p.e is created and
added to list patterns (lines 13-17). All indices included in
sequence s are removed from map ρi→e (line 18), since these
indices are covered by a detected pattern. If all index groups
have been processed, procedure find_mset_patterns
returns the list of detected memset patterns patterns.

Figure 3 illustrates procedure find_mcopy_patterns
for extracting memcpy patterns. Assume that write operation
write(b, dst + o, a(src + o)) represents a single memcpy
operation memcpy(a, b, src, dst, n) with offset o and src ≤
o < src + n, which copies one element from source address
src + o of array a to destination address dst + o of array
b. Consequently, ρi→e maps indices of the form dst + o
to values of the form a(src + o). Initially, the procedure

1 procedure find_mcopy_patterns(ρi→e)

2 patterns := [], offset_groups := {}

3 for index,value in ρi→e \

4 and index = dst + o \

5 and value = a(src + o)

6 offset_groups[dst,a,src].add(o)

7 for dst,a,src in offset_groups

8 indices := sort(offset_groups[dst,a,src])

9 u,l := 0

10 while u < len(indices)

11 while u + 1 < len(indices) \

12 and indices[u + 1] - indices[u] = 1

13 u += 1

14 if l 6= u

15 Pattern p

16 p.a := a

17 p.i := src + indices[l]

18 p.k := dst + indices[l]

19 p.n := indices[u] - indices[l] + 1

20 patterns.add(p)

21 ρi→e := ρi→e \ {indices[i] | ∀i ∈ [l, u]}
22 l := u + 1 /* next sequence */

23 u += 1

24 return patterns

Fig. 3. Memcopy pattern extraction algorithm in pseudo-code.

collects all offsets o from the indices in ρi→e and groups
them by destination address dst, source array a, and source
address src (lines 3-6). Note that a group of offsets corre-
sponds to the memory regions copied from source address
of array a to destination address of array b. For each offset
group indices in offset groups , find_mcopy_patterns
identifies index sequences s := (ik)uk=l similar to procedure
find_mset_patterns (lines 11-13). If a sequence with at
least two indices is found, a new memcpy pattern with source
array p.a, source address p.i, destination address p.k, and size
p.n is created and added to the patterns list (lines 15-20).
As for find_mset_patterns, indices included in a se-
quence s are removed from ρi→e (line 21). If all offset groups
have been processed, procedure find_mcopy_patterns
returns the list of detected memcpy patterns patterns.

Figure 4 illustrates procedure find_lp_patterns for
extracting loop initialization patterns. Initially, all indices in
map ρi→e are categorized w.r.t. the three loop initialization
patterns defined above, which correspond to the map ρe→i,
and the lists ρi→i and ρi→i+1. Map ρe→i groups indices
that map to the same value, list ρi→i contains indices that
map to themselves, and list ρi→i+1 contains all indices i
that map to i + 1 (lines 4-9). For index groups ρi→i+1

and ρi→i+1, and for each index group in ρe→i, procedure
find_lpp_aux identifies sequences s := (ik)uk=l with
ik := ik−1 + inc and inc ≥ 1 within lower bound l (il =
indices[l]) and upper bound u (iu := indices[u]) (lines 10-
13). Identifying index sequences in find_lpp_aux is sim-
ilar to find_mset_patterns, except that increment inc
can be greater than one. For each sequence, inc is initially
set to indices[u + 1] − indices[u] (lines 21-22), which
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1 procedure find_lp_patterns(ρi→e)

2 patterns := [], ρe→i := {}

3 ρi→i := [], ρi→i+1 := []

4 for index,value in ρi→e

5 ρe→i[value].add(index)

6 if value = index

7 ρi→i.add(index)

8 elif value = index + 1

9 ρi→i+1.add(index)

10 for value,indices in ρe→i

11 patterns.add(find_lpp_aux(ρi→e, ρe→i))

12 patterns.add(find_lpp_aux(ρi→e, ρi→i))

13 patterns.add(find_lpp_aux(ρi→e, ρi→i+1))

14 return patterns

15

16 procedure find_lpp_aux(ρi→e, indices)

17 patterns := []

18 indices := sort(indices)

19 l, u := 0

20 while u < len(indices)

21 if u + 1 < len(indices)

22 inc := indices[u + 1] - indices[u]

23 while u + 1 < len(indices) \

24 and indices[u + 1] - indices[u] = inc

25 u += 1

26 if l 6= u

27 Pattern p

28 p.i := indices[l]

29 p.n := indices[u] - indices[l] + 1

30 p.e := value

31 p.inc := inc

32 patterns.add(p)

33 ρi→e := ρi→e \ {indices[i] | ∀i ∈ [l, u]}
34 l := u + 1 /* next sequence */

35 u += 1

36 return patterns

Fig. 4. Loop initialization pattern extraction algorithm in pseudo-code.

defines the increment value between neighbouring indices,
e.g., (l, l + inc, l + 2 · inc, l + 3 · inc, . . . , u). If a sequence
with at least two indices is found, a new loop initialization
pattern with lower bound p.i, size p.n, and increment p.inc
is created and added to the patterns list. Index sequences
found in ρe→i correspond to λi→e patterns. These require
a p.e value, which is saved in addition (but remains un-
used for sequences ρi→i and ρi→i+1). As before, indices
included in a detected sequence s are removed from map
ρi→e (line 33). If index group indices has been processed,
procedure find_lpp_aux returns the list of detected loop
initialization patterns.

In case that write expressions in a write sequence are shared,
i.e., they also appear in the formula outside of the sequence,
we still extract patterns for the whole sequence. This may
duplicate parts, which is not a problem since the extracted
lambda terms are succinct and the “duplication” only affects
the index range check of a lambda and is therefore negligible.

There are two common approaches for representing the
initialization of an array variable a with n concrete values:

with (1) write sequences of size n with array a as base array,
or (2) n read operations on array a by asserting for each
index i ∈ i1, . . . , in that read(a, i) = e. In case (1), we are
able to directly represent such array initializations by means of
lambda terms. However, in case (2), we first have to translate
the read operations into sequences of write operations. For
example, given an array a that is initialized with some values e
on indices 1− 4, we could either represent this as a sequence
of write operations with a fresh array variable b as base array

a := write(write(write(write(b, 1, e), 2, e), 3, e), 4, e),

or with the following four equalities asserted to be true

read(a, 1) = e, read(a, 2) = e,
read(a, 3) = e, read(a, 4) = e.

However, the initialization with read/value equalities can also
be represented as lambda term

a := λj . ite(1 ≤ j ≤ 4, e, b(j)),

where array b is a fresh array variable. In order to extract
lambda terms from these equalities, we translate them into
sequences of write operations and apply the lambda extraction
algorithms to it. The only requirement is that, for the same
reason as for the write sequence case, the read indices have
to be distinct.

IV. MERGING LAMBDAS

Lambda terms extracted from a sequence of write operations
often do not cover all indices in the sequence. Some might be
left over. In order to preserve equisatisfiability, we use the
uncovered write operations to create a new write sequence on
top of the extracted lambda terms (cf. lines 15-16 in Fig. 2).
Note that as we represent write operations as lambda terms,
we actually generate a sequence of lambda terms (representing
write operations) on top of the extracted terms. Given a
sequence of lambda terms of size n, however, we can apply
a rewriting technique we refer to as lambda merging, which
inlines the function bodies of lambda terms λ1, . . . , λn−1.
The result is a single lambda term with a function body
consisting of the function bodies of lambda terms λ1, . . . , λn.
This technique may not yield representations as compact as
lambda extraction, but merging function bodies of consecu-
tive lambdas often enables additional simplifications. As an
example consider write sequence an := write(a, ī, ē) of size
n, where e1, . . . , en are equal. It corresponds to the following
lambda sequence.

λn := λjn . ite(jn = in, e, λn−1(jn)),
...

λ1 := λj1 . ite(j1 = i1, e, a0(j1))

If we apply lambda merging to λn, . . . , λ1 and inline function
bodies, we obtain the following lambda term

λn′ := λjn . ite(jn = in, e,
. . .
ite(jn = i1, e, a0(jn))) . . .)
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1 procedure merge_lambdas(φ)

2 for write sequence λn := write(a, ī, ē) in φ

3 b := rec_merge(n, jn, λn)

4 φ := φ[λn/b]

5

6 procedure rec_merge(n, jn, λi)

7 /* base array a0 */

8 if i = 0 return a0(jn)

9 /* λi = λji . ite(ji = ii, ei, λi−1(ji)) */

10 ti−1 := rec_merge(n, jn, λi−1)

11 if i < n

12 ti := ite(ji = ii, ei, λi−1(ji))[ji/jn]

13 return ti[λi−1(jn)/ti−1]

14 /* top-most lambda an */

15 return λn[λi−1(jn)/ti−1]

Fig. 5. Merge lambdas algorithm in pseudo-code.

Note that λn′ can be further simplified by merging the if-then-
else terms into one (since the if-branch of each if-then-else
contains value e), which results in lambda term λn′′ .

λn′′ := λjn . ite(jn = in ∨ . . . ∨ jn = i1, e, a0(jn))

A. Lemma Generation

Merged lambdas can be more compact than write sequences
and may even be beneficial for lemma generation. For exam-
ple, a read operation on λn′′ at index j may produce a conflict
on index i1, where read(λn′′ , j) 6= e. As a consequence, the
following lemma is generated.

j = in ∨ . . . ∨ j = i1 → read(λn′′ , j) = e.

The resulting lemma covers all cases where read(λn′′ , j) could
produce a conflict on indices i2, . . . , in. In the original write
sequence version, however, it might need n lemmas.

B. Algorithm

Figure 5 illustrates procedures merge_lambdas and
rec_merge for merging lambda sequences. Given formula φ,
for every lambda sequence λn, procedure merge_lambdas
recursively merges the lambda terms in λn into lambda term b,
which is then used to substitute lambda sequence λn in for-
mula φ (line 4). Procedure rec_merge recursively traverses
the lambda sequence starting at the top most lambda term λn
and substitutes every bound variable ji by the variable jn,
which is bound by the top most lambda term λn. In the base
case (i = 0), the procedure returns a fresh read operation
on base array a0 at index jn (which substitutes variable j1).
Else, it performs a recursive call on λi−1, which yields term
ti−1. For every lambda term λi with i < n, rec_merge
generates lambda term ti by substituting all occurrences of
variable ji in the function body of λi by jn, and returns the
lambda term obtained by substituting all occurrences of read
operation read(λi−1, jn,) in ti with term ti−1 (line 13). For
the top most lambda (i = n), procedure rec_merge returns
the lambda term obtained by substituting all occurrences of
read operation read(λi−1, jn,) in λn with term ti−1 (line 15).

V. EXPERIMENTAL EVALUATION

We implemented lambda extraction and merging in our
SMT solver Boolector and evaluated our techniques on all
non-extensional benchmarks from the QF ABV category of
the SMT-LIBv2 benchmark library. Six configurations are
considered: (1) BoolectorBase, (2) BoolectorE, (3) BoolectorM,
(4) BoolectorX, (5) BoolectorXME, and (4) BoolectorXM. The
base line BoolectorBase is an improved version of Boolector
that won the QF ABV track of the SMT competition in 2014.
For the other configurations, subscript X indicates that lambda
extraction is enabled, and subscript M indicates that lambda
merging is enabled. Subscript E indicates an eager solving
approach by reducing the formula to QF BV. It eliminates
lambda terms with beta reduction, and the remaining read
operations, i.e., applications of uninterpreted functions (UF),
by Ackermann reduction. The BoolectorE and BoolectorXME
configurations essentially simulate an eager approach similar
to that of UCLID [10].

All experiments were performed on a cluster with 30 nodes
of 2.83GHz Intel Core 2 Quad machines with 8GB of memory
using Ubuntu 14.04.2 LTS. The memory and time limit for
each solver/benchmark pair was set to 7GB and 1200 seconds
CPU time, respectively. In case of a timeout or memory out,
a penalty of 1200 seconds was added to the total CPU time.
Note that the time and memory limits and the hardware used
for our experiments differ from the setup used at the SMT
competition 2014.

Table I depicts the overall results consisting of the number
of solved benchmarks (Solved), number of timeouts (TO),
number of memory outs (MO), and the CPU time (Time) of
all four configurations on the QF ABV benchmarks. Enabling
either lambda extraction (BoolectorX) or lambda merging
(BoolectorM) improves the number of solved benchmarks by
up to 17 instances and the runtime by up to 19% compared
to BoolectorBase. Combining both techniques (BoolectorXM)
solves 21 more benchmarks and requires 30% less runtime
compared to BoolectorBase. This suggests, that lambda extrac-
tion and merging have orthogonal effects. They complement
each other and in combination improve solver performance
further (most of the time). However, if the eager solving
approach is employed, both configurations BoolectorE and
BoolectorXME do not show a notable improvement in terms
of solved instances (less timeouts, but more memory outs).
This is due to the high memory consumption caused by
eager elimination of lambda terms and UFs, where BoolectorE
in total consumes 2.6 times (397 GB), and BoolectorXME
2.3 times (347 GB) more memory than BoolectorBase. The
other four configurations require roughly the same amount of
memory. Table II depicts the overall results and the number
of extracted patterns grouped by QF ABV benchmark fam-
ilies in more detail. On benchmark families bmc, brubiere2,
klee, platania, and stp BoolectorXM considerably improves in
terms of runtime and number of solved instances compared
to BoolectorBase. On the brubiere2 and platania benchmark
families, the combined use of lambda extraction and lambda
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Solver Solved TO MO Time [s]
BoolectorBase 13242 68 7 122645

BoolectorE 13242 49 26 120659
BoolectorM 13259 50 8 105647
BoolectorX 13256 54 7 99834

BoolectorXME 13246 47 24 111114
BoolectorXM 13263 46 8 84760

TABLE I
OVERALL RESULTS ON QF ABV BENCHMARKS (13317 IN TOTAL).

merging yields significantly better results than both BoolectorX
and BoolectorM alone. The most notable improvement in terms
of runtime is achieved on the klee benchmark family, where all
three configurations with lambda extraction enabled improve
by orders of magnitude compared to BoolectorBase. The klee
benchmark family consists of symbolic execution benchmarks
obtained from KLEE [2], a symbolic virtual machine built on
top of the LLVM compiler infrastructure. Previous versions
of Boolector were shown to have rather poor performance
on these benchmarks [8], which is confirmed by our ex-
periments. This is due to the extreme version of lazy SMT
in Boolector, using lemmas on demand. In our experiments,
BoolectorBase requires almost 13000 seconds to solve the 622
klee benchmarks, while lambda extraction improved runtime
by up to a factor of 500 compared to BoolectorBase. This
effect is illustrated by the scatter plot in Fig. 6, which shows
that the runtime on most of the benchmarks is improved by
a factor of 10 to 100. The klee benchmarks contain many
instances of the λmset and λi→e patterns, where BoolectorXM
was able to extract 9373 and 10049 lambda terms with an
average size of 108 and 11, respectively. On most of the
benchmarks where BoolectorXM was able to extract lambda
terms, the runtime improved. The only exceptions are the
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Fig. 6. BoolectorBase vs. BoolectorXM on klee benchmark family.

two benchmarks in the jager benchmark family, on which
BoolectorXM still timed out even though 14028 λmset and 239
λi→e patterns were extracted. In total, BoolectorXM was able
to extract 29377 λmset, 13 λmcpy , 10683 λi→e, 58 λi→i, and
120 λi→i+1 patterns with an average size of 40, 7, 12, 39, and
38, respectively. The overall time required by BoolectorXM for
extracting and merging the lambda terms amounts to 41 and
24 seconds, which is less than 0.01% of the total runtime and
therefore negligible.

Benchmark family brubiere contains 11 benchmarks, which
encode a memcpy operation on two non-overlapping memory
regions and verify the correctness of the memcpy algorithm.
The benchmarks are parameterized by the size of the copied
memory region starting from size 2 up to size 12. We generated
21 additional benchmarks with size 2 to 221 (i.e., 2k with 1 ≤
k ≤ 21) in order to evaluate how BoolectorXM scales on these
benchmarks. For comparison we additionally ran the top three
solvers after Boolector at the SMT competition 2014, Yices [4]
version 2.3.1, MathSAT [3] version 5.3.5, and SONOLAR [6]
version 2014-12-04 on these benchmarks. Table III depicts the
runtime of all solvers on the additional memcpy benchmarks
of size 2 to 221, where T denotes out of time, and M denotes
out of memory. BoolectorBase and SONOLAR are able to solve
these benchmarks up to size 25, MathSAT up to size 26, Yices
up to size 29, and BoolectorXM up to size 220. For the largest
instance parsing consumes most of the runtime (∼60%). For
sizes greater than 220, Boolector is not able to fit the input
formula into 7GB of memory, which results in a memory out.

Finally, we measured the impact of lambda extraction and
lambda merging w.r.t. the number of generated lemmas. Since
every lemma generated in Boolector entails an additional call
to the underlying SAT solver, the number of generated lemmas
usually correlates with the runtime of the solver. On the
QF ABV benchmarks commonly solved by BoolectorBase and
BoolectorXM (13242 in total), BoolectorBase generates 872913
lemmas, whereas BoolectorXM generates 158175 lemmas,
which is a reduction by a factor of 5.5. Consequently, the size
of the CNF is reduced by 25% on average (no matter whether
variables or clauses are counted). This is further illustrated in
Fig. 7. On these benchmarks the reduction of the time spent
in the underlying SAT solver is reduced from 59638 to 40101,
i.e., an improvement of 33%.

VI. CONCLUSION

We discussed patterns of array operations occurring in actual
benchmarks and presented a technique denoted as lambda
extraction, which utilizes such patterns to extract compact
and more succinct lambda terms. Another new complementary
technique, called lambda merging, can still be exploited if
lambda extraction is not applicable. These techniques allow to
produce stronger and more succinct lemmas.

In the experimental analysis, based on our SMT solver
Boolector, it was shown that these techniques reduce the
number of generated lemmas by a factor of 5.5, and the overall
size of the bit-blasted CNF by 25% on average. To summarize,
we were able to considerably improve the overall performance
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BoolectorBase BoolectorE BoolectorM BoolectorX BoolectorXME BoolectorXM Extracted Patterns

Family Slvd [s] Slvd [s] Slvd [s] Slvd [s] Slvd [s] Slvd [s] λmset λi→e λi→i+1
λmcpy λi→i

bench (119) 119 2 119 3 119 2 119 0.3 119 0.3 119 0.3 208 0 34 0 0
bmc (38) 38 1361 39 769 39 921 39 197 39 88 39 182 256 3 56 0 0

brubiere (98) 75 29455 75 30301 75 28944 75 29359 75 29167 75 28854 0 10 0 0 0
brubiere2 (22) 17 7299 21 2617 18 6927 18 7842 22 2034 20 3241 1392 0 8 0 0

brubiere3 (8) 0 9600 1 8464 1 8435 0 9600 1 8463 1 8435 0 0 0 0 0
btfnt (1) 1 134 1 144 1 134 1 134 1 146 1 134 0 0 0 0 0

calc2 (36) 36 862 36 1528 36 864 36 863 36 1527 36 863 0 0 0 0 0
dwp (4188) 4187 2668 4188 2216 4187 2090 4187 2666 4187 2235 4187 2089 42 0 0 0 0

ecc (55) 54 1792 54 1745 54 1792 54 1845 54 1808 54 1845 125 0 0 0 0
egt (7719) 7719 222 7719 544 7719 221 7719 225 7719 275 7719 212 3893 0 0 0 0

jager (2) 0 2400 0 2400 0 2400 0 2400 0 2400 0 2400 14028 0 239 0 0
klee (622) 622 12942 620 4408 622 12688 622 169 622 126 622 154 9373 0 10049 0 0

pipe (1) 1 10 1 14 1 10 1 10 1 14 1 10 0 0 0 0 0
platania (275) 247 42690 238 58807 256 35005 255 34993 240 56172 258 31189 0 0 0 58 120

sharing (40) 40 2460 40 2459 40 2459 40 2460 40 2458 40 2458 0 0 0 0 0
stp (40) 34 8749 38 4238 39 2755 38 7072 38 4200 39 2695 60 0 297 0 0

stp sa (52) 52 0.7 52 0.5 52 0.6 52 0.6 52 0.5 52 0.7 0 0 0 0 0
totals (13317) 13242 122645 13242 120659 13259 105647 13256 99834 13246 111114 13263 84760 29377 13 10683 58 120

TABLE II
OVERALL RESULTS AND NUMBER OF EXTRACTED PATTERNS ON ALL QF ABV BENCHMARKS GROUPED BY BENCHMARK FAMILY.

Solver k=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
BoolectorBase 0.1 0.4 8 42 296 T T T T T T T T T T T T T T T M

SONOLAR 0.1 0.2 2 15 201 T T T T T T T T T T T T M M M M
MathSAT 0.1 0.3 2 9 70 709 T M T T T T T T T T T T M M M

Yices 0.0 0.0 0.1 0.6 2 8 23 93 371 T T T T T T T T M M M T
BoolectorXM 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.5 1 2 6 14 44 140 463 M

TABLE III
RUNTIME IN SECONDS ON memcpy BENCHMARKS OF SIZE 2k COPIED ELEMENTS. T DENOTES OUT OF TIME, M DENOTES OUT OF MEMORY.
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Fig. 7. Number of generated lemmas BoolectorBase vs. BoolectorXM on
commonly solved QF ABV benchmarks (13242 in total).

of Boolector and achieve speedups up to orders of magnitude,
particularly on benchmarks from symbolic execution.

We believe, that there are additional patterns in software and
hardware verification benchmarks, which can be extracted as

lambdas and used to speed-up array reasoning further. Our
results also suggest, that a more expressive theory of arrays
might be desirable for users of SMT solvers, in order to allow
more succinct encodings of common array operation patterns.
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Abstract—We present a new CEGAR-based algorithm for QBF.
The algorithm builds on a decomposition of QBFs into a sequence
of propositional formulas, which we call the clausal abstraction.
Each of the propositional formulas contains the variables of
just one quantifier level and additional variables describing the
interaction with adjacent quantifier levels. This decomposition
leads to a simpler notion of refinement compared to earlier
approaches. We also show how to effectively construct Skolem
and Herbrand functions from true, respectively false, QBFs;
allowing us to certify the solver result.

We implemented the algorithm in a solver called CAQE.
The experimental evaluation shows that CAQE has competitive
performance compared to current QBF solvers and outperforms
previous certifying solvers.

I. INTRODUCTION

Efficient solving techniques for Boolean theories are an
integral part of modern verification and synthesis methods. The
ever growing complexity of verification and synthesis prob-
lems led to propositional problems of enormous size. To see
further advances in these areas, we believe that is necessary to
move to more compact representations of these requirements.
Quantified Boolean formulas (QBFs) have repeatedly been
considered as a candidate theory to compactly encode Boolean
problems [1]–[7]. Recent advances in QBF solvers give raise
to the hope that QBF may help to increase the scalability of
verification and synthesis approaches.

The recent introduction of algorithms based on counter-
example guided abstraction refinement (CEGAR) significantly
improved the scalability of QBF solving [8], [9]. However, the
CEGAR approach shows poor performance for instances with
many quantifier alternations, as we show in this paper, and it
currently lacks the ability to certify its results. In this work,
we present a modification of the CEGAR approach for QBF
that tackles these two problems.

Certifying the results is particularly important for QBF, as
the pure yes/no answer is of little use. Like the propositional
SAT problem [10], [11], QBF can be used to encode objects of
interest, like error paths [3], [5] and implementations [4], [12],
[13]. While the yes/no answer of a SAT or QBF solver then
provides the information about the existence of this object,
we often want to construct a concrete instance for further use.
For the propositional SAT problem the object can typically

This work was partially supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS) and by
NSF grants CCF-1139138 and CCF-1116993. The first author did a part of
the work at Saarland University.

be extracted as the assignment of the variables, but for QBF
the object potentially consists of the Skolem functions for
the existential quantifiers or the Herbrand functions for the
universal quantifiers. Most current QBF solvers, however, are
unable to provide Skolem or Herbrand functions or suffer
performance penalties when they do [14], [15].

Our approach is based on the observation that the only
information relevant for the processing of inner quantifier
levels is which clauses are satisfied by the outer quantifier
levels. Consider the following example:

∀X∃Y. (x1 ∨ x2 ∨ y1) ∧ (x2 ∨ y1 ∨ y2) ∧ (y1 ∨ y2)

where xi ∈ X and yi ∈ Y for all i.
To determine the truth value of this QBF, we need to show

that for every assignment of the variables X , there is an
assignment of the variables Y such that the propositional part
of the formula above is true. Any assignment of X satisfies a
certain set of clauses and thereby requires that the remaining
set of clauses is satisfiable by the variables Y . For example
the assignment x1x2 satisfies exactly the first clause and any
assignment of the variables Y that satisfies the remaining
clauses is sufficient for this case. We can thus split the formula
into two parts; one for the universally quantified variables X
and one for the existentially quantified variables Y :

ϕX := ((x1 ∨ x2)→ ¬b1) ∧ (x2 → ¬b2) ∧ (false→ ¬b3) ,
ϕY := (t1 ∨ y1) ∧ (t2 ∨ y1 ∨ y2) ∧ (t3 ∨ y1 ∨ y2) ,

where the variables B = {b1, b2, b3} (bottom) indicate that
the clause is satisfied by the lower quantifier level (∃Y ), and
the variables T = {t1, t2, t3} (top) indicate that the clause is
satisfied by the upper quantifier level (∀X). That is, for every
clause ϕX requires that whenever the clause is satisfied by the
X variables, it does not have to be satisfied by the Y variables.
And ϕY requires that when the clause is satisfied by some
X , it does not have to be satisfied by the variables Y . The
problem to determine the truth of the QBF is then equivalent
to determining whether for each satisfying assignment of ϕX
that includes the assignment b of B, the formula ϕY (tb) is
satisfiable, where tb is the assignment of T that assigns ti
iff bi is not assigned in b (for all 1 ≤ i ≤ 3). We call this
decomposition of the QBF the clausal abstraction.

Following the CEGAR approach to QBF, we would alternate
between the two quantifier levels and determine satisfying
assignments of ϕX and ϕY . When there is no assignment
of ϕX left, we conclude that the original formula is true,
or when there is no satisfying assignment of ϕY for a given
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assignment of X , we have found a counter-example. While the
overall approach is similar to the existing CEGAR approaches
to 2QBF [9], it lets us rephrase the refinement step in an
interesting way: Every satisfying assignment α of ϕY defines
a single clause over the variables B that we can add to the
formula ϕX . This excludes all assignments of X for which α
satisfies the remaining formula.

The principle of clausal abstractions can be lifted to full
QBF and we show that this leads to an algorithm with competi-
tive performance. The evaluation of our implementation CAQE
reveals the differences to the previous CEGAR-based QBF
solver RAReQS: The algorithm we propose is particularly
effective for QBFs with many quantifier alternations, while the
previous CEGAR-based approach seems particularly effective
for problems with few quantifier alternations.

Our approach can be used to certify the result of a QBF.
From the sequence of T assignments and assignments of the
quantified variables, we can effectively extract Skolem and
Herbrand functions in the form of circuits. We describe a proof
format and provide a tool chain for the certification process,
which outperforms earlier certifying QBF solvers.

To summarize, the contributions of this paper are twofold:
• We develop a CEGAR algorithm for QBF based on

clausal abstractions, and
• we give a method to effectively extract Skolem and

Herbrand functions for the certification of the results.

II. QUANTIFIED BOOLEAN FORMULAS

A quantified Boolean formula (QBF) is a propositional
formula over a finite set of variables X with domain B =
{0, 1} extended with quantification. The syntax is given by
the following grammar:

ϕ := x | ¬ϕ | (ϕ) | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x. ϕ | ∀x. ϕ ,

where x ∈ X . For readability, we lift the quantification over
variables to the quantification over sets of variables and denote
∀x1.∀x2. . . .∀xn.ϕ with ∀X.ϕ and ∃x1.∃x2. . . .∃xn.ϕ with
∃X.ϕ, accordingly, for X = {x1, . . . , xn}.

Given a subset of variables X , an assignment of X is a
function α : X → B that maps each variable x ∈ X to either
true (1) or false (0). For simplicity we describe assignments
also by the subset x ⊆ X of variables that are assigned 1 (or
true). We denote the set of assignments of a set of variables
X by A(X).

A quantifier Qx.ϕ for Q ∈ {∃,∀} binds the variable x in
the scope ϕ. Variables that are not bound by a quantifier are
called free. We assume the natural semantics of the satisfaction
relation x |= ϕ for QBF ϕ and assignments x ⊆ X where X
are the free variables of ϕ. QBF satisfiability is the problem to
determine, for a given QBF ϕ, the existence of an assignment
for the free variables of ϕ, such that the formula is true.

The dependency set of an existentially quantified variable y,
denoted by dep(y), is the set X of universally quantified
variables x such that ∃y. ϕ is in the scope of x. A Skolem
function fy : A(dep(y)) → B maps an assignment of the
dependencies of y to an assignment of y. The truth of a QBF

ϕ is equivalent to the existence of a Skolem function fy for
every variable y of the existentially quantified variables Y ,
such that {y ∈ Y | fy(x ∩ dep(y))} |= ϕ holds for every
assignment x of the universal variables X .

A closed QBF is a formula without free variables. Closed
QBFs are either true or false. A formula is in prenex normal
form, if the formula consists of a quantifier prefix followed
by a propositional formula. Every QBF can be transformed
into a closed QBF and into prenex form while maintaining
satisfiability. For a k > 0, a formula ϕ is in the kQBF fragment
if it is closed, in prenex normal form, and has exactly k
alternations between ∃ and ∀ quantifiers.

A literal l is either a variable x ∈ X , or its negation ¬x.
Given a set of literals {l1, . . . , ln}, the disjunctive combination
(l1∨. . .∨ln) is called a clause and the conjunctive combination
(l1∧ . . .∧ ln) is called a cube. Given a literal l, the polarity of
l, sign(l) for short, is 1 if l is positive and 0 otherwise. The
variable corresponding to l is defined as var(l) = x where
x = l if sign(l) = 1 and x = ¬l otherwise.

A QBF is in prenex conjunctive normal form (PCNF) if its
propositional formula is a conjunction over clauses, which is
called a matrix. To simplify the notation, we treat a matrix ψ as
a set of clauses ψ = {C1, . . . , Cn} and a clause C as a set of
literals C = {l1, . . . , lm} and use standard set operations like
intersection and union for their manipulation. Every prenex
QBF can be transformed into prenex CNF using the Tseitin
transformation [16] with a linear increase in the size of the
formula and number of existential variables.

III. CLAUSAL ABSTRACTIONS

In this section, we present clausal abstractions, a decom-
position of QBFs into sequences of propositional formulas—
one propositional formula for each quantifier level. Clausal
abstractions provide us a new notion of refinement and thereby
leads us to a variant of the CEGAR algorithm for QBF.

The example in the introduction intuitively explained how
every clause in a QBF with one quantifier alternation can be
split into two parts with additional variables that describe their
interaction. The main observation was that every assignment
for the variables quantified by the inner (existential) quantifier,
corresponds to a single cube over the new variables T . In the
following, we extend this principle to QBF with more than
one quantifier alternation and we consider a closed QBF ϕ in
prenex conjunctive normal form:

ϕ := Q1X1. . . . QnXn. ψ ,

where ψ = C1 ∧ . . . ∧ Ck is the matrix of ϕ with k clauses
and each QiXi is a quantifier block, i.e., a maximal list of
consecutive quantifiers of the same type.

Let’s first consider the case that Q1 is an existential quanti-
fier. Proving ϕ to be true means to find an assignment x1 for
X1 such that the remaining formula Q2X2. . . . QnXn. ψ(x1)
is true. Inspecting ψ(x1) reveals that the assignment of the
variables X1 eliminated certain clauses (by satisfying them)
and removed all occurrences of X1 literals from the remaining
clauses. We can thus split each clause Ci into two parts Ci,1
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and Ci,>1, where Ci,1 is the part that can be satisfied by some
assignment to X1 and Ci,>1 is the part that must be satisfied
by some variable in Xi with 1 < i ≤ n. For each clause Ci,
we introduce the variables bi (bottom) in Ci,1 and ti (top)
Ci,>1 to indicate by which part Ci is satisfied.

Ci,1 =
(∨

l∈Ci∧var(l)∈X1
l
)
∨ bi

Ci,>1 =
(∨

l∈Ci∧var(l)∈(
⋃

i>1Xi) l
)
∨ ti

Ci,1 contains no variables in
⋃
i>1Xi and Ci,>1 is free of

the variables X1. We call the conjunction of clauses ϕ∃X1
=∧

j<k Cj,1 the existential clausal abstraction for X1.
As the variables B occur only positively in Ci,1, the existen-

tial clausal abstraction is monotone in B. In particular, there is
a unique minimal assignment bmin(x1) to B for every assign-
ment x1 to X1. The minimal assignment bmin(x1) contains
exactly the set B variables whose clauses have to be satisfied
by a variable from a quantifier block i > 1 when the first
quantifier block chooses x1. Hence it is clear that the formula
that results from fixing x1 in the matrix ψ is the same as the
matrix that results from fixing t = {ti | bi /∈ bmin, 1 ≤ i ≤ k}
in the remaining matrix ψ>1 =

∧
i≤k Ci,>1.

Now let’s turn to the case that the outermost quantifier
Q1 is a universal quantifier. Analogue to the previous case,
disproving ϕ means to show that there is an assignment x1 of
X1 such that the remaining formula Q2X2. . . . QnXn. ψ(x1)
is false. Now, assignments of X1 that satisfy less clauses are
more desirable, as they set more of the variables B to true and
therefore make it harder to satisfy the remaining formula. The
existential clausal abstraction, however, always allows us to set
more of the variables B to true and therefore fails to represent
when a clause is necessarily fulfilled by an assignment x1. In
other words, the existential clausal abstraction represents the
lower bounds on B, while we need the upper bounds on B
for the universal case. For the universal case, we therefore
propose to use the following clausal abstraction:

Ci,1 =
∧
l∈Ci∧var(l)∈X1

(l ∨ bi)
Ci,>1 = (

∨
l∈Ci∧var(l)∈(

⋃
i>1Xi) l) ∨ ti

The universal clausal abstraction for X1 is then the conjunc-
tion ϕ∀X1

=
∧
j<k Cj,1. The universal clausal abstraction

guarantees that for every assignment x1 to X1 there is a
unique maximal assignment bmax(x1) to B, that is an as-
signment with a maximal number of variables set to true. The
decomposition of each clause Ci into the conjunction Ci,1
ensures that whenever the clause Ci is satisfied by one of its
literals, then the variable bi must be set to false—representing
that the other quantifier blocks do not have to satisfy this
clause any more. Again, the formula that results from fixing
x1 in C1 ∧ . . . ∧ Ck is the same as the matrix that results
from fixing t = {ti | bi /∈ bmax, 1 ≤ i ≤ k} in the remaining
formula ψ>1 = C1,>1 ∧ . . . ∧ Ck,>1.

We observe that each clausal abstraction only needs one
copy of the T variables and another copy of the B variables.
When we build the clausal abstractions ϕQiXi

for all quantifier
blocks Qi, we can thus reuse the sets of variables for T and
B and only need to introduce 2k fresh variables.

IV. CEGAR WITH CLAUSAL ABSTRACTIONS

In this section, we present a CEGAR algorithm for QBF
based on clausal abstractions. To formulate the algorithm, we
assume a method called SAT to solve propositional formulas.
We assume that SAT returns whether the formula is satisfiable
(SAT) or unsatisfiable (UNSAT). Further, in case the formula
is satisfiable SAT returns a satisfying assignment—potentially
only for a subset of the variables like in line 6. In our
implementation these queries are solved by a SAT solver. In
the following, we use Ψ>1 = Q2X2 . . . QnXn.ψ>1 to denote
the formula that remains when splitting the clausal abstraction
ϕQ1X1 from the QBF Ψ. Expressions of the form c ? e1 : e2
denote abbreviated if-statements. If the conditional c evaluates
to true we return e1 and otherwise e2.

The input to the algorithm SOLVE is a QBF QX.Ψ and the
output is either SAT or UNSAT.

1: procedure SOLVE(QX.Ψ)
2: if Ψ is propositional then
3: return SAT(Ψ)

4: α← (Q = ∃) ? ϕ∃X : ϕ∀X
5: while true do
6: result , b← SAT(α)
7: if result = UNSAT then
8: return (Q = ∃) ? UNSAT : SAT
9: t← {ti | bi /∈ b, 1 ≤ i ≤ k}

10: result ← SOLVE(Ψ>1(t))
11: if Q = ∃ and result = UNSAT then
12: α← α ∧ (

∨
l∈b l)

13: else if Q = ∀ and result = SAT then
14: α← α ∧ (

∨
l/∈b l)

15: else
16: return (Q = ∃) ? SAT : UNSAT

The algorithm generates an assignment b for the variables
B in the clausal abstraction, determines t = {ti | bi /∈
b, 1 ≤ i ≤ k}, and then goes into recursion for the remaining
formula Q2X2 . . . QnXn.ψ>1(t). Whenever a recursive call
failed for an existential quantifier block, i.e., the remaining
formula turned out to be false, we add the clause

∨
l∈b l to the

existential clausal abstraction. Analogously, when a recursive
call failed for a universal quantifier block, i.e., the remaining
formula turned out to be true, we add the clause

∨
l/∈b l to

the universal clausal abstraction. The next iteration will either
bring up a new assignment for the variables B or fail to do so,
in which case the formula is violated in the existential case
and satisfied in the universal case, respectively.

A. Reusing Clausal Abstractions and their Refinements

Reusing the state of SAT solvers is critical for performance.
Instead of regenerating the clausal abstractions for inner
quantifier for every instantiation of the variables of the outer
quantifier blocks, we set up one SAT solver per quantifier
block that we keep for the complete run of the algorithm.
Reusing the SAT solvers for each quantifier level also enables
us to efficiently reuse all previous refinements for the same
level. The clauses by which we refined stay valid for all times.
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1: procedure SOLVE∃(∃X.Ψ, t)
2: while true do
3: result ,b, failed ← SAT(ϕX , t)
4: if result = UNSAT then
5: return UNSAT, , failed
6: else if Ψ is propositional then
7: return SAT, t,
8: tb ← {ti | bi /∈ b, 1 ≤ i ≤ k}
9: result , t′, failed ′ ← SOLVE∀(Ψ, t ∪ tb)

10: if result = UNSAT then
11: ϕX ← ϕX ∧ (

∨
t∈failed′ ¬bt)

12: else
13: return SAT, t′,

Given a QBF with matrix ψ we prepare a SAT solver for
each existential quantifier block ∃X with the clauses

ϕX :=
∧
Ci∈ψ

(( ∨
l∈Ci∧var(l)∈X

l
)
∨ ti ∨ bi

)
, (1)

and for each universal quantifier block ∀X , we prepare a SAT
solver with the clauses

ϕX :=
∧
Ci∈ψ

( ∧
l∈Ci∧var(l)∈X

(l ∨ ti)
)
. (2)

In the construction of the clausal abstraction for the final level,
i.e., ϕXk

, we additionally require the bottom literals B to be
false, as there is no quantifier level below the current level to
which we could pass the proof obligations.

To obtain the clausal abstraction of a QBF Ψ(t) we then
simply assume the assignment t. Solving formulas under
assumptions is a common feature of modern SAT solvers.

Note that formula (2) does not contain B variables. For
the universal clausal abstractions it is possible to join the two
types of literals and ask for a satisfying assignment of ϕX that
assigns a minimal number of T variables to true, under the
assumption that at least those that were given in the function
call are true. This is merely a measure to reduce the number
of variables used in the formula.

B. Algorithm with Optimizations

The input to the algorithm SOLVE consists of a QBF
QiXi.Ψ. Depending on the type of the outermost quantifier, it
calls SOLVE∃ or SOLVE∀ and fixes an initial assignment t = ∅
of T that indicates that no clauses were satisfied so far.

1: procedure SOLVE(Φ)
2: return Φ = ∃X.Ψ ? SOLVE∃(Φ, ∅) : SOLVE∀(Φ, ∅)
The algorithm SOLVE∃ makes use of a feature of modern

SAT solvers by assuming a partial assignment for a particular
call. This feature enables us to deactivate those clauses that
are satisfied already. The notation SAT(ϕX , t) denotes a SAT
call for which we additionally assume the assignment t. SAT
calls with assumptions either return a satisfying assignment,
which is guaranteed to have the sub-assignment t, or in
case the formula is unsatisfiable under the assumptions they

1: procedure SOLVE∀(∀X.Ψ, t)
2: while true do
3: result , t′, failed ← SAT(ϕX , t

+)
4: if result = UNSAT then
5: return SAT, failed ,
6: result , t′′, failed ′ ← SOLVE∃(Ψ, t

′)
7: if result = SAT then
8: ϕX ← ϕX ∧ (

∨
t∈t′′ ¬t)

9: else
10: return UNSAT, , failed ′

additionally return a set of failed assumptions, denoted by
failed . The failed assumptions are a subset of the assumptions
t and suffice to make the formula unsatisfiable. In line 11,
¬bt denotes the variable b ∈ B that corresponds to the
same clause as variable t. The algorithm refines the clausal
abstraction only by those variables B that made the recursive
call to SOLVE∀ unsatisfiable. This significantly strengthens the
refinement compared to the basic algorithm.

Similar to the algorithm SOLVE∃, the algorithm SOLVE∀
makes use of assumptions for SAT calls. Since, we joined the
T and B variables, we only assume the positively assigned
variables in t, denoted by the call SAT(ϕX , t

+). The SAT
call then produces an assignment t′ for which it possibly sets
further variables T to true. In contrast to the existential case,
we can use t′ directly for the recursive call. The refinement
step only refines by the variables T occurring in the assign-
ment t′′ returned by the recursive call. The assignment t′′ is
a subset of t′ and therefore represents the information that
the call to SOLVE∃ satisfied more clauses than required by the
assignment t′.

Theorem 1. SOLVE(Φ) is correct and terminates.

The proof is a simple induction over the quantifier quantifier
hierarchy.

C. Stronger Refinements

The algorithm above always refines by a single clause.
In certain cases, however, we can strengthen the refinement
in SOLVE∃ by excluding a conjunction of clauses C, that
are equivalent in the following sense: If some clause C
corresponds to a failed assumption, then all other clauses
C \ {C} would also lead to a failed assumption. Formally,
we characterize this criterion by the subset relation between
clauses restricted to the lower level literals. Let ∃iXi be a
quantifier block of a QBF with matrix ψ, let failed ′ be the
failed assumptions returned by the lower level (line 9), and let
tk ∈ failed ′ be one of the failed assumptions. If Ck cannot
be satisfied by a quantifier block QjXj with j > i, then any
Cl with Cl ∩

(⋃
j>iXj

)
⊆ Ck ∩

(⋃
j>iXj

)
, Cl ⊆i Ck

for short, cannot be satisfied either. Hence, given the failed
assumptions failed ′, we refine∨

tk∈failed′

∧
Cl ∈ ψ,
Cl ⊆i Ck

¬bl , (3)

4

139

ISBN: 978-0-9835678-5-1. Copyright owned jointly by the authors and FMCAD, Inc.



p cap 3 3
d
d
6 -3
u SAT
d
4 5 3
u SAT
u SAT
1
u SAT
r SAT

〈∅, {x1},SAT〉

〈∅, ∅,SAT〉

〈{t3}, {x3},SAT〉 〈{t1, t2}, {x3},SAT〉

↑ u

↓ d ↑ u

↙ d

↗ u ↘ d

↖ u

Fig. 1. A clausal abstraction proof in the CAP format (left) and its tree
structure (right).

The refinement has to be transformed to CNF using the Tseitin
transformation [16].

Additionally, after we have found an assignment for an
existential quantifier block, we have a routine that checks
whether the assignment satisfies clauses that are deactivated by
the current T assignment. If so, we delete the corresponding
literals from the T assignment.

D. Preprocessing Techniques

We use basic preprocessing techniques that can be eas-
ily integrated into our certification infrastructure: tautology
clauses, pure literals, unit clauses, universal reduction, and
miniscoping. For miniscoping, we apply the well known rule
∀X.∃Y1, Y2. ϕ(X,Y1) ∧ ψ(X,Y2) ≡ (∀X.∃Y1. ϕ(X,Y1)) ∧
(∀X.∃Y2. ψ(X,Y2)). That is, we search for a partitioning of
the matrix according to the existential variables of the current
scope. By applying this rule bottom-up, we get a tree-shaped
quantification header. Note that this tree only branches after an
existential quantifier, hence, we modify the algorithm to split
the current entry according to the partitioning and solve every
child individually. For true QBF instances, this transformation
can significantly reduce the size of the Skolem functions.

V. CERTIFICATION

Similar to the QBFCert [15] framework, we propose a two
step approach to certification that allows us to keep the certifi-
cation infrastructure separate from the solver. First, our solver
outputs a clausal abstraction proof (CAP), that is a sequence
of assignments of T variables together with the corresponding
assignments of X variables as well as navigation symbols to
determine the quantification level. A clausal abstraction proof
is essentially a post-order linearization of the recursion tree.

Clausal abstraction proofs contain the following elements:

• Header: p cap v c where v is the maximal variable
number and c is the number of clauses.

• Result: r res where res ∈ {SAT,UNSAT}.
• Quantifier tree navigation: d for down, u res for up

with subtree result res ∈ {SAT,UNSAT}, and n for next
sibling (in the case of miniscoping).

• T and variable assignments: t1 t2 . . . l1 l2 . . . , with
v < ti ≤ v + c for every i and 0 < |lj | ≤ v for every j.

• The strengthening instruction s c t1 . . . tn representing
the cube of T variables used in the strong refinement
optimization described by equation (3) in Section IV-C.

As an example, consider the following QBF:

∃x1∀x2∃x3 : (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
t1≡x4

(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
t2≡x5

(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
t3≡x6

Figure 1 shows a clausal abstraction proof for this QBF. After
the header, the proof descends to the lowest quantifier (lines
d and d) where the decision x3 = 0 is a satisfying assignment
given that clause 3, corresponding to t6, is satisfied by a
higher level quantifier (line 6 -3). The algorithm presented
in Section IV guarantees that there is an assignment of the
higher quantifier levels that satisfies the this set of clauses
(i.e. clause 3). The proof format, however, delays printing
the assignments of higher quantifier levels until it successfully
ascends to the upper levels of the proof. Omitting assignments
for failed proof branches saves a significant amount of space.
Next we ascend to the universal quantifier level (line u SAT).
The previous assignment of the universal quantified variable
x2 can be omitted, as it did not refute the current proof
branch. The universal level chooses a new assignment for x2
and the proof descends again (line d). This time clauses 1
and 2, corresponding to t4 and t5, are satisfied by a higher
level clause and x3 = 1 is a satisfying assignment for the
remaining clauses (line 4 5 3) and we ascend again (line
u SAT). We exhausted the assignments of x2 and the proof
hence ascends from the universal quantifier level (line u
SAT). Upon returning successfully from this proof branch,
we print the assignment of x1 = 1 (line 1) that was chosen
in the beginning. We return successfully from the outermost
existential quantifier level (line u SAT) and the QBF is
concluded to be true (r SAT).

We proceed with the general description of the certi-
fication approach. From the clausal abstraction proof, we
build a circuit—encoded as an And-Inverter-Graph (AIG)—
representing the Skolem or Herbrand function. First, we parse
the clausal abstraction proof into a tree structure, where
the levels of the tree correspond to the quantifier blocks of
the QBF. Since the clausal abstraction proof is a post-order
linearization, we can build the proof tree bottom-up. For a
quantifier block QX.Ψ, a node 〈t,x, r〉 in the tree is a tuple
consisting of a T assignment t, an X assignment x, and
the subtree result r ∈ {SAT,UNSAT}. Next, we prune the
tree according to the result: If the QBF is true, we dismiss
universal levels as well as nodes that are labeled as UNSAT.
Analogously, if the QBF is false, we dismiss existential levels
as well as nodes with r = SAT. All remaining nodes are
relevant for the certificate.

Given a quantifier block QX.Ψ, we first collect the list
of nodes NX corresponding to this level (according to the
navigation commands in the proof trace). For every variable
x ∈ X we then build the Skolem/Herbrand function fx
with the algorithm CONSTRUCTFUNCTION, which takes three
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arguments: the variable x, the list of nodes NX , and the type
of quantifier Q ∈ {∃,∀}.

1: procedure CONSTRUCTFUNCTION(x, N , Q)
2: fx ← false
3: fpre ← true
4: for 〈t,x, r〉 ∈ N do
5: if x ∈ x then
6: fx ← fx ∨ (fpre ∧ PRECONDITION(t, Q))

7: fpre ← fpre ∧ ¬PRECONDITION(t, Q)

8: return fx

1: procedure PRECONDITION(t, Q)
2: if Q = ∃ then
3: return

∧
t∈t

(∨
l∈Ct∧var(l)∈

⋃
j<iXi

l
)

4: else
5: return

∧
t∈T\t

(∧
l∈Ct∧var(l)∈

⋃
j<iXi

l
)

In the algorithm above the formula fx characterizes when
the Skolem/Herbrand function will set x to true and fpre
characterizes the cases that are not yet covered by fx. In each
iteration over the list of nodes we extend fpre by the case
that is covered by the current node (line 7). If the variable
x occurs positively in the assignment, we also extend the
function fx (line 6). Each case is described by the conjunction
over the clauses described by the T assignment restricted
to the variables of smaller quantifier levels (see algorithm
PRECONDITION). For a given t ∈ T , we denote with Ct
the clause that corresponds to the t variable. The formulas
fx computed by the algorithm CONSTRUCTFUNCTION then
define the output signals of the AIG.

In the example of Fig. 1, the list of nodes for x1 consists
of the single node: 〈∅, {x1},SAT〉, indicating that without
precondition (∅) x1 is set to true. For x3 there are two nodes:
〈{t3}, {x3},SAT〉 and 〈{t1, t2}, {x3},SAT〉, indicating that if
clause 3 is satisfied, x3 is set to false, and if clauses 1 and 2
are satisfied, x3 is set to true. The Skolem function computed
by the algorithm above is fx3 = (x1 ∨ x2)∧ (x1 ∨ x2), which
simplifies to fx3 = x2.

For a true (false) QBF, the resulting AIG certificates can be
checked by substituting the existential (universal) variables in
matrix by applications of their Skolem (Herbrand) functions
and then query a SAT solver to ask for an assignment of the
variables such that some clause is falsified (all clauses are
satisfied). The certificate is valid if, and only if, the SAT solver
returns UNSAT and the Skolem/Herbrand functions depend
only on variables in their dependency set.

VI. EXPERIMENTAL EVALUATION

We implemented the algorithm and its optimizations in a
tool named CAQE1 (Clausal Abstraction for Quantifier Elimi-
nation). The tool is written in the programming language C and
we use a generic SAT solver interface that can be instantiated
with PicoSAT [17] (default) or MiniSat [18]. In this section,

1available at http://react.uni-saarland.de/tools/caqe/

we evaluate the implementation on the instances from QBF
Gallery 2014 [19] in several categories: the number of solved
instances per benchmark family with and without preprocess-
ing, the number of instances solved in certification mode, and
the size of the generated certificates. We compare CAQE to the
(available) best performing solvers of the QBF Gallery 2014.
For our experiments, we used a machine with a 3.6 GHz quad-
core Intel Xeon processor and 32 GB of memory. The timeout
was set to 10 minutes.

A. Solved Instances per Family

Table I shows for each solver how many instances of the
QBFGallery benchmark set are solved within 10 minutes. We
removed the preprocessing track of QBFGallery and instead
ran every solver with and without preprocessing using Blo-
qqer [20]. For three of the seven families, a configuration of
CAQE solved the highest number of instances. Overall, CAQE
using PicoSAT ranked second after RAReQS when using the
number of solved instances as a measure.

Most notably, CAQE solved an exceptionally high number
of problems in the hardness family, which consists of bounded
model checking queries for incomplete designs [6]. One char-
acteristic of this family is that number of quantifier alternations
is relatively high; going up to 60 alternations. Figure 2 shows
the performance of all solvers for the 188 instances of the
full benchmark set that have a high number of quantifier
alternations. The plot suggests that CAQE performs well on
instances with a high number of quantifier alternations—in
particular compared to other CEGAR-based solvers.

Unsurprisingly, the choice of the underlying SAT solver has
a significant impact on the performance of CAQE. In this
setting, the variant using PicoSAT performs better, however,
more testing and optimization was done for this variant.

The effect of preprocessing is unusual. While preprocessing
by Bloqqer improved the performance overall (in particular
for CAQE using MiniSat), the analysis per family reveals that
Bloqqer decreased the performance of CAQE using PicoSAT
for three benchmark families.
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Fig. 2. Number of solved instances within 10 minutes among the 188
instances from QBFGallery 2014 with more than 6 quantifier alternations.
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TABLE I
NUMBER OF INSTANCES OF THE QBFGALLERY 2014 BENCHMARK SET SOLVED WITHIN 10 MINUTES.

CAQE RAReQS GhostQ DepQBF
Family total picosat picosat+bloqqer minisat minisat+bloqqer rareqs rareqs+bloqqer ghostq depqbf depqbf+bloqqer
eval2012r2 276 75 112 55 98 81 129 124 88 128
bomb 132 91 74 75 59 84 82 75 67 80
complexity 104 50 67 60 67 75 91 26 49 57
dungeon 107 46 31 22 69 57 62 45 44 66
hardness 114 78 103 58 94 15 68 57 8 81
planning 147 84 79 50 55 146 135 31 57 47
testing 131 54 77 25 84 36 92 102 57 76
all 1011 478 543 345 526 494 659 460 370 535

B. Certificates

Table II shows the number of instances of the QBF Gallery
2014 benchmark set that was solved within 10 minutes in
certifying mode (#solved) and the number of certificates that
was verified within 10 minutes (#verified). The evaluation also
shows that CAQE can certify more results than DepQBF and
provides certificates that are only half the size in average. The
size of the certificates is measured in terms of AND-gates in
the AIGER file that encodes the Skolem or Herbrand function
after minimization with the DFRAIG algorithm of ABC [21].

Compared to the non-certifying run in Table I, the solvers
solved between 84% (DepQBF) and 90% (CAQE) of the
instances in certifying mode. This can be traced back to two
factors. First, certain optimizations have to be disabled in
certification mode, and second, there is a significant amount
of time spent writing the proofs to disk. Furthermore, not all
of the instances solved in certification mode could be verified
within the given amount of verification time.

Lastly, we compare the size of the certificates of CAQE
and DepQBF on the commonly solved instances in Fig. 3.
The variance of the relative certificate sizes is high, but the
number of instances where CAQE generated certificates of
significantly smaller size than DepQBF is larger than the
number of instances where DepQBF generated certificates of
significantly smaller size than CAQE.

TABLE II
CERTIFYING RUNS OF DEPQBF AND CAQE.

Solver # solved # verified # unique avg. size
CAQE 428 340 146 3138
DepQBF 312 239 44 7447
virtual best 468 384 - 5357

VII. RELATED WORK

Various techniques have been proposed for QBF, includ-
ing expansion [22], [23], BDDs [24], [25], (DPLL-like)
search [14], [26], and CEGAR [9]. The CEGAR approach
has been first explored in the context of model checking [27].
Janota and Silva successfully applied CEGAR to 2QBF [9].

RAReQS: Subsequently, Janota et al. extended the CE-
GAR approach to full QBF [8]. They implemented the ap-
proach in the tool RAReQS (and to a certain extend also
in GhostQ), which lead to significant performance gains for

several problem families. To evaluate the truth of a QBF
ϕ = Q1X1 . . . QnXn.ϕ with n quantifier alternations, the
algorithm picks an assignment x1 to X1 and recursively
determines the truth of ϕ′(x1) = Q2X2 . . . QnXn.ϕ(x1).
If that call returns a counter-example, that is an assign-
ment x2 to X2, then ϕ is refined by the formula ϕ′′ =
Q1X1.Q3X3 . . . QnXn.ϕ(x2), which has two quantifier al-
ternations fewer than ϕ. Before checking ϕ′(x′1) for other
assignments x′1, it is first checked whether the assignment is
already excluded by x′1. (That is, we first check ϕ′′(x′1).) In
this way, the assignment x1 cannot occur a second time as
a counter-example. A potential problem with this approach
is that the formula ϕ′′ is itself a QBF, and may itself be
refined with other QBFs in later iterations. We may therefore
have to check each new assignment x′1 for a tree of counter-
examples that each are QBFs, and the size of the tree of
counter-examples may grow exponentially with the quantifier
alternation depth. Our experiments suggest that this problem
actually occurs in practice: while being very effective for
low quantifier alternation depths, RAReQS solves only few
instances with a higher number quantifier alternations.

In this work we propose an alternative CEGAR algorithm
in which we refine only by single clauses. This notion of
refinement coincides with the RAReQS refinement step in the
case of 2QBF, but for two or more quantifier alternations it
is weaker: Assignments that lead to a counter-example may
reappear later. This explains why RAReQS outperforms CAQE
on benchmarks with a low number of quantifier alternations.
The weaker notion of refinement in CAQE, however, avoids
the need for the tree of counter-examples and therefore scales
well to instances with many quantifier alternations.

Clause selection: Very recently and independently from
this work, Janota and Marques-Silva proposed clause selection
and implemented the approach in the tool Qesto [28]. Similar
to clausal abstractions, they reason about the satisfaction of
sets of clauses and the algorithms have a similar structure.
The encodings of the individual quantifier blocks, however,
reveal interesting differences in the execution of this idea:
• Qesto uses equality constraints for the variables connect-

ing the quantification levels while CAQE uses implica-
tions, requiring fewer clauses in the encoding.

• For universally quantified levels, CAQE needs to add only
one variable per clause, while Qesto needs two.

• Qesto considers the clauses for existential and universal
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Fig. 3. The size of certificates computed by CAQE and DepQBF.

levels in a negated form, while CAQE does not negate
existential levels.

It will be interesting to see whether CAQE and Qesto share the
same runtime characteristics or whether these are particular
to our encoding, and whether Qesto can be extended to
certification as well.

Certifying QBF: Certifying QBF solvers enable a rich set
of applications like encodings of bounded model checking [3]–
[6] and synthesis that use the certificates as implementa-
tions [12]. Previous certifying QBF solvers were based on
a DPLL-like search [14], [15] or expansion [29]. Our work
shows how to enable certification for the CEGAR approach.

There has been work on certifying QBF preprocessing
techniques based on QRAT proofs in Bloqqer [30], [31]. It may
be possible to integrate CAQE in combination with Bloqqer
in a similar setting as in [32].

VIII. CONCLUSIONS AND FUTURE WORK

We presented clausal abstractions, a decomposition of QBFs
into sequences of propositional formulas, and a new CEGAR
algorithm for QBF. The overall performance is competitive and
our experiments suggest that the new algorithm is effective
for instances with a high number of quantifier alternations.
We showed how to certify the results of the algorithm and
the evaluation shows that significantly more instances can be
certified with our solver compared to the state-of-the-art.

In the future, we plan to consider joining the two notions of
refinement used in RAReQS and CAQE and to integrate our
algorithm in a certification framework like [32] to enable its
use together with certified preprocessing.
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Abstract—Difference constraints have been used for termination
analysis in the literature, where they denote relational inequalities
of the form x′ ≤ y + c, and describe that the value of x in the
current state is at most the value of y in the previous state
plus some constant c ∈ Z. In this paper, we argue that the
complexity of imperative programs typically arises from counter
increments and resets, which can be modeled naturally by
difference constraints. We present the first practical algorithm for
the analysis of difference constraint programs and describe how
C programs can be abstracted to difference constraint programs.
Our approach contributes to the field of automated complexity
and (resource) bound analysis by enabling automated amortized
complexity analysis for a new class of programs and providing
a conceptually simple program model that relates invariant- and
bound analysis. We demonstrate the effectiveness of our approach
through a thorough experimental comparison on real world C
code: our tool Loopus computes the complexity for considerably
more functions in less time than related tools from the literature.

I. INTRODUCTION

Automated program analysis for inferring program complexity
and (resource) bounds is a very active area of research.
Amongst others, approaches have been developed for ana-
lyzing functional programs [14], C# [13], C [5], [21], [16],
Java [4] and Integer Transition Systems [4], [7], [10].
Difference constraints (DCs) have been introduced by Ben-
Amram for termination analysis in [6], where they denote
relational inequalities of the form x′ ≤ y + c, and describe
that the value of x in the current state is at most the value
of y in the previous state plus some constant c ∈ Z. We call
a program whose transitions are given by a set of difference
constraints a difference constraint program (DCP ).
In this paper, we advocate the use of DCs for program
complexity and (resource) bounds analysis. Our key insight
is that DCs provide a natural abstraction of the standard
manipulations of counters in imperative programs: counter
increments/decrements x := x+ c resp. resets x := y, can be
modeled by the DCs x′ ≤ x+ c resp. x′ ≤ y (see Section IV
on program abstraction). In contrast, previous approaches to
bound analysis can model either only resets [13], [5], [21], [4],
[7], [10] or increments [16]. For this reason, we are able to
design a more powerful analysis: In Section II-A we discuss
that our approach achieves amortized analysis for a new class
of programs. In Section II-B we describe how our approach
performs invariant analysis by means of bound analysis.

Supported by the Austrian National Research Network S11403-N23 (RiSE)
of the Austrian Science Fund (FWF) and by the Vienna Science and Tech-
nology Fund (WWTF) through grants PROSEED and ICT12-059.

In this paper, we establish the practical usefulness of DCs
for bound (and complexity) analysis of imperative programs:
1) We propose the first algorithm for bound analysis of
DCPs . Our algorithm is based on the dichotomy between
increments and resets. 2) We develop appropriate techniques
for abstracting C programs to DCPs: we describe how to
extract norms (integer-valued expressions on the program
state) from C programs and how to use them as variables in
DCPs . We are not aware of any previous implementation of
DCPs for termination or bound analysis. 3) We demonstrate
the effectiveness of our approach through a thorough experi-
mental evaluation. We present the first comparison of bound
analysis tools on source code from real software projects (see
Section V). Our implementation performs significantly better
in time and success rate.

II. MOTIVATION AND RELATED WORK

A. Amortized Complexity Analysis

Example 1 stated in Figure 1 is representative for a class of
loops that we found in parsing and string matching routines
during our experiments. In these loops the inner loop iterates
over disjoint partitions of an array or string, where the partition
sizes are determined by the program logic of the outer loop.
For an illustration of this iteration scheme, we refer the reader
to Example 3 stated in the extended version [18], which
contains a snippet of the source code after which we have
modeled Example 1. Example 1 has the linear complexity 2n,
because the inner loop as well as the outer loop can be iterated
at most n times (as argued in the next paragraph). However,
previous approaches to bound analysis [13], [5], [21], [16],
[4], [7], [10] are only able to deduce that the inner loop can
be iterated at most a quadratic number of times (with loop
bound n2) by the following reasoning: (1) the outer loop can
be iterated at most n times, (2) the inner loop can be iterated at
most n times within one iteration of the outer loop (because
the inner loop has a local loop bound p and p ≤ n is an
invariant), (3) the loop bound n2 is obtained from (1) and (2)
by multiplication. We note that inferring the linear complexity
2n for Example 1, even though the inner loop can already be
iterated n times within one iteration of the outer loop, is an
instance of amortized complexity analysis [19].
In the following, we give an overview how our approach infers
the linear complexity for Example 1:
1. Program Abstraction. We abstract the program to a DCP
over Z as shown in Figure 1. We discuss our algorithm for
abstracting imperative programs to DCPs based on symbolic
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void foo(uint n) {
int x = n;
int r = 0;

l1 while(x > 0) {
x = x - 1;
r = r + 1;

l2 if(*) {
int p = r;

l3 while(p > 0)
p--;

r = 0;
}

l4 } }

lb

l1 le

l2

l3l4

τ0 ≡
x′ ≤ n;
r′ ≤ 0;

τ1 ≡
x > 0,
x′ ≤ x− 1
r′ ≤ r + 1

τ2a ≡
x′ ≤ x
r′ ≤ r
p′ ≤ rτ2b ≡

x′ ≤ x
r′ ≤ r

τ4 ≡
x′ ≤ x
r′ ≤ 0

τ5 ≡
r′ ≤ r
x′ ≤ x

p > 0,
x′ ≤ x
r′ ≤ r
p′ ≤ p− 1

τ3 ≡

foo(uint n, uint m1,
uint m2) {

int y = n;
int x;

l1 if(*)
x = m1;

else
x = m2;

l2 while(y > 0) {
y--;
x = x + 2; }

int z = x;
l3 while(z > 0)

z--; }

lb

l1

l2

l3 le

τ0 ≡ y′ ≤ n

τ0a ≡
y′ ≤ y
x′ ≤ m1

τ0b ≡
y′ ≤ y
x′ ≤ m2

τ1 ≡
y > 0,
y′ ≤ y − 1
x′ ≤ x+ 2

τ2 ≡ z′ ≤ x;

τ3 ≡
z > 0,

z′ ≤ z − 1

Complexity: TB(τ5) + TB(τ3) = n+ n = 2n Complexity: TB(τ1) + TB(τ3) = max(m1,m2) + 3n

Example 1 abstracted DCP of Example 1 Example 2 abstracted DCP of Example 2

Fig. 1. Running Examples, * denotes non-determinism (arising from conditions not modeled in the analysis)

execution in Section IV.
2. Finding Local Bounds. We identify p as a variable that
limits the number of executions of transition τ3: We have the
guard p > 0 on τ3 and p decreases on each execution of τ3.
We call p a local bound for τ3. Accordingly we identify x as
a local bound for transitions τ1, τ2a, τ2b, τ4, τ5.
3. Bound Analysis. Our algorithm (stated in Section III)
computes transition bounds, i.e., (symbolic) upper bounds on
the number of times program transitions can be executed, and
variable bounds, i.e., (symbolic) upper bounds on variable val-
ues. For both types of bounds, the main idea of our algorithm
is to reason how much and how often the value of the local
bound resp. the variable value may increase during program
run. Our algorithm is based on a mutual recursion between
variable bound analysis (“how much”, function VB(v)) and
transition bound analysis (“how often”, function TB(τ)).
Next, we give an intuition how our algorithm computes
transition bounds: Our algorithm computes TB(τ) = n for
τ ∈ {τ1, τ2a, τ2b, τ4, τ5} because the local bound x is initially
set to n and never increased or reset. Our algorithm computes
TB(τ3) (τ3 corresponds to the loop at l3) as follows: τ3 has
local bound p; p is reset to r on τ2a; our algorithm detects that
before each execution of τ2a, r is reset to 0 on either τ0 or τ4,
which we call the context under which τ2a is executed; our
algorithm establishes that between being reset and flowing into
p the value of r can be incremented up to TB(τ1) times by 1;
our algorithm obtains TB(τ1) = n by a recursive call; finally,
our algorithm calculates TB(τ3) = 0 + TB(τ1)× 1 = n. We
give an example for the mutual recursion between TB and
VB in Section II-B.
We contrast our approach for computing the loop bound of
l3 of Example 1 with classical invariant analysis: Assume
’c’ counting the number of inner loop iterations (i.e., c
is initialized to 0 and incremented in the inner loop). For
inferring c <= n through invariant analysis the invariant
c+x+ r <= n is needed for the outer loop, and the invariant
c+x+p <= n for the inner loop. Both relate 3 variables and
cannot be expressed as (parametrized) octagons (e.g., [11]).
Further, the expressions c + x + r and c + x + p do not
appear in the program, which is challenging for template based
approaches to invariant analysis.

B. Invariants and Bound Analysis

We explain on Example 2 in Figure 1 how our approach
performs invariant analysis by means of bound analysis. We
first motivate the importance of invariant analysis for bound
analysis. It is easy to infer x as a bound for the possible
number of iterations of the loop at l3. However, in order to
obtain a bound in the function parameters the difficulty lies
in finding an invariant x ≤ expr(n,m1,m2). Here, the most
precise invariant x ≤ max(m1,m2) + 2n cannot be computed
by standard abstract domains such as octagon or polyhedra:
these domains are convex and cannot express non-convex
relations such as maximum. The most precise approximation of
x in the polyhedra domain is x ≤ m1+m2+2n. Unfortunately,
it is well-known that the polyhedra abstract domain does not
scale to larger programs and needs to rely on heuristics for
termination. Next, we explain how our approach computes
invariants using bound analysis and discuss how our reasoning
is substantially different from invariant analysis by abstract
interpretation.
Our algorithm computes a transition bound for the loop at
l3 by TB(τ3) = TB(τ2) × VB(x) = 1 × VB(x) =
VB(x) = TB(τ1) × 2 + max(m1,m2) = (n × TB(τ0)) ×
2 + max(m1,m2) = (n × 1) × 2 + max(m1,m2) = 2n +
max(m1,m2). We point out the mutual recursion between
TB and VB: TB(τ3) has called VB(x), which in turn
called TB(τ1). We highlight that the variable bound VB(x)
(corresponding to the invariant x ≤ max(m1,m2) + 2n) has
been established during the computation of TB(τ3).
Standard abstract domains such as octagon or polyhedra
propagate information forward until a fixed point is reached,
greedily computing all possible invariants expressible in the
abstract domain at every location of the program. In contrast,
VB(x) infers the invariant x ≤ max(m1,m2) + 2n by
modular reasoning: local information about the program (i.e.,
increments/resets of variables, local bounds of transitions) is
combined to a global program property. Moreover, our variable
and transition bound analysis is demand-driven: our algorithm
performs only those recursive calls that are indeed needed
to derive the desired bound. We believe that our analysis
complements existing techniques for invariant analysis and
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will find applications outside of bound analysis.

C. Related Work

In [6] it is shown that termination of DCPs is undecidable
in general but decidable for the natural syntactic subclass of
deterministic DCPs (see Definition 2), which is the class of
DCPs we use in this paper. It is an open question for future
work whether there is a complete algorithm for bound analysis
of deterministic DCPs .
In [16] a bound analysis based on constraints of the form
x′ ≤ x + c is proposed, where c is either an integer or a
symbolic constant. The resulting abstract program model is
strictly less powerful than DCPs . In [21] a bound analysis
based on so-called size-change constraints x′Cy is proposed,
where C ∈ {<,≤}. Size-change constraints form a strict syn-
tactic subclass of DCs . However, termination is decidable even
for non-deterministic size-change programs and a complete
algorithm for deciding the complexity of size-change programs
has been developed [9]. Because the constraints in [21], [16]
are less expressive than DCs , the resulting bound analyses
cannot infer the linear complexity of Example 1 and need to
rely on external techniques for invariant analysis.
In Section V we compare our implementation against the
most recent approaches to automated complexity analysis [10],
[7], [16]. [10] extends the COSTA approach by control flow
refinement for cost equations and a better support for multi-
dimensional ranking functions. The COSTA project (e.g. [4])
computes resource bounds by inferring an upper bound on
the solutions of certain recurrence equations (so-called cost
equations) relying on external techniques for invariant analysis
(which are not explicitly discussed). The bound analysis in [7]
uses approaches for computing polynomial ranking functions
from the literature to derive bounds for SCCs in isolation
and then expresses these bounds in terms of the function
parameters using invariant analysis (see next paragraph).
The powerful idea of expressing locally computed loop bounds
in terms of the function parameters by alternating between
loop bound analysis and variable upper bound analysis has
been explored in [7], [16] (as discussed in the extended ver-
sion [17]) and [12]. We highlight some important differences
to these earlier works. [7] computes upper bound invariants
only for the absolute values of variables; this does, for
example, not allow to distinguish between variable increments
and decrements during the analysis. [17] and [12] do not give
a general algorithm but deal with specific cases.
[20] discusses automatic parallelization of loop iterations; the
approach builds on summarizing inner loops by multiplying
the increment of a variable on a single iteration of a loop
with the loop bound. The loop bounds in [20] are restricted
to simple syntactic patterns.
The recent paper [8] discusses an interesting alternative for
amortized complexity analysis of imperative programs: A sys-
tem of linear inequalities is derived using Hoare-style proof-
rules. Solutions to the system represent valid linear resource
bounds. Interestingly, [8] is able to compute the linear bound
for l3 of Example 1 but fails to deduce the bound for the
original source code (provided in the extended version [18]).

Moreover, [8] is restricted to linear bounds, while our approach
derives polynomial bounds (e.g., Example B in Figure 2)
which may also involve the maximum operator. An experi-
mental comparison was not possible as [8] was developed in
parallel.

III. PROGRAM MODEL AND ALGORITHM

In this section we present our algorithm for computing worst-
case upper bounds on the number of executions of a given
transition (transition bound) and on the value of a given
variable (variable bound). We base our algorithm on the
abstract program model of DCPs stated in Definition 2. In
Section III-B we generalize DCPs and our algorithm to the
non-well-founded domain Z.

Definition 1 (Difference Constraints). Let V be a finite set of
variables and C be a finite set of symbolic constants. A =
V ∪ C ∪N is the set of atoms. A difference constraint over A
is an inequality of form x′ ≤ y + c with x ∈ V , y ∈ A and
c ∈ Z. DC(A) is the set of all difference constraints over A.

Definition 2 (Difference Constraint Program). A difference
constraint program (DCP ) over A is a directed labeled graph
∆P = (L, T, lb, le), where L is a finite set of locations, lb ∈ L
is the entry location, le ∈ L is the exit location and T ⊆
L×2DC(A)×L is a finite set of transitions. We write l1

u−→ l2 to
denote a transition (l1, u, l2) ∈ T labeled by a set of difference
constraints u ∈ 2DC(A). Given a transition τ = l1

u−→ l2 ∈ T
of ∆P we call l1 the source location of τ and l2 the target
location of τ . A path of ∆P is a sequence l0

u0−→ l1
u1−→ · · ·

with li
ui−→ li+1 ∈ T for all i. The set of valuations of A is

the set ValA = A → N of mappings from A to the natural
numbers with σ(a) = a if a ∈ N. A run of ∆P is a sequence
(lb, σ0)

u0−→ (l1, σ1)
u1−→ · · · such that lb

u0−→ l1
u1−→ · · · is

a path of ∆P and for all i it holds that (1) σi ∈ ValA, (2)
σi+1(x) ≤ σi(y)+c for all x′ ≤ y + c ∈ ui, (3) σi(s) = σ0(s)
for all s ∈ C. Given v ∈ V and l ∈ L we say that v is
defined at l and write v ∈ D(l) if l 6= lb and for all incoming
transitions l1

u−→ l ∈ T of l it holds that there are a ∈ A and
c ∈ Z s.t. v′ ≤ a + c ∈ u.
∆P is deterministic (fan-in-free in the terminology of [6]), if
for every transition l1

u−→ l2 ∈ T and every v ∈ V there is at
most one a ∈ A and c ∈ Z s.t. v′ ≤ a + c ∈ u.

Our approach assumes the given DCP to be deterministic.
We further assume that DCPs are well-defined: Let v ∈ V
and l ∈ L, if v is live at l then v ∈ D(l). Our abstraction
algorithm from Section IV generates only deterministic and
well-defined DCPs.
In Definitions 3 to 10 we assume a DCP ∆P(L, T, lb, le) over
A to be given.

Definition 3 (Transition Bound). Let τ ∈ T , τ is bounded
iff τ appears a finite number of times on any run of ∆P . An
expression expr over C ∪Z is a transition bound for τ iff τ is
bounded and for any finite run ρ = (lb, σ0)

u0−→ (l1, σ1)
u1−→

(l2, σ2)
u2−→ . . . (le, σn) of ∆P it holds that τ appears not

more than σ0(expr) often on ρ. We say that a transition bound
expr of τ is precise iff there is a run ρ of ∆P s.t. τ appears
σ0(expr) times on ρ.
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(A)
lb

l1

le

τ0 ≡
i′ ≤ n
j′ ≤ 0

τ1 ≡
i′ ≤ i− 1
j′ ≤ j + 1

τ2 ≡
i′ ≤ i
j′ ≤ j − 1

(B)
lb

l1

le

τ0 ≡

i′ ≤ n
j′ ≤ 0
l′ ≤ n
k′ ≤ 0

τ1 ≡
i′ ≤ i− 1
j′ ≤ j
l′ ≤ l
k′ ≤ k + 1

τ3 ≡

i′ ≤ i
j′ ≤ j − 1
l′ ≤ l
k′ ≤ ki′ ≤ i

j′ ≤ k
l′ ≤ l− 1
k′ ≤ k

τ2 ≡

(C)
lb

l1 le

l2

τ0 ≡
i′ ≤ n
r′ ≤ n

τ1 ≡
i′ ≤ i
r′ ≤ r
k′ ≤ r

i′ ≤ i
r′ ≤ r
k′ ≤ k − 1τ2 ≡

τ3 ≡
i′ ≤ i− 1
r′ ≤ 0

Complexity: TB(τ1) + TB(τ2) = 2n Complexity: TB(τ1) + TB(τ2) + TB(τ3) = 2n+ n2 Complexity: TB(τ2) + TB(τ3) = 2n

ζ : {τ0 7→ 1, τ1 7→ i, τ2 7→ j} ζ : {τ0 7→ 1, τ1 7→ i, τ2 7→ l, τ3 7→ j} ζ : {τ0 7→ 1, τ1 7→ i, τ3 7→ i, τ2 7→ k}
TB(τ1) = n,TB(τ2) = n TB(τ1) = n, TB(τ2) = n, TB(τ3) = n2 Def. 8: TB(τ1) = n, TB(τ2) = n2, TB(τ3) = n

Def. 10: TB(τ1) = n, TB(τ2) = n, TB(τ3) = n

Fig. 2. Example DCP ’s (A), (B), (C)

We want to infer the complexity of the examples in Figure 2
(Examples A, B, C), i.e., we want to infer how often location
l1 can be visited during an execution of the program. We
will do so by computing a bound on the number of times
transitions τ0, τ1, τ2 and τ3 may be executed. In general, the
complexity of a given program can be inferred by summing
up the transition bounds for the back edges in the program.

Definition 4 (Counter Notation). Let τ ∈ T and v ∈ V . Let
ρ = (lb, σ0)

u0−→ (l1, σ1)
u1−→ · · · (le, σn) be a finite run of

∆P . By ](τ, ρ) we denote the number of times that τ occurs
on ρ. By ↓(v, ρ) we denote the number of times that the value
of v decreases on ρ, i.e. ↓(v, ρ) = |{i | σi(v) > σi+1(v)}|.

Definition 5 (Local Transition Bound). Let τ ∈ T and v ∈ V .
v is a local bound for τ iff on all finite runs ρ = (lb, σ0)

u0−→
(l1, σ1)

u1−→ · · · (le, σn) of ∆P it holds that ](τ, ρ) ≤ ↓(v, ρ).
We call a complete mapping ζ : T → V ∪ {1} a local bound
mapping for ∆P if ζ(τ) is a local bound of τ or ζ(τ) = 1
and τ can only appear at most once on any path of ∆P .

Example A: i is a local bound for τ1, j is a local bound for
τ2. Example C: i is a local bound for τ1 and for τ3.

A variable v is a local transition bound if on any run of ∆P
we can traverse τ not more often than the number of times the
value of v decreases. I.e., a local bound v limits the potential
number of executions of τ as long as the value of v does
not increase. In our analysis, local transition bounds play the
role of potential functions in classical amortized complexity
analysis [19]. Our bound algorithm is based on a mapping
which assigns each transition a local bound. We discuss how
we find local bounds in Section III-C.

Definition 6 (Variable Bound). An expression expr over C∪Z
is a variable bound for v ∈ V iff for any finite run ρ =
(lb, σ0)

u0−→ (l1, σ1)
u1−→ (l2, σ2)

u2−→ . . . (le, σn) of ∆P and
all 1 ≤ i ≤ n with v ∈ D(li) it holds that σi(v) ≤ σ0(expr).

Let v ∈ V . Our algorithm is based on a syntactic distinction
between transitions which increment v or reset v.

Definition 7 (Resets and Increments). Let v ∈ V . We define
the resets R(v) and increments I(v) of v as follows:

R(v) = {(l1
u−→ l2, a, c) ∈ T ×A× Z |

v′ ≤ a + c ∈ u, a 6= v}
I(v) = {(l1

u−→ l2, c) ∈ T × Z | v′ ≤ v + c ∈ u, c > 0}
Given a path π of ∆P we say that v is reset on π if there
is a transition τ on π such that (τ, a, c) ∈ R(v) for some
a ∈ A and c ∈ Z.

Example B: I(k) = {(τ1, 1)} and R(k) = {(τ0, n, 0)}.
I.e., we have (τ, a, c) ∈ R(v) if variable v is reset to a value
≤ a+c when executing the transition τ . Accordingly we have
(τ, c) ∈ I(v) if variable v is incremented by a value ≤ c when
executing the transition τ .
Our algorithm in Definition 8 is build on a mutual recursion
between the two functions VB(v) and TB(τ), where VB(v)
infers a variable bound for v and TB(τ) infers a transition
bound for the transition τ .

Definition 8 (Bound Algorithm). Let ζ : T → V ∪ {1} be a
local bound mapping for ∆P . We define VB : A 7→ Expr(A)
and TB : T 7→ Expr(A) as:
VB(a) = a, if a ∈ A \ V , else
VB(v) = Incr(v) + max

( ,a,c)∈R(v)
(VB(a) + c)

TB(τ) = 1, if ζ(τ) = 1, else
TB(τ) = Incr(ζ(τ))

+
∑

(t,a,c)∈R(ζ(τ))

TB(t)×max(VB(a) + c, 0)

where
Incr(v) =

∑
(τ,c)∈I(v)

TB(τ)× c (Incr(v) = 0 for I(v) = ∅)

Discussion: We first explain the subroutine Incr(v): With
(τ, c) ∈ I(v) we have that a single execution of τ increments
the value of v by not more than c. Incr(v) multiplies the
transition bound of τ with the increment c for summarizing
the total amount by which v may be incremented over all
executions of τ . Incr(v) thus computes a bound on the total
amount by which the value of v may be incremented during
a program run.
The function VB(v) computes a variable bound for v: After
executing a reset transition (τ, a, c) ∈ R(v), the value of v is
bounded by VB(a) + c. As long as v is not reset, its value
cannot increase by more than Incr(v).
The function TB(τ) computes a transition bound for τ based
on the following reasoning: (1) The total amount by which
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the local bound ζ(τ) of transition τ can be incremented is
bounded by Incr(ζ(τ)). (2) We consider a reset (t, a, c) ∈
R(ζ(τ)); in the worst case, a single execution of t resets the
local bound ζ(t) to VB(a) + c, adding max(VB(a) + c, 0)
to the potential number of executions of t; in total all TB(t)
possible executions of t add up to TB(t)×max(VB(a)+c, 0)
to the potential number of executions of t.
Example A, ζ as defined in Figure 2: j is reset to 0 on τ0 and
incremented by 1 on τ1. i is reset to n on τ0. Our algorithm
computes TB(τ2) = TB(τ1)× 1 + TB(τ0)× 0 = TB(τ1) =
TB(τ0)× n = n. Thus the overall complexity of Example A
is inferred by TB(τ1) + TB(τ2) = 2n.
Example B, ζ as defined in Figure 2: i and l are reset to n on
τ0. Our algorithm computes TB(τ1) = TB(τ0)× n = n and
TB(τ2) = TB(τ0) × n = n. j is reset to 0 on τ0 and reset
to k on τ2. Our algorithm computes TB(τ3) = TB(τ0)× 0 +
TB(τ2)×VB(k). Since k is reset to 0 on τ0 and incremented
by 1 on τ1, our algorithm computes VB(k) = TB(τ1)× 1 =
n × 1 = n. Thus TB(τ3) = TB(τ2) × VB(k) = n × n =
n2. Thus the overall complexity of Example B is inferred by
TB(τ1) + TB(τ2) + TB(τ3) = n+ n+ n2 = 2n+ n2.
Example 2 (Figure 1): ζ = {τ0, τ0a , τ0b , τ2 7→ 1, τ1 7→
y, τ3 7→ z}, R(z) = {(τ2, x, 0)}, I(x) = {(τ1, 2)}, R(x) =
{(τ0a,m1, 0), (τ0b,m2, 0)}, R(y) = {(τ0, n, 0)}. We have
stated the computation of TB(τ3) in Section II-B.
Termination: Our algorithm does not terminate if recursive
calls cycle, i.e., if a call to TB(τ) resp. VB(v) (indirectly)
leads to a recursive call to TB(τ) resp. VB(v). This can be
easily detected, we return the value ⊥ (undefined).

Theorem 1 (Soundness). Let ∆P(L, T, lb, le) be a well-
defined and deterministic DCP over atoms A, ζ : T 7→
V ∪ {1} be a local bound mapping for ∆P , v ∈ V and τ ∈ T .
Either TB(τ) = ⊥ or TB(τ) is a transition bound for τ .
Either VB(v) = ⊥ or VB(v) is a variable bound for v.

A. Context-Sensitive Bound Analysis

So far our algorithm reasons about resets occurring on single
transitions. In this section we increase the precision of our
analysis by exploiting the context under which resets are
executed through a refined notion of resets and increments.

Definition 9 (Reset Graph). The Reset Graph for ∆P is
the graph G(A, E) with E ⊆ A × T × Z × V s.t. E =
{(x, τ, c, y) | (τ, y, c) ∈ R(x)}. We call a finite path κ =

an
τn,cn−−−→ an−1

τn−1,cn−1−−−−−−−→ . . . a0 in G with n > 0 a reset

path of ∆P . We define in(κ) = an, c(κ) =
n∑
i=1

ci, trn(κ) =

{τn, τn−1 . . . , τ1}, and atm(κ) = {an, an−1 . . . , a0}. κ is
sound if for all 1 ≤ i < n it holds that ai is reset on all
paths from the target location of τ1 to the source location of
τi in ∆P . κ is optimal if κ is sound and there is no sound
reset path κ̂ s.t. κ is a suffix of κ̂, i.e., κ̂ = an+k

τn+k,cn+k−−−−−−−→
an+k−1

τn+k−1,cn+k−1−−−−−−−−−−→ . . . an
τn,cn−−−→ an−1

τn−1,cn−1−−−−−−−→ . . . a0

with k ≥ 1. Let v ∈ V , by R(v) we denote the set of optimal
reset paths ending in v.

We explain the notions sound and optimal in the course of
the following discussion. Figure 3 shows the reset graphs

0n
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n l
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j

τ0

τ0
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Fig. 3. Reset Graphs, increments by 0 are not depicted

of Examples A, B, C and Example 1 from Figure 1. For a
given reset (τ, a, c) ∈ R(v), the reset graph determines which
atom flows into variable v under which context. For example,
consider G(C): When executing the reset (τ1, r, 0) ∈ R(k)
under the context τ3, k is set to 0, if the same reset is executed
under the context τ0, k is set to n. Note that the reset graph
does not represent increments of variables. We discuss how
we handle increments below.
We assume that the reset graph is a DAG. We can always
force the reset graph to be a DAG by abstracting the DCP :
we remove all program variables which have cycles in the
reset graph and all variables whose values depend on these
variables. Note that if the reset graph is a DAG, the set R(v)
is finite for all v ∈ V .
Let v ∈ V . Given a reset path κ of length k that ends
in v, we say that (trn(κ), in(κ), c(κ)) is a reset of v with
context of length k − 1. I.e., R(v) from Definition 7 is the
set of context-free resets of v (context of length 0), because
(trn(κ), in(κ), c(κ)) ∈ R(v) iff κ ends in v and has length
1. Our algorithm from Definition 8 reasons context free since
it uses only context-free resets.
Consider Example C. The precise bound for τ2 is n because we
can iterate τ2 only in the first iteration of the loop at l1 since r
is reset to 0 on τ3. But when reasoning context-free, our algo-
rithm infers a quadratic bound for τ2: We assume ζ to be given
as stated in Figure 2. In G(C) κ = r

τ1,0−−→ k is the only reset
path of length 1 ending in k. Thus R(k) = {(τ1, r, 0)}. Our
algorithm from Definition 8 computes: TB(τ1) = TB(τ0) ×
n = n, VB(r) = TB(τ0) × n + TB(τ3) × 0 = n,
TB(τ2) = TB(τ1)×VB(r) = n× n = n2.
We show how our algorithm infers the linear bound for τ2
when using resets with context: If we consider κ with contexts,
we get κ1 = 0

τ3,0−−→ r
τ1,0−−→ k and κ2 = n

τ0,0−−→ r
τ1,0−−→ k.

Note that κ1 and κ2 are sound by Definition 9 because r is
reset on all paths from the target location l2 of τ1 to the source
location l1 of τ1 in Example C (namely on τ3). Thus R(k) =
{({τ3, τ1}, 0, 0), ({τ0, τ1}, n, 0)}. We can compute a bound on
the number of times that a sequence τ1, τ2, . . . τn of transitions
may occur on a run by computing min

1≤i≤n
TB(τi). Thus, basing

our analysis on R(k) rather thanR(k) we compute: TB(τ2) =
min(TB(τ3),TB(τ1)) × 0 + min(TB(τ0),TB(τ1)) × n =
min(n, 1)× n = n.
We have demonstrated that our analysis gains precision when
adding context to our notion of resets. It is, however, not sound
to base the analysis on maximal reset paths (i.e., resets with
maximal context) only: Consider Example B with ζ as stated
in Figure 2. There are 2 maximal reset paths ending in j (see
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G(B)): κ1 = 0
τ0,0−−→ j and κ2 = 0

τ0,0−−→ k
τ2,0−−→ j. Thus

R(j)′ = {({τ0, τ2}, 0, 0), ({τ0}, 0, 0)} is the set of resets of
j with maximal context. Using R(j)′ rather than R(j) our
algorithm computes: TB(τ3) = min(TB(τ0),TB(τ2))× 0 +
TB(τ0)× 0 +TB(τ1)× 1 = TB(τ1)× 1 = n, but n is not a
transition bound for τ3. The reasoning is unsound because κ2

is unsound by Definition 9: k is not reset on all paths from
the target location l1 of τ2 to the source location l1 of τ2 in
Example B: e.g., the path τ2 = l1

u2−→ l1 of Example B does
not reset k.
We base our context sensitive algorithm on the set R(v) of
optimal reset paths. The optimal reset paths are those that are
maximal within the sound reset paths (Definition 9).

Definition 10 (Bound Algorithm with Context). Let ζ :
T → V ∪ {1} be a local bound mapping for ∆P . Let
VB : A 7→ Expr(A) be as defined in Definition 8. We
override the definition of TB : T 7→ Expr(A) in Definition 8
by stating:

TB(τ) = 1 if ζ(τ) = 1 else
TB(τ) =

∑
κ∈R(ζ(τ))

TB(trn(κ))×max(VB(in(κ)) + c(κ), 0)

+
∑

a∈atm(κ)

Incr(a)

where
TB({τ1, τ2, . . . , τn}) = min

1≤i≤n
TB(τi)

Discussion and Example: The main difference to the definition
of TB(τ) in Definition 8 is that the term Incr(ζ(τ)) is
replaced by the term

∑
a∈atm(κ)

Incr(a). Consider the abstracted

DCP of Example 1 in Figure 1. We have discussed in
Section II-A that r may be incremented on τ1 between
the reset of r to 0 on τ0 resp. τ4 and the reset of p to
r on τ2a. The term

∑
a∈atm(κ)

Incr(a) takes care of such

increments which may increase the value that finally flows
into ζ(τ) (in the example p) when the last transition on κ
(in the example τ2a) is executed: We use the local bound
mapping ζ = {τ0 7→ 1, τ1 7→ x, τ2a 7→ x, τ2b 7→ x, τ4 7→
x, τ5 7→ x, τ3 7→ p} for Example 1. The reset graph of
Example 1 is shown in Figure 3. We have R(p) = {0 τ0−→
r

τ2a−−→ p, 0
τ4−→ r

τ2a−−→ p}. Thus our algorithm computes
TB(τ3) =

∑
κ∈R(p)

TB(trn(κ))×max(VB(in(κ))+c(κ), 0)+∑
a∈atm(κ)

Incr(a) = TB({τ0, τ2a}) × max(VB(0), 0) +

Incr(r) + TB({τ4, τ2a}) × max(VB(0), 0) + Incr(r) =
2× Incr(r) = 2× TB(τ1)× 1 = 2× n (with TB(τ1) = n).
Complexity: In theory there can be exponentially many resets
in R(v). In our experiments this never occurred, enumeration
of (optimal) reset paths did not affect performance.
Further Optimization: We have shown in Section II that
transitions τ3 of Example 1 has a linear bound, precisely
n. The Bound 2n that is computed by our bound algorithm
from Definition 10 is linear but not precise. We compute
2n because r appears on both reset paths of p and therefore
Incr(r) = n is added twice. However, there is only one
transition (τ2a) on which p is reset to r and between any
two executions of τ2a r will be reset to 0. For this reason

each increment of r can only contribute once to the increase
of the local bound p of τ3, and not twice. We thus suggest
to further optimize our algorithm from Definition 10 by
distinguishing if there is more than one way how a ∈ atm(κ)
may flow into the target variable of κ or not. We divide
atm(κ) into two disjoint sets atm2(κ) = {a ∈ atm(κ) |
more than 1 path from a to target variable of κ in G(∆P)},
atm1(κ) = atm(κ) \ atm2(κ). We define

TB(τ) = (
∑

a∈
⋃

κ∈R(ζ(τ))

atm1(κ)

Incr(a)) +

∑
κ∈R(ζ(τ))

TB(trn(κ))×max(VB(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

Incr(a)

for ζ(τ) 6= 1. Note that for Example 1 atm1(κ) = {r} and
atm2(κ) = ∅ for both κ ∈ R(p). Therefore TB(τ3) = I(r) =
n with the optimization.

Theorem 2 (Soundness of Bound Algorithm with Context).
Let ∆P(L, T, lb, le) be a well-defined and deterministic DCP
over atoms A, ζ : T 7→ V ∪ {1} be a local bound mapping for
∆P , v ∈ V and τ ∈ T . Let TB(τ) and VB(a) be defined as
in Definition 10. Either TB(τ) = ⊥ or TB(τ) is a transition
bound for τ . Either VB(v) = ⊥ or VB(v) is a variable bound
for v.

B. DCPs over non-well-founded domains

In real world code, many data types are not well-founded. The
abstraction of a concrete program is much simpler and more
information is kept if the abstract program model is not limited
to a well-founded domain. Below we extend our program
model from Definition 2 to the non-well-founded domain Z by
adding guards to the transitions in the program. Interestingly
our bound algorithm from Definition 8 resp. Definition 10
remains sound for the extended program model, if we adjust
our notion of a local transition bound (Definition 11).
We extend the range of the valuations ValA of A from N
to Z and allow constants to be integers, i.e., we define A =
V∪C∪Z. We extend Definition 2 as follows: The transitions T
of a guarded DCP ∆P(L, T, lb, le) are a subset of L× 2V ×
2DC(A)×L. A sequence (lb, σ0)

g0,u0−−−→ (l1, σ1)
g1,u1−−−→ · · · is a

run of ∆P if it meets the conditions required in Definition 2
and additionally σi(x) > 0 holds for all x ∈ gi. For examples
see Figure 1.

Definition 11 (Local Transition Bound for DCPs with
guards). Let ∆P(L, T, lb, le) be a DCP with guards over A.
Let τ ∈ T and v ∈ V . v is a local bound for τ if for all finite
runs ρ = (lb, σ0)

τ0−→ (l1, σ1)
τ1−→ · · · (le, σn) of ∆P it holds

that ](τ, ρ) ≤ ↓(max(v, 0), ρ).

The algorithms in Sections III-C and IV are based on the
extended program model over Z, it is straightforward to adjust
them for DCPs without guards.

C. Determining Local Bounds

We call a path of a DCP ∆P(L, T, lb, le) simple and cyclic
if it has the same start- and end-location and does not visit a
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location twice except for the start- and end-location. Given a
transition τ ∈ T we assign it v ∈ V as local bound if for all
simple and cyclic paths π = l1

g1,u1−−−→ l2
g2,u2−−−→ ...ln (ln = l1)

of ∆P that traverse τ it holds that (1) ∃0 < i < n s.t. v ∈ gi
and (2) ∃0 < i < n s.t. v′ ≤ v + c ∈ ui for some c < 0. Our
implementation avoids an explicit enumeration of the simple
and cyclic paths of ∆P by a simple data flow analysis.

IV. PROGRAM ABSTRACTION

In this section we present our concrete program model and
discuss how we abstract a given program to a DCP .

Definition 12 (Program). Let Σ be a set of states. The set of
transition relations Γ = 2Σ×Σ is the set of relations over Σ. A
program is a directed labeled graph P = (L,E, lb, le), where
L is a finite set of locations, lb ∈ L is the entry location,
le ∈ L is the exit location and E ⊆ L×Γ×L is a finite set of
transitions. We write l1

ρ−→ l2 to denote a transition (l1, ρ, l2).
A norm e ∈ Σ → Z is a function that maps the states to the
integers.

Programs are labeled transition systems over some set of
states, where each transition is labeled by a transition relation
that describes how the state changes along the transition. Note,
that a DCP (Definition 2) is a program by Definition 12.

Definition 13 (Transition Invariants). Let e1, e2, e3 ∈ Σ→ Z
be norms, and let c ∈ Z be some integer. We say e′1 ≤ e2 + e3

is invariant for l1
ρ−→ l2, if e1(s2) ≤ e2(s1) + e3(s1) holds for

all (s1, s2) ∈ ρ. We say e1 > 0 is invariant for l1
ρ−→ l2, if

e1(s1) > 0 holds for all (s1, s2) ∈ ρ.

Definition 14 (Abstraction of a Program). Let P =
(L,E, lb, le) be a program and let N be a finite set of norms.
A DCP ∆P = (L,E′, lb, le) with atoms N is an abstraction
of the program P iff for each transition l1

ρ−→ l2 ∈ E there
is a transition l1

u,g−−→ l2 ∈ E′ s.t. every e′1 ≤ e2 + c ∈ u is
invariant for l1

ρ−→ l2 and for every e1 ∈ g it holds that e1 > 0
is invariant for l1

ρ−→ l2.

We propose to abstract a program P = (L,E, lb, le) to a DCP
∆P = (L,E′, lb, le) as follows: Let N be some initial set of
norms.
1) For each transition l1

ρ−→ l2 ∈ E we generate a set of
difference constraints α(ρ): Initially we set α(ρ) = ∅ for all
transitions l1

ρ−→ l2. We then repeat the following construction
until the set of norms N becomes stable: For each e1 ∈ N and
l1

ρ−→ l2 ∈ E we check whether there is a difference constraint
of form e′1 ≤ e2+c for e1 in α(ρ). If not, we try to find a norm
e2 (possibly not yet in N ) and a constant c ∈ Z s.t. e′1 ≤ e2+c

is invariant for ρ. If we find appropriate e2 and c, we add
e′1 ≤ e2+c to α(ρ) and e2 to N . I.e., our transition abstraction
algorithm performs a fixed point computation which might not
terminate if new terms keep being added (see discussion in
next section).
2) For each transition l1

ρ−→ l2 we generate a set of guards
G(ρ): Initially we set G(ρ) = ∅ for all transitions l1

ρ−→ l2.
For each e ∈ N and each transition l1

ρ−→ l2 we check if e > 0
is invariant for l1

ρ−→ l2. If so, we add e to G(ρ).

3) We set E′ = {l1
G(ρ),α(ρ)−−−−−−→ l2 | l1

ρ−→ l2 ∈ E}.

In the following we discuss how we implement the above
sketched abstraction algorithm.

A. Implementation

0. Guessing the initial set of Norms.: We aim at creating
a suitable abstract program for bound analysis. In our non-
recursive setting, complexity evolves from iterating loops.
Therefore we search for expressions which limit the number
of loop iterations. For this purpose we consider conditions of
form a > b resp. a ≥ b found in loop headers or on loop-
paths if they involve loop counter variables, i.e., variables
which are incremented and/or decremented inside the loop.
Such conditions are likely to limit the consecutive execution
of single or multiple loop-paths. From each such condition we
form the integer expression b− a and add it to our initial set
of norms. Note that on those transitions on which a > b holds,
b− a > 0 must hold.
1. Abstracting Transitions.: For a given norm e ∈ N
and a transition l1

ρ−→ l2 we derive a transition predicate
e′ ≤ e2 + c ∈ α(ρ) as follows: We symbolically execute ρ
for deriving e′ from e. In order to keep the number of norms
low, we first try
i) to find a norm e2 ∈ N s.t. e′ ≤ e2 + e3 is invariant for
ρ where e3 is some integer valued expression. If e3 = c

for some integer c ∈ Z we derive the transition predicate
e′ ≤ e2 +c. Else we use our bound algorithm (Section III) for
over-approximating e3 by a constant expression k ≥ e3 and
infer the transition predicate e′ ≤ e2 + k where we consider
k to be a symbolic constant.
ii) If i) fails, we form a norm e4 s.t. e′ ≤ e4 +c by separating
constant parts in the expression e′ using associativity and
commutativity of the addition operator. E.g., given e′ = v+ 5
we set e4 = v and c = 5. We add e4 to N and derive the
predicate e′ ≤ e4 + c.
Since case ii) triggers a recursive abstraction for the newly
added norm we have to ensure the termination of our abstrac-
tion procedure: Note that we can always stop the abstraction
process at any point, getting a sound abstraction of the original
program. We therefore enforce termination of the abstraction
algorithm by limiting the chain of recursive abstraction steps
triggered by entering case ii) above: In case this limit is
exceeded we remove all norms from the abstract program
which form part of the limit exceeding chain of recursive
abstraction steps. This also ensures well-definedness of the
resulting abstract program.
Further note that the DCPs generated by our algorithm are
always deterministic: For each transition, we get at most one
predicate e′ ≤ e2 + c for each e ∈ N .
2. Inferring Guards: Given a transition l1

ρ−→ l2 and a norm
e, we use an SMT solver to check whether e > 0 is invariant
for l1

ρ−→ l2. If so, we add e to G(ρ).
Non-linear Iterations.: We handle counter updates such as
x′ = 2x or x′ = x/2 as discussed in [16].

V. EXPERIMENTS

Implementation: We have implemented the presented algo-
rithm into our tool Loopus [1]. Loopus reads in the LLVM [15]
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Succ. 1 n n2 n3 n>3 2n Time TO
Loopus’15 806 205 489 97 13 2 0 15m 6
Loopus’14 431 200 188 43 0 0 0 40m 20
KoAT 430 253 138 35 2 0 2 5,6h 161
CoFloCo 386 200 148 38 0 0 0 4.7h 217

Fig. 4. Tool Results on analyzing the complexity of 1659 functions in the
cBench benchmark, none of the tools infers log bounds.

intermediate representation and performs an intra-procedural
analysis. It is capable of computing bounds for loops as well
as analyzing the complexity of non-recursive functions.
Experimental Setup: For our experimental comparison we
used the program and compiler optimization benchmark Col-
lective Benchmark [2] (cBench), which contains a total of
1027 different C files (after removing code duplicates) with
211.892 lines of code. In contrast to our earlier work we
did not perform a loop bound analysis but a complexity
analysis on function level. We set up the first comparison of
complexity analysis tools on real world code. For comparing
our new tool (Loopus’15) we chose the 3 most promising
tools from recent publications: the tool KoAT implementing
the approach of [7], the tool CoFloCo implementing [10]
and our own earlier implementation (Loopus’14) [16]. Note
that we compared against the most recent versions of KoAT
and CoFloCo (download 01/23/15).1 The experiments were
performed on a Linux system with an Intel dual-core 3.2
GHz processor and 16 GB memory. We used the following
experimental set up:
1) We compiled all 1027 C files in the benchmark into the
llvm intermediate representation using clang.
2) We extracted all 1751 functions which contain at least one
loop using the tool llvm-extract (comes with the llvm tool
suite). Extracting the functions to single files guarantees an
intra-procedural setting for all tools.
3) We used the tool llvm2kittel [3] to translate the 1751 llvm
modules into 1751 text files in the Integer Transition System
(ITS) format read in by KoAT.
4) We used the transformation described in [10] to translate
the ITS format of KoAT into the ITS format of CoFloCo.
This last step is necessary because there exists no direct way
of translating C or the llvm intermediate representation into
the CoFloCo input format.
5) We decided to exclude the 91 recursive functions in the set
because we were not able to run CoFloCo on these examples
(the transformation tool does not support recursion), KoAT
was not successful on any of them and Loopus does not
support recursion.
In total our example set thus comprises 1659 functions.
Evaluation: Table 4 shows the results of the 4 tools on our
benchmark using a time out of 60 seconds. The first col-
umn shows the number of functions which were successfully
bounded by the respective tool, the last column shows the
number of time outs, on the remaining examples (not shown
in the table) the respective tool did not time out but was also
not able compute a bound. The column Time shows the total
time used by the tool to process the benchmark. Loopus’15
computes the complexity for about twice as many functions
as KoAT, CoFloCo and Loopus’14 while needing an order of

1https://github.com/s-falke/kittel-koat, https://github.com/aeflores/CoFloCo

magnitude less time than KoAT and CoFloCo and significantly
less time than Loopus’14. We conclude that our approach is
both scalable and more successful than existing approaches.
Pointer and Shape Analysis: Even Loopus’15, computed
bounds for only about half of the functions in the benchmark.
Studying the benchmark code we concluded that for many
functions pointer alias and/or shape analysis is needed for
inferring functional complexity. In our experimental compar-
ison such information was not available to the tools. Using
optimistic (but unsound) assumptions on pointer aliasing and
heap layout, our tool Loopus’15 was able to compute the
complexity for in total 1185 out of the 1659 functions in the
benchmark (using 28 minutes total time).
Amortized Complexity: During our experiments, we found
15 examples with an amortized complexity that could only
be inferred by the approach presented in this paper. These
examples and further experimental results can be found on [1]
where our new tool is offered for download.
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Abstract—Reverse engineering is the extraction of word level
information from a gate-level netlist. It has applications in formal
verification, hardware trust, information recovery, and general
technology mapping. A preprocessing step finds blocks in a circuit
in which word level components are expected. A second step
searches for word level components in these blocks. For this
second step, we propose two variants of equivalence checking
that consider subfunction containment. We propose algorithms to
solve these variants by using subgraph isomorphism. A simulation
graph (SG) is constructed for the block and for each library
component, using a set of permutation-invariant simulation
vectors for that component. If a library component SG is a
subgraph of the block SG, we have a candidate match, which
is then checked by standard equivalence checking. We extend a
state-of-the-art subgraph isomorphism algorithm, LAD, to handle
simulation graphs efficiently and also propose a SAT-based
formulation. Experimental evaluations show that our algorithms
can efficiently find 32-bit arithmetic components in blocks with
over 300 primary inputs.

I. INTRODUCTION

The problem of reverse engineering (RE) is, given a gate-
level netlist, find a word level netlist description which has
the same behavior. It can be seen as a generalized technology
mapping problem in the following sense. An instance would
be to start with a gate-level circuit and a list of word level
components, called a library, which contains components such
as adders, multipliers, shifters, and other word level components
of various bit widths. The goal is to find occurrences of these
components in the circuit. While there are many objective
functions to be optimized in regular technology mapping, e.g.,
area, delay, power, clause count in a conjunctive normal form
(CNF), and wire count, in RE the single objective is to find
all the word level components in the circuit.

RE is of interest for a number of reasons:
1) A register transfer level description (RTL) may not be

available; the design may be a legacy without an initial
RTL; it may be that an AIG is being passed between
various tools with no accompanying RTL, it may have
come from bit blasting an RTL and synthesizing it at the
bit level.

2) To create a word level description to enable and improve
formal verification or synthesis.

3) To understand the structure of an unknown chip.
4) To analyze a chip to help isolate Trojan hardware.

In general, RE is very difficult, but there are many circum-
stances where the problem is made simpler. The goal of our
research is to create set of algorithms that are as efficient as

possible and to extend the range of situations where RE is
feasible.

RE methodologies typically consist of two main parts: (i)
a structural method that decomposes the gate-level circuit
into blocks and (ii) a functional method to match sub-circuits
of a block with components from a library, assuming that a
block’s inputs and outputs contain the inputs and outputs of
any component to be found.

In this work, we propose an algorithm that targets the second
part. Given a block in a circuit and a library, our algorithm
finds sub-circuits, called candidates, in the block that have the
same simulation behavior, modulo a selected set of simulation
vectors, as the component. For this purpose, simulation graphs
(SGs) of the blocks are created and subgraph isomorphism is
applied to match a SG of a component in the library. Once
such a candidate has been found it is checked if it is indeed a
component using standard combinational equivalence checking.
Thus our entire matching algorithm is functional and not
structural.

The contributions of this paper are as follows:
1) The problem of finding components in a block of logic

is reduced to the subgraph isomorphism problem.
2) An efficient LAD-based subgraph isomorphism algorithm

is developed to find matches of component candidates to
subgraphs of the block. The requirement that the compo-
nent outputs be exactly on the block output boundary is
relaxed.

3) A symbolic SAT-based subgraph isomorphism algorithm
is discussed that is capable of detecting candidates in
the presence of inverters at the inputs and outputs in the
block.

4) An open source framework is provided with implemen-
tations of all algorithms to reproduce the experimental
evaluations.

The paper is organized as follows. Relevant definitions and
related literature are provided in Sects. II and III, respectively.
Sect. IV provides two problem formulations that generalize
equivalence checking and discusses how they arise in practice.
Sect. V discusses solving such problems by a reduction to
subgraph isomorphism of simulation graphs and Sects. VI
and VII present implementations based on LAD and SAT,
respectively. Sect. VIII discusses an extension that relaxes the
assumption that the component’s outputs must be contained in
the block’s outputs. Sect. IX presents experimental results.
Finally Sect. X concludes, outlines many future research
directions.
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II. PRELIMINARIES

General notation and graphs: The notation [n] is a shorthand
for the set {1, . . . , n}. A digraph G = (V,A) consists of a
set of vertices V and arcs A ⊆ V × V . Each vertex v ∈ V
has an in-degree d−(v) = #{w ∈ V | (w, v) ∈ A} and
out-degree d+(v) = #{w ∈ V | (v, w) ∈ A}. A digraph is
called k-partite if V can be partitioned into disjoint vertex sets
V1, . . . , Vk such that there exists no arc (v, w) ∈ A and no
i ∈ [k] such that v, w ∈ Vi. A k-partite digraph is called k-
layered if A ⊆

⋃k−1
i=1 Vi×Vi+1, i.e., arcs only connect adjacent

vertex sets.
A vertex-labeled graph also has a set of labels L and a

labeling function l : V → L. A labeled subgraph isomorphism
from G′ = (V ′, A′) with labeling function l′ to G = (V,A)
with labeling function l is an injective function µ : V ′ ↪→ V
such that (u, v) ∈ A′ ⇔ (µ(u), µ(v)) ∈ A and l(u) = l′(µ(u))
for all u ∈ V ′.

Functions: An n-input m-output Boolean function is an
m-tuple of Boolean functions over the variables x1, . . . , xn. A
Boolean combinational circuit is associated with the function
it computes. We will refer to a circuit and the function it
computes interchangeably.

Definition 1 (Embedding): An n′-input m′-output Boolean
function f ′ is embedded in an n-input m-output Boolean
function f if (1) there is an injective input-matching function
π : [n′] ↪→ [n], (2) there is an injective output-matching
function σ : [m′] ↪→ [m] such that fσ(j)(x1, . . . , xn) =
f ′j(xπ(1), . . . , xπ(n′)), for all j ∈ [m′] and x1 . . . , xn.

Definition 2 (Simulation vector): A simulation vector for a
circuit with n inputs is a bitstring of size n. If (s1, . . . , sn) is
a simulation vector, then (f1(s1, . . . , sn), . . . , fm(s1, . . . , sn))
is the output of a simulation vector. The simulation vector
is called k-hot encoded if exactly k bits are set to one and
it is called k-cold if exactly k bits are set to zero. Let Shot

n,k

and Scold
n,k be the sets of all k-hot and all k-cold simulation

vectors, respectively. Note that #Shot
n,k = #Scold

n,k =
(
n
k

)
and

Shot
n,k = Scold

n,n−k.
We also extend the input-matching function from Definition 1

to simulation vectors by padding with zeros where π does not
map any inputs of f ′, i.e., mapping k-hot vectors of length n′

to k-hot vectors of length n.
Definition 3: Let π : [n′] ↪→ [n] be an input-matching

function as above, and let s′ be a simulation vector of f ′. We
define π(s′) by

π(s′)j :=

{
s′i j = π(i), for some i
0 (otherwise).

III. RELATED WORK

According to [1] the two main steps to solve a reverse
engineering problem are: (1) block identification and (2)
matching blocks against components in a library. A component
is assumed to be inside a block with its inputs and outputs
being contained in the primary inputs and primary outputs
of the block. Blocks may contain multiple components and
additional logic.

First preliminary approaches have been presented for the
first step in [2], [3], however, this step is still considered an

open problem with no satisfactory solution proposed so far.
One way to circumvent this problem is to have a variety of
block matching algorithms for the second step, thereby relaxing
the constraints on the blocks. Different approaches for Step 2
make different assumptions on the blocks that are identified by
Step 1. Since inputs and outputs of the component are assumed
to be primary inputs and primary outputs of the block, all
approaches are generalizations of equivalence checking.

In [4], [5], [6], [7], it is assumed that the block neither
contains additional logic nor additional inputs and outputs,
however, the order of inputs and outputs is unknown. More
formally, given two n-input m-output Boolean functions f ′ and
f , the permutation-independent equivalence checking (PIEC)
problem asks whether f ′ is embedded (as in Definition 1) in
f .

In [8] primary inputs of the block are partitioned into
control bits c1, . . . , ck, and data bits x1, . . . , xn. The order
of inputs and outputs is unknown, as well as the values
of the control bits that will cause the same functional
behavior as that of the component. More formally, given
two functions f(c1, . . . , ck, x1, . . . , xn) = (f1, . . . , fm) and
f ′(x1, . . . , xn) = (f ′1, . . . , f

′
m), the permutation-independent

conditional equivalence checking (PICEC) problem asks
whether there exist two permutations π ∈ Sn and σ ∈ Sm
and a propositional function ψ : [k] → B such that for all
x1, . . . , xn and all j ∈ [m]

fj(ψ(1), .., ψ(k), x1, . . . , xn) = f ′σ(j)(xπ(1), .., xπ(n)) (1)

IV. PROBLEM FORMULATION AND MOTIVATION

1) Problem formulation: We address two problems in this
work, called the subset permutation-independent equivalence
checking (SPIEC) and the subset negation-and-permutation-
independent equivalence checking (SNPIEC). SPIEC asks whe-
ther a smaller function is embedded into a larger one when no
input and output correspondence is known. SNPIEC extends
the problem and allows inputs and outputs of the larger function
to be negated.

The input to the SPIEC problem is an n′-input m′-output
Boolean function f ′ and an n-input m-output Boolean function
f . The problem asks whether f ′ is embedded in f .

The input to the SNPIEC problem is an n′-input m′-output
Boolean function f ′ and an n-input m-output Boolean function
f . The problem asks whether there exist two propositional
functions

p : [n]→ B and q : [m]→ B

such that f ′ is embedded in the function h defined by

hj(x1, . . . , xn) = q(j)⊕ f(p(1)⊕ x1, . . . , p(n)⊕ xn),

i.e., the function h is f whose i-th input is inverted if p(i) = 1
and j-th output is inverted if q(j) = 1. The SNPIEC problem
detects a subfunction in a block in the presence of misplaced
inverters at the primary inputs and outputs of the block.

2) Motivation: We exploit in our algorithms the fact that
many components of interest can have a uniquely characteristic
input/output behavior even for a small set of simulation vectors.

As an example, let f : B2n → Bn+1 be the function of
an n-bit adder for which unknown permutations have been
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Fig. 1. A Simulation graph of a 2-bit adder. Simulation nodes are annotated
with the simulation vector associated with it for convenience.

applied to the inputs and outputs. All one-hot and all two-hot
simulation vectors are sufficient to find these permutations
using the following arguments. From addition with 0, we know
there are one-hot simulation vectors s and s′, s 6= s′, with
si = 1 and s′j = 1, such that f(s) = f(s′) = y is also one-
hot with yk = 1. Therefore, i, j, and k refer to the same
bit position p in the operands and the output of the adder. To
determine the next position p+1, the two-hot simulation vector
s | s′ (‘|’ refers to bitwise OR) yields a one-hot output value
y′ = f(s | s′) with y′l = 1. Therefore, l = p+ 1.

Note that since binary addition is bit-wise commutative, i.e.,
ai and bi for any i can be swapped without changing the result
a+ b; we cannot uniquely determine the partition of input bits
into a left-hand operand and a right-hand operand. For other
components, such as a multiplier, a different set of simulation
vectors is needed. Additionally each component would have its
own sequence of deductions for determining the permutations.
Therefore, we seek a method that does not depend on the type
of component to be found.

V. REDUCTION TO SUBGRAPH ISOMORPHISM

This section describes how to find components in blocks by
reducing it to a labeled subgraph isomorphism problem. The
key to our approach is the concept of a simulation graph (SG),
which captures the behavior of a circuit on a set of simulation
vectors.

Definition 4 (Simulation Graph): Let f be an n-input m-
output Boolean function and let S = {s(1), . . . , s(t)} be a set
of simulation vectors for f . The simulation graph GSf is a
3-layered vertex-labeled directed graph G = (X ∪S ∪ Y,A1 ∪
A2) where (1) X = {x1, . . . , xn}, (2) Y = {f1, . . . , fm},
(3) (xi, s

(j)) ∈ A1 ⇔ s
(j)
i = 1, and (4) (s(j), fr) ∈ A2 ⇔

fr(s
(j)) = 1. Labeling is defined by (1) L = {PI,PO} ∪ N,

(2) l(xi) = PI, (3) l(fr) = PO, and (4) l(s(j)) = number of
1s in s(j).

In other words, in an SG, a simulation vector is connected to
the inputs that are 1 on it, and to the outputs where it produces
a 1. The labels denote the types of node in the graph, inputs,
outputs, and the number of ones in a simulation vector.

Example 1: Fig. 1 shows an SG for a 2-bit adder. It has
four vertices for the inputs and three vertices for the outputs.
Simulation vectors used are all the one-hot and two-hot vectors,
resulting in 10 vertices for the simulation vectors. Nodes in

the figure are annotated for readability and are not the labels
used in the algorithm.

For the remainder of this section, f is an n-input m-
output Boolean function, f ′ is an n′-input and m′-output
Boolean function, K ⊆ {0, . . . , n′}, S =

⋃
k∈K S

h
n,k and

S′ =
⋃
k∈K S

h
n′,k. Let GS

′

f ′ denote the SG for f ′ using S′ and
let GSf denote the SG for f using S. We chose these sets of
simulation vectors because of the following property.

Proposition 1: For all K ⊆ {0, . . . , n} the set
⋃
k∈K S

h
n,k

is closed under permutations of the order of the inputs.
Theorem 1: If f ′ is embedded in f , then there exists a

labeled subgraph isomorphism from GS
′

f ′ to GSf .
Proof: We can use the input and output matching functions

of the embedding π and σ to construct a mapping µ from GS
′

f ′

to GSf :

1) µ(x′i) := xπ(i),
2) µ(f ′r) := fσ(r),
3) µ(s′(j)) := π(s′(j)).

Note that s′(j) is a k-hot vector if and only if π(s′(j)) is
k-hot. Since S is closed under permutation, π(s′(j)) is a
simulation vector node in GSf . This mapping preserves the
labeling because it maps inputs to inputs, outputs to outputs,
and k-hot simulation vectors to k-hot simulation vectors. To
show that µ is a subgraph isomorphism observe that

1) (x′i, s
′(j)) ∈ A′1 ⇔ (s′(j))i = 1 ⇔ µ(s′(j))π(i) = 1 ⇔

(µ(x′i), µ(s
′(j))) ∈ A1, and

2) (s′(j), f ′r) ∈ A′2 ⇔ f ′r(s
′(j)) = 1 ⇔ fσ(r)(µ(s

′(j))) = 1
⇔ (µ(s′(j)), µ(f ′r)) ∈ A2

Because a simulation graph is constructed using only a small
subset of all possible simulation vectors, the converse does not
hold. Instead we can just state the obvious result that if there
is a labeled subgraph isomorphism from GS

′

f ′ to GSf , then f
has a subset of inputs and outputs, that behaves like f ′ on the
set of vectors used to construct the simulation graphs.

The existence of a subgraph isomorphism as stated in
Theorem 1 depends on the set of simulation vectors used being
closed under permutation. Consequently, a single simulation
vector can only be supported by the proposed approach if all
its permutations are considered.

Finding candidate components: Theorem 1 supports an
algorithm for finding candidate components in the block. Using
the same types of k-hot simulation vectors, we construct a
simulation graph for the block, called the target graph, and a
simulation graph for the component, called the pattern graph. If
there is a labeled subgraph isomorphism from the pattern graph
to the target graph, the mapping of inputs and outputs of the
pattern graph can be used to extract a subcircuit of the target
graph for use as a candidate for equivalence checking (CEC).
If no labeled subgraph isomorphism is found, we conclude
from Theorem 1 that the component is not embedded in the
block. Note that the subgraph isomorphism problem is NP-
complete [9].

Candidate quality: The quality of the candidate, or the
likelihood that a candidate is definitely the component, depends
on the set of simulation vectors used to construct the simulation
graphs.
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For example, using just the 0-hot vector, almost guarantees
a false positive, and on the adder example, using just the 1-hot
vectors does not differentiate between the MSB and LSB.

For each component we can use a simple criteria to judge the
quality of candidate sub-blocks generated when using a specific
set of simulation vectors; if component f ′ has its inputs and
outputs permuted to create f , does any candidate isomorphism
between the corresponding SGs derived from the simulation
set, provide a correct matching of the inputs, up to symmetries
in f ′.

Note that only the matching of the inputs is mentioned. Once
the inputs are matched correctly, it becomes easy to match the
outputs using random simulation or formal techniques.
k-cold Simulation vectors: The quality of a candidates is

likely to be higher if more simulation vectors are used. However,
because of the sheer number of k-hot vectors, it becomes
impractical to construct the graph beyond 2-hot simulation
vectors.

It is tempting to also use n-hot, (n′− 1)-hot or (n′− 2)-hot
simulation vectors, but if n > n′, the size of the target graph
may still be very large.

For example, if n′ = 10 and n = 100, the number of
(n′ − 1) = 9-hot simulation vectors is just

(
10
9

)
= 9, but at the

block it is
(
100
9

)
which is impractically huge.

A simple alternative is to use k-cold vectors. We can
generalize the definition of a simulation graph to allow k-
cold vectors. An input vertex will be connected to a k-cold
vector if the input is 0 on that vector. A k-cold label on the
vectors is used to distinguish them from k-hot vectors.

For simplicity, in this paper we only formally defined and
proved results for the k-hot vectors.

Our experimental results demonstrate that 1-hot, 2-hot, and
0-cold simulation vectors were enough to detect many common
components, with the exception of multipliers for which 2-hot,
0-cold, and 1-cold simulation vectors were needed.

VI. LAD-BASED APPROACH

This section describes an algorithm to solve SPIEC that
checks for subgraph isomorphism in SGs using a state-of-the-
art algorithm LAD [10], [11]. LAD works on general graphs
and does not take the special structure of SGs into account. It
is implemented in terms of a constraint satisfaction framework
which starts by assigning each vertex u ∈ VP a domain Du ⊆
VT that contains possible candidates for node matching. These
domains are refined in the search process using several filtering
techniques until either inconsistencies are found, indicated by
an empty domain, or no further refinement is possible.

To speed up the search process, it is important to keep
the sizes of the domains small at each step. There are two
possibilities to reduce the sizes: (i) when initializing the
problem and (ii) by using implications during the search process.
The latter is more difficult to implement. LAD offers two
methods to decrease the domains initially. First, the in-degree
d−(u) and out-degree d+(u) of a vertex u in the pattern graph
cannot exceed the in-degree and out-degree of vertices in the
target graph. LAD also supports labeled subgraph isomorphism

using a labeling function l. Based on these observations the
initial domain for a vertex u ∈ VP is

Du = {v ∈ VT | d−(v) ≥ d−(u) ∧ d+(v) ≥ d+(u)}
∩ {v ∈ VT | l(v) = l(u)}. (2)

Extending LAD-based subgraph isomorphism: We restrict
the domains further by extracting information from the un-
derlying circuits of the SGs. Given a circuit and a primary
output u we define supps(u) to be the structural support of
u, i.e., the set of primary inputs that are reachable from the
outputs in a backwards traversal of the circuit starting at u.
The functional support of u, denoted supp(u), is the set of
primary inputs on which the function represented by u depends.
Clearly supp(u) ⊆ supps(u), i.e., the structural support over-
approximates the functional support. Matching output vertices
must have the same functional support size and therefore the
following constraint is added to Eq. (2) for all u ∈ YP :

Du = . . . ∩ {v ∈ YT | #supp(v) = # supp(u)} (3)

If computing the functional support for the target circuit is too
inefficient, one can also use the structural support for a weaker
constraint, i.e.,

Du = . . . ∩ {v ∈ YT | #supps(v) ≥ #supp(u)}. (4)

These constraints only take the size of the support into
account but not the actual inputs in the support. If the functional
support is computed, one can add additional so-called support
arcs (xi, ur) to the simulation graph, if and only if xi ∈
supp(ur). The experimental evaluation will show that these
arcs can lead to an improvement of the run-time.

Further improvement can be achieved by making use
of simulation signatures. There are

(
n
k

)
k-hot and k-cold

simulation vectors for circuits with n primary inputs. While
simulation can be performed efficiently for small k, their
explicit representation as vertices in the SG causes a significant
degradation in the run-time for subgraph isomorphism. It
is therefore of interest to only include the most effective
simulation vectors for SGs. But simulation results of other
simulation vectors can still be used in other ways.

We compute for each output u a simulation signature, which
in our experiments, is a tuple containing the number of 0,1,2-
hot, and 0,1,2-cold simulation vectors that drive u to 1. More
formally, the simulation signature of an output u in a circuit
with n primary inputs is a tuple of values

sign,k(u) = #{x ∈ Shot
n,k | u(x) = 1}

The definitions are analogous for k-cold simulation vectors.
This requires a notion of signature compatibility. Two

simulation signatures of a target output u ∈ YT and u′ ∈ YP
are compatible, denoted sigcomp(u, u′), if and only if for all
values in the tuple

sign,k(u) =
k∑
i=0

(
n− n′

i

)
· sign′,k−i(u

′) (5)

holds. As one instance of this equation, we have

sign,1(u) = sign′,1(u
′) + (n− n′) · sign′,0(u),
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Fig. 2. Handling inverters in SAT-based subgraph isomorphism (circuit
construction for simulation vector 00110)

i.e., the size of the on-set for one-hot encoded simulation
vectors in the target graph, is the sum of sign′,1(u

′) (consider-
ing the ‘1’ is assigned to one of the n′ matching inputs) and
(n− n′) sign′,0(u) (considering the ‘1’ is assigned to one of
the n− n′ non-matching inputs).

Simulation signatures further restrict the domains:

Du = . . . ∩ {v ∈ YT | sigcomp(u, v)} (6)

VII. SAT-BASED APPROACH

We introduce a SAT-based subgraph isomorphism based on
the formulation given in [12] mainly for two reasons. First,
to show the dominance of the LAD-based approach in terms
of scalability (see experimental results in Sect. IX). Second,
a symbolic representation of SGs makes it easier to solve the
SNPIEC problem (where possible inverters are at the inputs
and outputs). The presence of possible inverters affects the
target graph such that it cannot be represented explicitly, which
precludes application of the LAD-based approach.

The formulation as a SAT instance is inspired by the
formulations described in [12], [13], [14]. The SAT formulation
includes the same optimization techniques (blocking using
labels, structural, functional support, support arcs, and simula-
tion signatures) and additionally exploits symmetry breaking
based on input symmetries. Our LAD algorithm does not
consider the latter because it is more complicated and requires
several nontrivial changes throughout the whole algorithm. Due
to space limitations, we only focus on the extension of the
formulation to solve SNPIEC problems.

SAT based formulation of SNPIEC: If inverters are possibly
present at inputs and outputs (SNPIEC problem) in the target
circuit, simulation results are changed and therefore also
the target graph. This seems to prohibit the application of
subgraph isomorphism algorithms to find candidate components.
However, a SAT based formulation can be made for SNPIEC.

The presence of inverters at inputs and outputs changes the
function values of the target circuits and causes arcs between
simulation vectors in ST and outputs in YT in the target graph,
which cannot be determined explicitly. To formulate SNPIEC
the presence of arcs must be determined symbolically based
on additional polarity variables p1, . . . , pn and q1, . . . , qm with
n = #XT and m = #YT . One way to determine the polarity
variables is to construct a circuit for each simulation vector as
illustrated in Fig. 2 that contains variables ejr which represent
an arc between simulation vertex s(j) and output fr in the target
graph. In this case there are 5 inputs and 4 outputs and the
simulation vector is 00110. As can be seen, the input vertices
and simulation vector vertices can be connected explicitly. For
each input and output of the target circuit, an XOR gate is

x1 x2 x3 x4 x5

f1 f2

(a)

x1 x2 x3 x4 x5

f1 f2

t1

t2

t3

(b)

x1 x2 x3 x4 x5

f1 f2t1 t2

t3

t4

t6t5
t7

t8

(c)

Fig. 3. Output feathering: (a) original circuit, (b) feathering with respecting
edge polarities, and (c) feathering all polarities. Dashed edges are inverterd.

added that is controlled by a polarity variable. Besides the
polarity variables, inputs to the XOR gates are the simulation
bits and the original outputs. The new outputs of the circuit
are the symbolic values for ejr. This circuit is copied for
each simulation vector, which results in a very large circuit
with m + n primary inputs (the polarity variables) and m ·
#ST primary outputs (the number of ejr variables). This
large circuit is transformed into a CNF formula and added
to the SAT formulation. In order to get a smaller formula,
we optimized the circuit in our experiments using ABC [15]
before translating it into a CNF. However, this approach is not
tractable (experiments showed reasonable runtimes only for
small instances) and further research is needed if motivated.

VIII. RELAXING THE CONSTRAINTS OF BLOCK
IDENTIFICATION

All discussed generalized equivalence checking problems
assume that the primary inputs and primary outputs of the
component f ′ are also primary inputs and primary outputs of
the block f . Relaxing this assumption can help in the block
identification problem. We propose a technique called output
feathering as a preprocessing step to a SPIEC solver for this.
Note that output feathering exploits the subset relation in the
problem definition of SPIEC and is therefore not applicable
to the other block matching algorithms that were described in
Sect. III.

Output feathering first levelizes the circuit—in our case an
AIG—and then creates outputs for each node in the k topmost
levels. We allow two modes of output feathering. The first
creates outputs according to the polarities of outgoing edges
whereas the second mode creates an output and its negation
for each node. Fig. 3 illustrates output feathering and both
modes. This is practical because our SG based method is quite
insensitive to the number of outputs of the block.

IX. EXPERIMENTAL EVALUATION

We implemented the approaches, discussed in this paper,
in C++ and present our evaluations in this section.1 We
implemented a tool (part of the above mentioned source code)
that generates gate-level circuits meeting the assumptions on the
blocks our algorithm expects from block identification. The tool
randomly chooses from multiple arithmetic components in a

1The implementation is called ‘find_subcircuit.’ The source code
and all benchmarks are available at
http://www.informatik.uni-bremen.de/~msoeken/
revenge-1.0.tar.gz.
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c1-32 ∗2 � 160 192 12881 1.37
c2-32 +2 ∗ � −2 288 290 41617 556.83
c3-32 + ∗ � 96 161 4657 2.04
c4-32 �2 − 224 192 25201 5.19
c5-32 + ∗ � − 256 193 32897 206.47
c6-32 + �3� −2 320 257 51361 637.99
c7-32 + � − 128 129 8257 3.15
c8-32 � 64 96 2081 0.25
c9-32 + ∗ �2 −2 320 257 51361 652.01
c10-32 + � 320 193 51361 167.08

Fig. 4. Experimental evaluation for the LAD-based approach. For each circuit and for each component, the seven bars (shown from left to right) represent the
LAD algorithm with different sets of enhancements: (i) default LAD, (ii) structural support, (iii) structural support + simulation signatures, (iv) functional
support, (v) functional support + simulation signatures, (vi) functional support + support arcs, and (vii) functional support + support arcs + simulation signatures

library as well as additional components not in the library (e.g.,
wide AND and OR gates) to create “noise” in the circuit. Then,
inputs are randomly added and connected to the components;
components may share common inputs; there may be several
instances of the same component. The library used in the
experiments consisted of an adder (+), multiplier (∗), left-
shifter (�), right-shifter (�), and a subtracter (−). These
were mapped to gate level circuits for different bit widths.
The experiments were carried out on an Intel Xeon processor
with 2.4 GHz, 64 GB RAM, running Linux 3.17. Run-times
are given in seconds with a timeout (TO) of 3600 seconds.
The sets of experiments done, (i) show that the LAD-based
approach is efficient for solving SPIEC problems, (ii) compare
the LAD-based approach to the SAT-based approach, (iii) show
how the SAT-based approach scales for SNPIEC problems, and
(iv) use our approach to solve PICEC problems and compare
with the state-of-the-art.

LAD-based approach: The results are listed in Fig. 4. The
table in the top right lists properties of the 10 circuits used in
the experiments. The first column lists the identifier of each
circuit (c1 – c10). Each circuit in the library has 32-bit primary
inputs. The second column lists which arithmetic operations

are contained in the circuit and superscripts denote the number
of instances of the operator. If no superscript is specified,
it occurs only once. The columns #X , #Y , and #S give
the numbers of inputs, outputs, and simulation vectors of the
target graph. The sum of these three numbers is the number of
nodes in the target graph. For the experiments, we used all-hot,
one-hot, and two-hot simulation vectors for all components
except the multiplier, for which we used one-cold instead of
one-hot simulation vectors, since multiplication by 0 creates no
arcs between simulation vertices and output vertices. We used
the ABC [15] command ‘print_supp’ which uses a simple
method to compute the functional support. The run-time to
compute the functional support is given in column FS. These
numbers can be improved considerably, however, note that the
functional support needs to be computed only once for each
circuit.

The rest of the figure consists of blocks of plots for each
component in the library. The component being matched is
illustrated by its operator symbol in the top left corner. Each
block of plots is separated into 10 compartments, one for each
circuit, and each compartment has seven bars that show the
run-times respectively for the following configurations of the
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LAD-based approach, from left to right:
(i) A modification of the original LAD approach for subgraph

isomorphism from [10]. This implementation considers
domain constraints for vertex degrees and vertex labels
as described in Eq. (2), referred to as LAD.2

(ii) LAD with structural support for domain constraints (see
Eq. (4)), referred to as LADs.

(iii) LADs + simulation signatures.
(iv) LAD with functional support for domain constraints (see

Eq. (3)), referred to as LADf.
(v) LADf + simulation signatures.

(vi) LADf + support arcs.
(vii) LADf + support arcs + simulation signatures.

Note that the approaches only find a candidate mapping
but do not perform the final CEC equivalence checks. We
performed these checks separately using the ABC command
‘iprove’ and did not add the run-times to the values in
the plots. In fact, for all operations except the multiplier, the
equivalence checks could be performed in less than a second.
As equivalence checking multipliers is known to be a hard
problem, we manually validated the correctness of the computed
mapping based on the port names. All matchings determined by
the algorithms were correct, but during the initial evaluations,
we experienced several wrong matchings for the multiplier,
which were resolved once we added the one-cold simulation
vectors. This demonstrates that an appropriate set of types of
simulation vectors must be chosen individually per component.

The main observations on the experimental results are:
1) When incorporating the support, the run-time is signifi-

cantly better; in some cases LADs and LADf can find a
matching within a few seconds while LAD does not find a
solution within one hour (see, e.g., ‘c6-32’ and ‘c9-32’).

2) In the SPIEC problem, a left-shifter is equivalent to a
right-shifter because a� b = (aR � b)R where aR is the
reverse of a. This symmetry is evident in the run-times of
LADs and LADf since run-times are not affected by which
component is sought. However, in the LAD approach the
run-times diverge significantly in some cases (see, e.g.,
‘c5-32’ and ‘c7-32’).

3) The best performance is achieved for functional support
with support arcs and simulation signatures. Often, the
support arcs don’t make a difference. Also, if neither
support arcs nor simulation signatures are used, the
difference between structural and function support based
domain restriction is marginal.

4) Generally run-times were significantly better when the
component was not present (see, e.g., the 32-bit circuits
for adders, multipliers, and subtracters).

5) Subtracters and adders are only hard to find if they occur
more than once in the block.

SAT-based approach for SPIEC: We scaled down the circuits
of the previous experiment to 8 bits and ran the SAT-based

2The run-time of our LAD implementation is significantly better compared
to the original since we replaced an expensive recursive procedure that stores
data on a stack by one that stores data on a heap. Further, by using our own
implementation, we avoid writing the SGs to temporary files and can work
directly on the data structure. Since the improved algorithm is based on this
implementation, the comparison of LAD to LADs and LADf, is more fair.

TABLE I
EXPERIMENTAL EVALUATION FOR THE SAT-BASED APPROACH TO SOLVE

SPIEC

Name Operations + ∗ � � −

SAT LADs SAT LADs SAT LADs SAT LADs SAT LADs

c1-8 ∗2 � 7.2 0.0 8.6 0.2 8.6 0.0 7.9 0.0 7.6 0.0
c2-8 +2 ∗ � −2 83.6 0.3 89.8 1.2 89.8 0.7 75.3 0.8 87.4 0.3
c3-8 + ∗ � 1.8 0.0 1.9 0.1 1.9 0.0 1.6 0.0 1.7 0.0
c4-8 �2 − 22.7 0.0 22.2 0.0 22.2 0.3 29.5 0.3 30.3 0.0
c5-8 + ∗ � − 48.3 0.0 52.3 0.7 52.3 0.4 46.6 0.4 50.3 0.0
c6-8 + �3� −2 123.5 0.0 134.9 0.0 134.9 0.8 131.7 0.8 134.6 0.5
c7-8 + � − 4.0 0.0 4.2 0.0 4.2 0.1 3.8 0.1 4.3 0.0
c8-8 � 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0
c9-8 + ∗ �2 −2 123.3 0.0 155.2 1.3 155.2 0.9 131.8 0.9 134.5 0.4
c10-8 + � 120.8 0.0 93.5 0.0 93.5 0.1 117.6 0.1 99.0 0.0

approach mentioned in Sect. VII using MiniSAT [16] as the
back-end solver, referred to as SAT in the following. Table I lists
the results of comparing SAT with LADs. Since the instances
become extremely large (the number of variables to formalize
µS is of order O(|XP |4)), a long run-time is already spent on
creating the instance; the solving time makes up approximately
25%. Note that the run-times of the LADs approach can be
several orders of magnitude faster, e.g., ‘c6’ and ‘c9’. Also the
run time of SAT seems to be almost independent of whether
the component is contained in the block or not, but is highly
correlated with the number of nodes in the SG. Incremental
SAT techniques (e.g., with activation literals) may improve the
run-times since many considered instances are similar.

SAT-based approach for SNPIEC: We tried to evaluate the
SAT-based approach to solve SNPIEC, denoted SATn, for all
circuits of bit width 8; however, no results were obtained within
the timeout. The approach is not yet tractable and further
research is needed if it turns out that SNPIEC problems occur
frequently in RE. One possible direction for future research is
the exploitation of exists-forall SAT solvers (see, e.g., [17]) as
they are used to solve the PICEC problem in [8].

Comparison to PICEC: In [8], the PICEC problem was
solved using a SAT-based method. The input of the problem
is partitioned into control and data bits and the aim is to find
an assignment of the control bits and a permutation of the
data bits. When the number of control bits is small, one can
solve such a PICEC problem as a sequence of SPIEC problems
by enumerating all control bit assignments, propagating them
through the circuit, and stopping once a match has been found.
We performed this experiment based on LADs on satisfying
instances reported in [8] and compared the results with the
approach described in [8] with preprocessing, signatures, and
Yices [18] as the back-end solver, called PICEC in the following.

TABLE II
SOLVING PICEC WITH SPIEC

Name #PI #PO #C + ∗ − ≡ <

LADs PICEC LADs PICEC LADs PICEC LADs PICEC LADs PICEC
mul8 16 8 0 1.7 1.9
mul16 32 16 0 TO N/A
simple_alu 64 32 2 6.9 361.3 1.4 182.2
full_alu 64 32 4 55.4 N/A
fake2670 133 1 5 0.7 0.1 0.1 0.5
c3540 16 22 34 TO 35.5
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The results are given in Table II, which lists the name of each
circuit, its number of primary inputs and primary outputs, and
the number of control bits (not counted in primary inputs).
In the original experiments in [8], individual operations were
specified for each circuit. These are listed in the last column
together with the required run-times. The run-times for LADs
include the time spent on equivalence checking since this step
is included in PICEC. However, note that the partition of input
bits is known in PICEC but not in LADs. For some benchmarks,
no results were available (N/A). For benchmark ‘mul16’ the
equivalence check did not terminate within one hour, however,
the correct candidate was determined in 0.1 seconds. This
shows an advantage of the SPIEC approach being decoupled
from the equivalence checker. A different equivalence checker
implementation might be able to determine equivalence faster.
Benchmark ‘c3540’ created a too large search space with 34
control inputs, and for such cases PICEC is clearly superior.

X. CONCLUSIONS

We presented algorithms for new variants of combinational
equivalence checking that integrates into other approaches
required for tackling RE problems. They find a component in
a larger circuit and a mapping of primary inputs and outputs
of the component to the larger circuit. We showed that the
problem can be solved efficiently using algorithms for subgraph
isomorphism on their SGs, exploiting additional functional
information of the circuits to reduce the search space. It was
demonstrated that our approach is viable for solving PICEC
problems. To solve equivalence checking problem in which the
polarity of inputs and outputs may be inverted, we discussed
an alternative SAT formulation.

There are many directions for future research. For the
experiments in this paper we only considered a fixed set of
simulation vector types for each type of component. However,
for some components this may be an overkill and the result
could have been found by using a smaller set. This seems to
suggest that each component should come with its own set of
simulation vectors that are known to be sufficient, reducing the
sizes of the target and component SGs. However, we should
experiment with this to see if it improves run-times. On the
other hand, iterative methods can be used to dynamically extend
the SGs with k-hot or k-cold vectors for larger k by using
learned information to reduce the space of simulation vectors.

Although all matchings were correct in our experiments,
it has not been discussed how to proceed if there remain
ambiguities in the domains after LAD has terminated. There
are several possible scenarios. The LAD-based approach could
be extended to yield all possible matchings instead of only
the first one. Iterative methods driven by counter examples
are another promising solution, however, since all simulation-
vectors must be invariant to permutation, counter examples
cannot be exploited in a straight-forward manner.

The algorithms presented in this paper do not perform the
equivalence check; rather they find a possible matching that
can be given to a standard CEC checker. We noted that the
run-time required by the equivalence check was negligible
compared to the run-time required to determine the mapping,
except for multipliers. We propose to investigate the use of

structural equivalence checkers for such cases with a set of
common multiplier implementations as additional components.

In general, we want to enlarge the large class of library com-
ponents with its set of simulation types for which an SG-based
method can correctly identify sub-isomorphisms. Operators
might include square, square root, log, and compositions of
various operators like multiply-add.
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Abstract—Contemporary integrated circuits are complex
system-on-chip (SoC) designs consisting of programmable cores
along with accelerators and peripherals controlled by firmware
running on the cores. The functionality of the SoC is implemented
by a combination of firmware and hardware components. As
a result, verifying these two components separately can miss
bugs while attempting to formally verify the full SoC design
considering both firmware and hardware is not scalable.

An abstraction that can be used instead of the cycle-accurate
and bit-precise hardware implementation can be helpful in
scalably verifying system-level properties of SoCs. However, con-
structing such an abstraction to capture all the required details
and interactions is error-prone, tedious and time-consuming.
Another challenge is ensuring correctness of the abstraction so
that properties proven using it are valid.

In this paper, we introduce a methodology for SoC verification.
We synthesize an instruction-level abstraction (ILA) that precisely
captures updates to all firmware-accessible states spanning the
cores, accelerators and peripherals. The synthesis algorithm uses
a blackbox simulator to synthesize the ILA from a template
specification. A “golden-model” generated from the ILA is used
to verify whether the hardware implementation matches the
ILA. We demonstrate the methodology using a small SoC design
consisting of the 8051 microcontroller and two cryptographic
accelerators. The methodology uncovered 14 bugs.

I. INTRODUCTION

Today’s integrated circuits are complex system-on-chip
(SoC) designs consisting of one or more programmable cores,
several accelerators and peripheral devices [17]. The overall
functionality of the SoC is determined by firmware that runs on
the cores and orchestrates the operation of the accelerators and
peripheral devices. Attempting to formally verify the complete
SoC with all its hardware components and firmware is not
scalable for even very small designs.

Firmware sits “below” the operating system and interacts
closely with the hardware. Both firmware and hardware make
many assumptions about the behavior of the other component.
As a result, verifying the two components separately requires
explicitly enumerating these assumptions and verifying that the
other component satisfies these assumptions. An example from
a commercial SoC highlighting the importance of capturing
these interactions is provided in [21]. A series of I/O write
operations could be executed by malicious firmware leaving
a cryptographic accelerator in a “confused” state after which
sensitive cryptographic keys could be exfiltrated. The bug was
due to certain implicit assumptions made by hardware about
the timing of firmware I/O writes. These were violated by the
malicious code sequence.

This work was supported in part by C-FAR, one of the six SRC STARnet
Centers, sponsored by MARCO and DARPA.

A. Abstractions for SoC Verification
A general technique for making SoC verification tractable

is to use an abstraction that accurately models all updates
to firmware-accessible hardware states [9, 16, 25, 26]. When
verifying properties involving firmware, the abstraction is used
instead of the bit-precise cycle-accurate hardware model.

Although the idea of constructing abstractions for firmware
verification is attractive, there are several challenges in apply-
ing the technique in practice. Firmware interacts with hardware
components in a myriad of ways. For the abstraction to be
useful, it needs to model all these interactions and capture all
updates to firmware-accessible states.
• Firmware usually controls accelerators in the SoC by

writing to memory-mapped registers within the acceler-
ators. These registers may set the mode of operation of
the accelerator, the location of the data to be processed,
or return the current state of the accelerator’s operation.
The abstraction needs to model these “special” reads and
writes to the memory-mapped I/O space correctly.

• Once operation is initiated, the accelerators step through
a high-level state machine that implements the data
processing functionality. Transitions of this state machine
may depend on responses from other SoC components,
the acquisition of semaphores, external inputs, etc. These
state machines have to be modeled to ensure there are
no bugs involving race conditions or malicious external
input that cause unexpected transitions or deadlocks.

• Another concern is preventing compromised/malicious
firmware from accessing sensitive data. To prove that
such requirements are satisfied, the abstraction needs to
capture issues such as a sensitive value being copied into
a firmware-accessible temporary register.

We argue that manually constructing an abstraction which
captures these details, as proposed for example in [25, 26], is
not practical because it is error-prone, as well as tedious and
very time-consuming. Abstractions that focus on specific types
of properties, like the control flow graph from [16], can ease
certain verification concerns, but this does not capture all the
requirements mentioned above. A third alternative is to verify
the firmware using a software model of the hardware [9]. This
too misses bugs present in the hardware implementation but
not the software model.

The problem with these approaches is correctness of the
abstraction. If the hardware implementation is not consistent
with the abstraction, properties proven using it are not valid.

B. Synthesizing Instruction-Level Abstractions
In this paper, we propose a general methodology for con-

structing correct abstractions for SoC verification. The abstrac-
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tion captures all updates to firmware-accessible states which
includes the architectural state of the cores, memory-mapped
and I/O addressable registers in the accelerators and peripheral
devices as well as high-level state machines that model the
operation of the cores and other hardware components.
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Fig. 1: Block Diagram of Template-Based Synthesis of Instruction-
Level Abstractions

We call this an instruction-level abstraction or ILA. The
insight is that firmware can only view changes in system
state at the granularity of instructions. So it is sufficient to
model hardware components of the SoC at this granularity.
Then, the ILA of an SoC is a product of deterministic finite
state transition systems that are abstractions of each of the
SoCs hardware components constructed at the granularity of
instructions. For example, Figure 2 shows an ILA that is a
product of three finite state transition systems: a processor,
accelerator and an I/O peripheral. The ILA for the processor
is analogous to an instruction-granularity control flow graph,
while for the accelerator it is an instruction-granularity high-
level state machine. If we construct an ILA and prove it is an
overapproximation of the hardware components, system-level
properties proven using the ILA will be valid.

PR
O

C A
C

C
I/

O

Fig. 2: Instruction-Level Abstraction

To enable the abstraction to be easily constructed in a semi-
automated manner, we build on recent progress in syntax-
guided synthesis [1, 11, 19]. We propose synthesizing the ILA

from a template. Instead of manually constructing the complete
abstraction, the verification engineer now has the much easier
task of writing a template that partially defines the operation
of the hardware components. The synthesis framework infers
the complete abstraction and fills in the missing details by
using a blackbox simulator of the hardware components.

The term blackbox simulator means the simulator can be
used to find the next state and outputs of the system given
its current state and input values, but it is not possible to
“look inside” the simulator and get a full-definition of the
system’s behavior.1 Simulators are often constructed during
SoC design for validation purposes, e.g., simulation-based
testing of firmware. In principle, it may be possible to extract
an abstraction of the SoC through automated analysis of
the simulator, however, in practice, due to the scale and
complexity of the codebase it is not possible to do so. Our
work constructs an abstraction of the system in this scenario.2

To validate the abstraction and ensure that the hardware
implementation conforms to the abstraction, we automatically
generate a “golden model” from the abstraction. A set of
temporal refinement relations are model checked to ensure
that the behavior of the implementation matches the behavior
of the golden model. If the refinement relations are proven,
we have a guarantee that the abstraction is a correct over-
approximation of the hardware components and any properties
proven using the abstraction are in fact valid. If the proof fails,
we get counterexamples that can be used to “fix” either the
implementation or the template.

Figure 1 is an overview of the methodology. The blue-boxes
show the components that are provided by the verification
engineer. We assume that the register-transfer level (RTL)
model and a simulator are already available; these are gray.
Automatically generated artifacts are green and off-the-shelf
tools are red. The synthesis algorithm is in yellow.

C. Contributions

We introduce a general methodology for template-based
synthesis of instruction-level abstractions for SoC verification.
The methodology has three advantages. It helps verification
engineers easily construct correct abstractions that are useful
in verifying system-level properties of SoCs.

We introduce a parameterized synthesis framework that
allows scalable synthesis of the complex functionality in
modern SoCs and a language for template-based synthesis that
is tailored to modeling hardware components. We show how
correctness of the synthesized abstraction can be verified.

Finally, we present a case study applying the methodology
to the verification of a simple SoC design consisting of the
8051 microcontroller and two cryptographic accelerator cores.
We discuss construction of the instruction-level abstraction
and describe the bugs found during verification. The synthesis
framework and experimental artifacts are available online [5].

1The blackbox simulator is akin the I/O oracle in [11].
2The hardware (RTL) implementation can also be used for simulation if a

dedicated simulator is not available.
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II. DEFINITIONS AND FORMAL MODEL

We model the hardware implementation as a deterministic
finite state transition system. Let B = {0, 1} be the Boolean
domain. The state space is defined by the union of two sets
of Boolean variables encoding the states: X = XF ∪ XM .
XF = {x1, x2, . . . , xm} represent the firmware-accessible
states. XM = {u1, u2, . . . , un} is the microarchitectural state,
and is not visible to the firmware. For example, in a micro-
processor core, XF will contain the architectural registers and
program counter while XM may contain the pipeline registers
and reorder buffer. The transition system is then defined as the
tuple M = (X, I, Init , T ). I is the set of external inputs to the
transition system. Init is a predicate over X and defines the
initial states of the transition system. T (I,X, Y ) defines the
transition relation where Y is the set of next-state variables.

The instruction-level abstraction is also modeled as a de-
terministic finite state transition system. The state space of
the abstraction is defined over the set of variables XA. All
firmware-accessible states are included in XA so XF ⊆ XA.
The transition system is then defined by the tuple MA =
(XA, IA, InitA, TA) where IA, InitA and TA(IA, XA, YA) are
analogously defined. We also define the blackbox simulation
function eval : I × XA 7→ YA. eval(I, XA) = YA iff
TA(I, XA, YA) is true. Here I, XA and YA are specific values
of I , XA and YA respectively.

III. SYNTHESIZING INSTRUCTION-LEVEL ABSTRACTIONS

The synthesis problem is to construct the finite state tran-
sition system MA = (XA, I, InitA, TA) using the blackbox
simulation function eval. One potential solution to this prob-
lem is to use results on learning finite state automata [2, 18].
Unfortunately the running time of these algorithms grows as
a polynomial function of the number of states in the system.
Since a typical hardware component has 2m states with m
state variables and m is in the range of hundreds, thousands
or even more, these algorithms are not practical.

We tackle the problem using two insights. The first is
that it is reasonable to expect the verification engineer to
identify the state variables of the ILA: XA. We then build on
recent progress in syntax-guided synthesis [1] to synthesize the
transition relation TA from a template. The challenge here is
that the transition relation for a hardware component is likely
too complex to synthesize directly. For instance, consider
the transition relation for the ILA of a microprocessor. The
inputs to the relation will be all state the processor can
access: all data registers, all memory, all external I/O ports,
the program counter, flag register, etc. The relation captures
the functionality of each opcode by performing a “case-split”
for each opcode, which can take hundreds of different values.
Synthesis algorithms are currently limited to templates with a
few tens to hundreds of synthesis elements [1, 8, 11]. Since
the opcode can take hundreds of different values, synthesizing
the complete transition relation appears to be out of reach.

Our solution is to simplify the synthesis problem by
eliminating the “case-split” structure. The synthesis frame-
work starts with a template, i.e., a specification containing

“holes” [1, 19] and a synthesis parameter. Synthesis is done
for each value of the parameter and the complete transition
relation combines the individually synthesized elements.

A. Synthesis Problem Formulation

To synthesize the ILA, the verification engineer constructs
a template transition relation TA(S, I,XA, YA). S is the set of
synthesis variables which have to be assigned appropriately to
make the template TA equivalent to TA. The synthesis problem
is parameterized over the parameter pi where i = 1, 2, . . . N .
pi is a family of predicates defined on XA such that p1∨p2∨
· · · ∨ pN = 1 and (i 6= j) =⇒ ¬(pi ∧ pj). For each i, the
synthesis algorithm uses the function eval : I × XA 7→ YA
and attempts to find an assignment Si to S such that ∀I,XA :
pi =⇒

(
TA(Si, I,XA, YA) ⇐⇒ TA(I,XA, YA)

)
. The

conjunction of these relations yields the ILA TA.
A formal definition of the parameterized synthesis problem

is as follows. Find S1 . . . SN such that for all I,XA, YA:( N∧
i=1

(
pi =⇒ TA(Si, I,XA, YA)

))
⇐⇒ TA(I,XA, YA)

Consider the example of synthesizing an ILA for a mi-
croprocessor. The template transition relation expresses the
different ways in which architectural state can be updated
by each instruction. The synthesis parameter is the currently
executing opcode, therefore, the predicate pi would be defined
over the ROM values pointed to by the current program
counter. The predicate p0 would be true when the opcode
0 is being executed, predicate p1 would be true for opcode
1 and so on. Synthesis is done for each opcode and the
conjunction (p0 =⇒ TA(S0, I,XA, YA) ∧ · · · ∧ (pN =⇒
TA(SN, I,XA, YA)) defines the operation of the microproces-
sor under every possible opcode. This is the complete ILA.

B. Template Language Definition

The transition relation is defined using the template lan-
guage shown in Figure 3. To easily model hardware behavior,
a number of primitives to manipulate Boolean and bitvector
values are included in the language. It also models memory-
like structures (RAM/ROM/register files) and uninterpreted
functions from bitvectors to bitvectors.

The template consists of a list of statements. Each statement
is either an assignment or an output statement. An output
statement indicates this identifier is one of the outputs of
the transition relation. The constructs bool, bv, mem and
func create Boolean, bitvector, memory and function variables
of the appropriate sizes, respectively. A memory variable is
specified with two parameters: the bitvector size of the address
and the bitvector size of the data cells. A function variable is a
map from a bitvector of size in width to a bitvector of size
out width. bvop and boolop represent all usual bitvector
and boolean operators: and, or, not, addition, subtraction etc.

Synthesis is supported using three constructs. The choice
construct takes a list of expressions as its argument and
specifies that the synthesized ILA must replace the choice
construct with one of the argument expressions. For example,
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〈template〉 ::= 〈stmt〉 ; 〈template〉
| 〈empty〉

〈stmt〉 ::= 〈id〉 ← 〈exp〉
| output 〈id〉

〈exp〉 ::= 〈bv-exp〉 | 〈bool-exp〉 | 〈mem-exp〉

〈bv-exp〉 ::= 〈id〉 | bv width | bvcnst value width
| bvop 〈bv-exp〉 ...
| if 〈bool-exp〉 then 〈bv-exp〉 else 〈bv-exp〉
| readmem 〈mem-exp〉 〈bv-exp〉
| apply 〈func-exp〉 〈bv-exp〉
| choice 〈id〉 [〈bv-exp〉 〈bv-exp〉 ...]
| read-slice-choice 〈id〉 〈bv-exp〉 length
| bv-in-range 〈bv-exp〉 〈bv-exp〉

〈bool-exp〉 ::= 〈id〉 | bool | true | false
| boolop 〈bool-exp〉 ...
| 〈bv-exp〉 == 〈bv-exp〉 | 〈bv-exp〉 6= 〈bv-exp〉
| if 〈bool-exp〉 then 〈bool-exp〉 else 〈bool-exp〉
| choice 〈id〉 [〈bool-exp〉 〈bool-exp〉 ...]

〈mem-exp〉 ::= 〈id〉
| mem addr width data width
| write-mem 〈mem-exp〉 〈bv-exp〉 〈bv-exp〉
| if 〈bool-exp〉 then 〈mem-exp〉 else 〈mem-exp〉
| choice 〈id〉 [〈mem-exp〉 〈mem-exp〉 ...]

〈func-exp〉 ::= 〈id〉
| func 〈id〉 in width out width

Fig. 3: Template Language Grammar

suppose we want to model an 8-bit ALU that performs
addition, subtraction and the increment operations. This is
written as:
ALUINC ← SRC1 + bvcnst 1 8
ALUADD ← SRC1 + SRC2
ALUSUB ← SRC1 - SRC2
ALURESULT ← choice ALUOP [ALUINC ALUADD ALUSUB]

The read-slice-choice has bitvector b and width k as ar-
guments and synthesizes an expression that extracts bits i to
i + k − 1 of b for some index i. In other words, it provides
a convenient way to operate on slices of bitvectors without
specifying the indices of the slice. For example, if one of the
bits in the PSW register is the carry flag, we can write this as
follows: CY ← read-slice-choice CYF PSW 1.

The final synthesis operator is bv-in-range which synthe-
sizes a bitvector value within the specified range. Somewhat
surprisingly, we found this minimal set of synthesis operators
to be sufficiently expressive for our case study.3 It is very easy
to add more synthesis primitives.

C. Synthesis Algorithm

The synthesis procedure first “compiles” the template into
a satisfiability modulo theory (SMT) formula which uses

3This finding is consistent with SKETCH where the supported “holes” are
of only three types: index expressions, lookup tables and bitmasks.

the theories of bitvectors, arrays and uninterpreted func-
tions with equality. Most elements in the template lan-
guage can be mapped to SMT using a straightforward re-
cursive algorithm. The synthesis primitives: choice, read-
slice-choice and bv-in-range require special treatment. These
primitives introduce new synthesis variables, whose val-
ues have to be inferred by the synthesis procedure. As
an example consider the choice primitive. The statement
choice id [c1 c2 . . . ck] is converted to the SMT for-
mula ITE(id1, c1, ITE(id2, c2, ITE(id3, c3, . . . , ck))) where
id1 . . . idk−1 are Boolean synthesis variables.

Algorithm 1 Synthesis Algorithm
Function: synthesize.
Inputs: TA(S, I,XA, YA), pi and eval.
Output: Si

1: j ← 1
2: T1 = TA(S1, I,XA, YA1)
3: T2 = TA(S2, I,XA, YA2)
4: F 1 = pi ∧ T1 ∧ T2
5: while sat [F j ∧ (YA1 6= YA2)] do
6: (Ij, Xj)← SATASSIGNMENTI,XA(F

j)
7: Yj ← eval(Ij, Xj)
8: Tj

1 ← SUBSTITUTE(T1, I = Ij, XA = Xj, YA1 = Yj)
9: Tj

2 ← SUBSTITUTE(T2, I = Ij, XA = Xj, YA2 = Yj)
10: F j+1 ← F j ∧ Tj

1 ∧ Tj
2

11: j ← j + 1
12: end while
13: Si ← SATASSIGNMENTS1(F

j)

The translation procedure yields the SMT formula
TA(S, I,XA, YA) which is then synthesized using Algo-
rithm 1. The key idea is to repeatedly find distinguishing
inputs [11] while ensuring the simulation input/output values
observed thus far are satisfied. A distinguishing input for
S1 and S2 is an assignment to I and XA such that the
TA transitions to a different states with S1 and S2. The
distinguishing input is found in line 6. Next we use eval to find
the correct next-state Yi and assert that the next distinguishing
input must satisfy this transition (line 10). When no more
distinguishing inputs can be found, then all assignments to
S define the same transition relation and we pick one of these
assignments in line 13.

1) Template Bugs: We say the template TA and param-
eters pi can express the relation TA if for all i: pi =⇒
TA(I,XA, YA) is a member of the set of relations defined by
{s ∈ B|S| | TA(s, I,XA, YA)}. If pi =⇒ TA(I,XA, YA)
does not belong to this family of relations, we say that the TA
and pi cannot express TA.

We refer to the scenario when TA and pi cannot express TA
as a template bug. A template bug may result in the call to the
SMT solver in line 13 to be unsatisfiable. When this happens,
our synthesis framework prints out the unsat core of F j . In
our experience, examining the simulation inputs and outputs
present in the unsat core is sufficient to identify the bug. The
algorithm may also return an incorrect transition relation and
this will be discovered either when verifying the ILA (see §IV)
or when verifying system-level properties using the ILA.
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2) Simulator Bugs: Since eval models a simulator and real-
world simulators may contain bugs, it is possible that eval
is not equivalent to the idealized transition relation TA, i.e.,
eval(I, XA) = YA ⇐⇒ TA(I, XA, YA) does not hold. This
will also either cause an unsatisfiable result or an incorrect
transition relation. The former can be debugged using the unsat
core of F j while the latter will be detected during verification.

3) Correctness of Algorithm 1: In the absence of template
bugs and if eval is equivalent to TA, we have the following
result about Algorithm 1.
(Theorem) If TA and pi can express TA and eval(I, XA) = YA
⇐⇒ TA(I, XA, YA) then

(
∧Ni=1 (pi =⇒ TA(Si, I,XA, YA))

)
⇐⇒ TA(I,XA, YA).

IV. VERIFYING THE INSTRUCTION-LEVEL ABSTRACTION

Once we have ILA, the next step is to verify that it correctly
abstracts the hardware implementation. Our first attempt at
this might be to verify properties of the form G(xa = xf )
where xa ∈ XA and xf ∈ XF are elements of the firmware-
accessible states present in both the abstraction and the
implementation. Unfortunately, this property is likely to be
false for most internal state in hardware designs. Consider
an accelerator design. The ILA may only model a high-level
state machine of the accelerator which “executes” an entire
operation in one transition but the implementation will step
through many intermediate states to accomplish the equivalent.
The property is likely invalid during these intermediate states.

A. Verifying Abstraction Correctness

When considering the internal state of the hardware com-
ponents, we verify the ILA by defining refinement relations
as proposed by McMillan [14]: G(cond =⇒ xa = xf ). The
predicate cond specifies when the equivalence between state
in the ILA and the corresponding state in the implementation
holds. For example, in a pipelined microprocessor, we might
expect that when an instruction commits, the architectural state
of the implementation matches the ILA. Defining the refine-
ment relations as above allows compositional verification [12].
Consider the property ¬(φ U (cond ∧ (xa 6= xf ))) where φ
states that all refinement relations hold until time t− 1. This
is equivalent to the above property, but we can abstract away
irrelevant parts of φ when proving equivalence of xa and xf .

For state variables that are outputs of hardware components
being modeled, we expect that ILA outputs always match the
implementation. In this case, the property is G(xa = xf ).

1) Discussion of Verification Issues: One part of our case
study is a pipelined microcontroller with limited specula-
tive execution. Our refinement relations are of the form
G(inst finished =⇒ (xa = xf )), i.e., the state of the
ILA and implementation must match when each instruction
commits. The other part of the case study involves the verifi-
cation of two cryptographic accelerators. Here the refinement
relations are: G(hlsm state changed =⇒ xa = xf ).

If we had to verify a superscalar processor, the ILA would
execute multiple instructions in each transition. The exact
number of instructions to be executed with each transition is an

output of the implementation and an input to the abstraction.
The property would state that after these many instructions are
executed, the states of the ILA and implementation match.

B. Verification Correctness

If we prove the refinement relations for all outputs of the
ILA and implementation: G(xa = xf ), then we know that
the ILA and implementation have identical externally-visible
behavior. Hence any properties proven about the behavior of
the external inputs and outputs of the ILA are also valid for
the implementation.

In practice, proving the property G(xa = xf ) for all
external outputs may not be scalable, so we will have to adopt
McMillan’s compositional approach. We prove refinement
relations of the form ¬(φ U (cond ∧ xia 6= xif )) for internal
state and use these to prove the equivalence of the outputs.

If these compositional refinement relations are proven for
all firmware-visible state in the ILA and implementation, then
we know that all firmware-visible state updates are equivalent
between the ILA and the implementation. Further, we know
that transitions of the high-level of state machines in the ILA
are equivalent to those in the implementation. These properties
guarantee that firmware/hardware interactions in the ILA are
equivalent to the implementation, capturing the requirements
mentioned in Section I-A.

V. EVALUATION

This section describes the evaluation methodology, the
example SoC used as a case study, and then presents the
synthesis and verification results.

A. Evaluation Methodology

We implemented the template-based synthesis framework
as a Python library using the Z3 SMT solver [4]. Besides
synthesis of the ILA, the library also provides a set of func-
tions for generating behavioral Verilog corresponding to the
“golden model”. This is used to verify that the ILA matches
the implementation. We have made the synthesis framework,
template abstractions, synthesized ILA, Verilog netlists and
other experimental artifacts available online [5].

We used a slightly-modified version of the open source
Yosys [24] tool to synthesize netlists from behavioral Verilog.
We used ABC [22] for property verification. Experiments
were run on Intel(R) Xeon(R) E5645 and E3-1230 CPUs. The
E5645 has 12 cores and 128 GB of RAM, while the E3-1230
has 6 cores and 32 GB of RAM. All experiments were run on
Ubuntu Linux v12.04.

1) Example SoC Structure: A block diagram of the example
SoC is shown in Figure 4. It consists of the 8051 micro-
controller and two cryptographic accelerators. The register-
transfer level (RTL) Verilog implementation of the 8051 was
taken from OpenCores.org [23]. We used i8051sim from UC
Riverside as a blackbox instruction-level simulator of the
8051 [13]. One accelerator implements encryption/decryption
using the Advanced Encryption Standard (AES) [7]. This
is from OpenCores.org [10]. The second accelerator [20]
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implements the SHA-1 cryptographic hash function [6]. We
wrote interface modules that “expose” the AES and SHA-1
accelerators to the 8051 using a memory-mapped I/O interface.

ARB

I/
O

 P
o

rt
s

ROM

8051 µc

RAM

REG ALU

AES SHA

XRAM

Fig. 4: Example SoC Block Diagram

2) Firmware Programming Interface: The firmware run-
ning on the 8051 initiates operation of the accelerators by writ-
ing the addresses of the data to be encrypted/decrypted/hashed
to memory-mapped registers within the accelerators. Operation
is started by writing to the start register which is also memory-
mapped. Once the operation is started, the accelerators use
direct memory access (DMA) to fetch the data from the ex-
ternal memory (XRAM), perform the operation and write the
result back to XRAM. The processor determines completion
by polling a memory-mapped status register.

3) Verification Objectives: In this work we focus on pro-
ducing a verified ILA of the SoCs hardware components. The
objectives here are to verify that each instruction in the 8051
is executed according to the ILA, firmware programming the
cryptographic accelerators by reading/writing to appropriate
memory-mapped registers produces the expected results and
that the implementation of the cryptographic accelerators
matches the high-level state machines in the ILA. We do not
verify correctness of encryption or hashing itself.

B. Verifying the Example SoC

We performed the verification in a modular manner by
constructing two ILAs: one for the 8051 microcontroller and
another for the arbiter, XRAM, AES and SHA modules. The
insight here is that the 8051 communicates with the accel-
erators and XRAM by reading/writing to XRAM addresses.
So from the perspective of the 8051, it is sufficient to show
that all instructions that modify the internal state of the
8051 are executed correctly and instructions which read/write
XRAM produce the correct results at the external memory
interface. What happens after these instructions “leave” the
external memory interface - whether they modify the XRAM
or start AES encryption, or return the current state of the SHA
accelerator - need not be considered in this model. For the
accelerators and the XRAM, we construct a separate ILA and
the only instructions we need to consider here are reads and
writes to XRAM addresses. In this ILA, we verify that these
operations produce the expected results.

1) Synthesizing the 8051 ILA: We constructed a template
ILA of the 8051 which is parameterized over the opcode

and models all 256 opcodes of the microcontroller and other
elements of architectural state including the internal RAM
which contains the register banks, the accumulator and other
registers. We used i8051sim as the blackbox simulator.

Note this is equivalent to synthesizing the instruction set
architecture (ISA) of the 8051. Our methodology ensures
that the constructed ILA specification is precisely-defined and
correct; this is a significant challenge in practice. For example,
Godefroid et al. [8] report that ISA documents only partially
define some instructions and leave some state undefined. They
report instances where implementation behavior contradicts
the ISA document and cases where implementation behavior
changes between different generations of the same processor-
family. Our methodology avoids all of these pitfalls.

Model LoC Size
Template ILA ≈ 650 30 KB
C++ instruction-level simulator ≈ 3000 106 KB
Behavioral Verilog implementation ≈ 9600 360 KB

TABLE I: Lines of code (LoC) and size in bytes of each model.

As an indication of the effort involved in building the
model, Table I compares the size of the template ILA with
the simulator and the RTL implementation. The template ILA
is significantly smaller than both the simulator and the RTL.
Table II shows the execution time for synthesis of each element
of architectural state. We report the average and maximum
values over all 256 opcodes. Except for the internal RAM, all
other elements are synthesized with a few seconds.

2) Verifying the 8051 ILA: We first attempted to verify
the 8051 by generating a large monolithic golden model that
implemented the entire functionality of the processor in a
single cycle. The IRAM in this model was abstracted from
a size of 256 bytes to 16 bytes. This abstracted golden model
was generated automatically using the synthesis library. We
manually implemented the abstraction reducing the size of the
IRAM in the RTL implementation.

We used this golden model to verify properties of the form
G(inst finished =⇒ xa = xf ). For the external outputs of
the processor, e.g., the external ram address and data outputs,
the properties were of the form G(output valid =⇒ xa =
xf ). Verification was done using bounded model checking
(BMC) with ABC using the bmc3 command. After fixing
some bugs and disabling the remaining (17) buggy instruc-
tions, we were able to reach a bound of 17 cycles after 5
hours of execution.

State AVG/MAX State AVG/MAX
Time (s) Time (s)

ACC 4.3/8.5 B 3.6/5.1
DPH 2.7/5.0 DPL 2.6/4.4
IRAM 1245.7/14043.6 P0 1.8/2.7
P1 2.4/3.8 P2 2.2/3.5
P3 2.7/4.6 PC 6.3/141.2
PSW 7.3/15.9 SP 2.8/5.0
XRAM/addr 0.4/0.4 XRAM/dataout 0.3/0.4

TABLE II: Synthesis execution time for 8051 ILA.
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To improve scalability, we generated a set of “per-
instruction” golden models which only implement the state
updates for one of the 256 opcodes, the implementation of the
other 255 opcodes is abstracted away. We then verified a set
of properties of the form: ¬(φ U(inst finished ∧ opcode =
oi∧xa 6= xf )). Here φ states that all architectural state matches
until time t − 1. We then attempted to verify five important
properties stating that: (i) PC, (ii) accumulator, (iii) the IRAM,
(iv) XRAM data output and (iv) XRAM address must be equal
for the golden model and the implementation.

Property BMC bounds Proofs
CEX ≤ 20 ≤ 25 ≤ 30 ≤ 35

PC 0 0 25 10 204 96
ACC 1 0 8 39 191 56
IRAM 0 0 10 36 193 1
XRAM/dataout 0 0 0 0 239 238
XRAM/addr 0 0 0 0 239 239

TABLE III: Results with per-instruction golden model.

Results for these verification experiments are shown in
Table III. Each row of the table corresponds to a particular
property. Columns 2-6 show the bounds reached by BMC
within 2000 seconds. For example, the first row shows that
for 25 instructions, the BMC was able to reach a bound
between 21 to 25 cycles without a counterexample; for 10
instructions, it achieved a bound between 26 to 30 cycles and
for the remaining 204 instructions, the BMC reached a bound
between 31 and 35 cycles. The last column shows the number
of instructions for which we could prove the property. These
proofs were done using the pdr command which implements
the IC3 algorithm [3] with a time limit of 1950 seconds. Before
running pdr, we preprocessed the netlists using the gate-level
abstraction [15] technique with a time limit of 450 seconds.

We believe all instructions and all architectural states can
be proven to match the ILA with some verification effort. We
will have to apply the appropriate abstractions and possibly
specify a few intermediate lemmas. Due to limited time we
were unable to perform these proofs for all cases, so we report
the partial results shown above. Yet, the current results do
substantiate our claim that the ILA can be proven correct.

3) Bugs Found During 8051 Verification: In the simulator,
we found 5 bugs in total. Bugs in CJNE, DA and DIV instruc-
tions were due to signed integers being used where unsigned
values were expected. Another was a typo in AJMP and the
last was a mismatch between RTL and the simulator when
dividing by zero. These bugs were found during synthesis.

An interesting bug in the template was for the POP instruc-
tion. The POP <operand> instruction updates two items of
state: (1) <operand> = RAM[SP] and (2) SP = SP -
1. But what if operand is SP? The RTL set SP using (1)
while the ILA used (2). This was discovered during model
checking and the ILA was changed to match the RTL. This
shows one of the benefits of our methodology: all state updates
are precisely-defined and consistent between the ILA and RTL.

In the RTL model, we found a total of 7+1 bugs. One of
these is an entire class of bugs related to the forwarding of

special function register (SFR) values from an in-flight instruc-
tion to its successor. This affects 17 different instructions and
all bit-addressable architectural state. We partially fixed this.
A complete fix appears to require significant effort.

Another interesting issue was due to reads from re-
served/undefined SFR addresses. The RTL returned the previ-
ous value stored in a temporary buffer. This is an example of
the methodology detecting and preventing unintended leakage
of information through undefined state.

4) Synthesizing XRAM+AES+SHA ILA: The template ILA
for the cryptographic accelerators models the high-level state
machines (HLSM) for each accelerator. The synthesis param-
eter is the current state of the HLSM of the two accelerators.
The template also models reads/write operations from the
processor which read/write the external RAM or internal
registers in the accelerators. The AES and SHA functions were
modeled using uninterpreted functions.

Model LoC Size
Template ILA ≈ 500 26 KB
Python HLSM simulator ≈ 400 14 KB
Behavioral Verilog implementation ≈ 2800 87 KB

TABLE IV: Lines of code and size of each model.

The sizes of the model are shown in Table IV. Table V
shows the time to synthesize each element of the abstraction’s
state space. Synthesis can be completed in about an hour.

5) Verifying the XRAM+AES+SHA ILA: As before, we
generated a Verilog golden model for the XRAM+AES+SHA
ILA. We reduced the size of the XRAM in the ILA and
the implementation to just one byte because we were not
looking to prove correctness of reads and writes to the XRAM.
We then attempted to prove a set of properties of the form
G(hlsm state change =⇒ (xa = xf )). We were able
to prove that the AES:State, AES:Addr, and AES:Len in the
implementation matched the ILA using the pdr command. For
other firmware-visible state, BMC found no property violation
up to 199 cycles with a time limit of one hour.

VI. RELATED WORK

Syntax-Guided Synthesis: Our work builds on recent progress
in syntax-guided synthesis which is surveyed in [1]. The
synthesis primitives we introduce are similar to the idea
of “holes” and the ?? operator proposed in SKETCH [19].

State AVG/MAX State AVG/MAX
Time (s) Time (s)

AES:Addr 0.5/1.0 AES:BytesProcessed 0.6/1.5
AES:Ctr 0.6/1.6 AES:EncData 0.4/0.4
AES:Key0 0.7/1.7 AES:Key1 0.6/1.5
AES:Len 0.4/0.9 AES:ReadData 0.4/0.5
AES:State 0.8/2.0 Dataout 91.9/345.2
SHA:BytesProcessed 0.3/0.5 SHA:Digest 0.3/0.3
SHA:Len 0.4/0.4 SHA:RDAddr 0.4/0.4
SHA:Readdata 81.9/588.3 SHA:State 0.3/0.4
SHA:WRAddr 0.4/0.5 XRAM 22.4/58.1

TABLE V: Synthesis execution time for XRAM+AES+SHA ILA.
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The synthesis algorithm is based on oracle-guided synthesis
from [11]. Our contribution is in the application of synthesis to
constructing abstractions for verification and the parameterized
formulation which makes synthesizing the ILA tractable.
Synthesizing Abstractions: Godefroid et al. [8] synthesize
a symbolic model for a subset of the ALU instructions in
an x86-core using input/output samples. They cannot verify
the correctness of the synthesized model, so it may or may
not correspond to the implementation. As such, it is insuf-
ficient for our scenario where we wish to use the model for
system-level verification with strong guarantees of correctness.
Furthermore, our synthesis framework can be used to model
general hardware components while they focus on a specific
part of the microprocessor: the ALU result and flag outputs.
Verifying Abstraction Correctness: The refinement relations
we use in proving that the abstraction and the implementa-
tion match are from [12, 14]. In [12], Jhala and McMillan
show how refinement relations can be defined to prove the
correctness of an out-of-order superscalar processor. While
these verification techniques are very important, these are not
the focus of our paper. We focus on synthesizing abstractions.
To verify their correctness, we can leverage the rich body of
work in hardware verification.
SoC Verification: One approach to compositional SoC ver-
ification is by Xie et al. [25, 26]. They suggest manually
constructing a “bridge” specification that along with a set of
hardware properties can be used to verify software components
that rely on these properties. Our methodology makes it easy
to construct the equivalent of the bridge specifications. It has
the added benefit of ensuring the abstraction is correct.

Horn et al. [9] suggests symbolic execution on a software
model that contains both firmware and software models of
hardware components. This approach is complementary to
ours because it can used for early-design stage verification,
when an RTL model may not be available. However, once the
RTL model is constructed, there is no easy way of ensuring
that the software model and the RTL are in agreement. This
is the critical challenge addressed by our work.

VII. CONCLUSION

Modern SoCs consist of a number of programmable cores
and many accelerators and peripheral devices which are con-
trolled by firmware running on the cores. The functionality of
the SoC is derived by this combination of firmware and hard-
ware. Verifying such SoCs is challenging because formally
verifying the complete SoC with firmware and hardware is not
scalable, while verifying the two separately may miss bugs.

In this paper, we introduced a methodology for SoC verifi-
cation that synthesizes an instruction-level abstraction (ILA) of
the SoC. The ILA captures updates to all firmware-accessible
states in the SoC and can be used instead of the bit-precise
cycle-accurate hardware model while proving system-level
properties involving firmware and hardware. One advantage
of our methodology is that the ILA is verifiably correct.
A set of refinement relations are defined to prove that the
behavior of the ILA matches the implementation. The other

advantage is that instead of specifying the complete ILA, the
verification has the much easier task of writing a template
ILA which partially defines the operation of the hardware
components, and the synthesis algorithm is able to synthesize
the missing details. We demonstrated the applicability of our
methodology by using it to verify a small SoC consisting of
the 8051 microcontroller and two cryptographic accelerators.
The verification process uncovered several bugs substantiating
our claim that the methodology is effective.
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Abstract—The lack of appropriate models is often the biggest
hurdle in applying formal methods in the industry. Creating
executable models of industrial designs is a challenging task, one
that we believe has not been sufficiently addressed by existing
research. We address this problem for distributed message pass-
ing protocols by showing how to synthesize executable models of
such protocols from transaction message flows, which are readily
available in architecture descriptions. We present industrial case
studies showing that this approach to creating formal models is
effective in practice. We also show that going the other way, i.e.,
extracting flows from executable models, is at least as hard as the
model-checking problem. These results indicate that transaction
flows may provide a superior approach to capture design intent
than executable models.

I. INTRODUCTION

Over the last decade, significant advance has been made in
the formal verification of industrial-scale designs. Formal tools
scale to hardware designs with millions of gates and software
systems with millions of lines of code [1], [2], [3]. However
routine applications of formal methods have been confined to
certain niche areas, e.g., floating-point units, device drivers,
etc. A key factor constraining the use of formal methods
is the unavailability of appropriate models [4]. Constructing
formally analyzable models of industrial designs is a complex
enterprise, requiring significant expertise both in the artifact
being modeled and in the formalism used. The model must
be small and abstract to be tractable, while preserving the
behaviors of interest from the original design for the analysis
to be meaningful. Furthermore, there is a significant cost to
maintaining models to keep up with the design evolution.
Not surprisingly, most successful adoptions of formal methods
have been in areas where the target was the implementation
itself (e.g., Register-Transfer Level (RTL) designs in hardware,
or C/C++ implementations of software). Unfortunately, this
means that verification occurs late in the design life-cycle,
after these artifacts have been implemented. Moreover, for
such low-level implementations, formal tools do not scale
to complete designs [5]. The situation is exacerbated with
shrinking time-to-market schedules, that make it infeasible
to fix late-discovered deep errors which warrant significant
design change. The result has been complex patches, point-
fixes, and systems shipped with errors and vulnerabilities. To
address these issues it is critical to facilitate easy creation of

This work was done when the first author was at Intel Corporation.

maintainable, high-level models early in the design life-cycle;
the models can then serve as (1) targets for early analysis for
catching architecture-level bugs, and (2) specifications driving
later phases of development.

In this paper, we address the problem of efficiently devel-
oping high-level executable models for asynchronous message-
passing protocols. Such protocols include cache coherence,
resource allocation, bus locking, etc., and form the bedrock
of modern multicore and multiprocessor systems as well as
SoC designs. Errors in these protocols tend to be particularly
difficult to detect since they involve unanticipated, subtle
interleavings of concurrent communications that are difficult
to exercise through simulation. Furthermore, protocol errors
discovered late are difficult to fix, since they typically involve
design changes in a number of participating components.

Our approach is based on automatic generation of exe-
cutable models of the protocols from artifacts already created
by architects during the system design process. These arti-
facts typically take the form of diagrams specifying different
message transactions. Fig. 1 shows two such diagrams for
a toy cache coherence protocol. Observe that they provide
a “transaction-centric view” of the protocol: executions are
broken into transaction scenarios, and a diagram specifies the
message communications for each transaction. A traditional
distributed system model, on the other hand, provides an
“agent-centric view”: for each participating agent agt, it spec-
ifies the behavior of agt under all possible system scenarios.
We will refer to these models as executable models. They have
a closer correspondence to downstream implementations (e.g.,
RTL or software) which are also developed on agent-by-agent
basis. Traditionally executable models are manually created by
formal methods experts after studying architecture documents.

The main insight for our work is that, with a little additional
information, the seemingly informal transaction descriptions
created by architects can be used to synthesize executable
models. The paper makes four contributions. First, we develop
a formal foundation for specifying protocol transactions. Two
key ingredients of this foundation are (i) transaction message
flows (or simply, flows); and (ii) a definition of compliance that
formalizes correspondence between transaction-centric and an
agent-centric views. Second, we develop a framework for
synthesizing executable models from flows. This makes it
feasible for architects, having little familiarity with formal
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Fig. 1: Two architecture diagrams showing ReqExcl (request
for exclusive line access) transaction for a toy cache coherence
protocol. Agents are the clients (numbered as 1 and 2) and a
memory controller or Directory. (a) The scenario in which no
other agent has a copy of the cache line. So the line is granted
immediately. (b) The scenario where another agent has a copy
of the cache line. This copy must be invalidated (and its data
written back) before the same line can be granted to 1.

methods, to develop, and analyze executable models of com-
plex industrial protocols, e.g., our tool has been used by
architects at Intel to synthesize highly complex protocols in
Intel’s many-integrated-core (MIC) processors. Third, we re-
port industrial case studies showing that protocol specifications
via flows is effective in practice: model generation could be
accomplished at a fraction of the time required by a formal
methods expert to manually build a model. Finally, we show
that while generation of models from flows is relatively simple,
identifying flows from models is at least as hard as model-
checking. This indicates that flows provide a strictly richer
semantic information than an executable model.

The rest of the paper is organized as follows. Section II
defines flows and formalizes the notion of compliance between
flows and models. In Sections III and IV we discuss our
approach to synthesize models from flows. In Section V
we discuss the converse problem, viz., extracting flows from
models, and show that extracting (an appropriate notion of)
compliant flows from a modelM is as hard as model-checking
M. In Section VI we discuss application of automated syn-
thesis of flows to models in practical case studies. We discuss
related work in Section VII and conclude in Section VIII.

II. SYSTEMS, TRANSACTIONS, AND EXECUTABLE
MODELS

A. Executable Model

Our formalization of an executable model is based on
guarded transitions. Such formalisms are well-known in con-
currency literature [6], [7], and form the basis of system mod-
eling in model-checking tools like Murphi [8] and SPIN [9].

A distributed system involves coordinated computation by
a collection of agents with indices or ids. In our formalism ids
are numbers {1, . . . , n}. The system state is given by the local
state of each agent and the states of communication channels.
The local state of agent i is specified by the value of a finite
collection vars(i) of state variables. For each pair of agents

i, j, where i 6= j chans(i, j) is a finite set of channels from i
to j. To send a message m to j, agent i places it in some c ∈
chans(i, j). All variables (both state variables and channels)
are assumed to take values from a fixed, bounded, finite set
S. We assume that S includes a special “empty” value ⊥ to
represent an empty channel. For each agent i, denote the set
vars(i)∪(

⋃
j 6=i chans(i, j)) by Πi. An assignment of a variable

v ∈ Πi is given by v := exp where exp is an expression
over Πi ∪ S. Unless otherwise noted we keep the syntax of
operations involved in expression exp unspecified, but assume
that any expression in this paper can be evaluated over S. A
guard gi for agent i is a Boolean expression over Πi ∪ S .

Definition 1 (Rule): A rule for agent i is a construct of the
form r : gi → ai where r is a symbol called rule name, (1)
giis a guard for i and (2) ai is a collection of assignments of
some variables v ∈ Πi.

Definition 2 (Executable Model): An executable system
model (or simply, model) M of n agents is a pair M , 〈R, I〉
where R is a set of rules with unique rule names and I
is an initial set of assignments to all variables in Πi, for
i ∈ {1, . . . , n} to constants in S.

We assume that each c ∈ chans(i, j) is assigned to ⊥ in
I . A system state s is an assignment to all the variables in
Πi, for all i ∈ {1, . . . , n}. Given a system state s and a rule
r : gi → ai for agent i, we say that r is enabled at s if and
only if g evaluates to true in state s.

Definition 3 (Rule Firing): Given a rule r : gi → ai for
agent i, we say that s′ is the result of firing of r from s if the
following two conditions hold

• r is enabled in s; and

• s′ is derived from s as follows: If there is no assign-
ment to v in r then v is assigned the same value in s′
as in s. Otherwise, if there is an assignment v := exp
in r then v is assigned the value obtained by evaluating
exp in s.

Definition 4 (Execution Trace): A sequence of rules τ ,
[r1, . . . , rk] is called an execution trace of model M , 〈R, I〉
(where ri ∈ Rfori = 1 . . . k) if there exists a sequence
[s0, . . . , sk] of system states with I = s0 such that following
two conditions hold.

• ri is enabled in si−1; and

• si is the result of firing ri in si−1.

B. Flows and Flow Model

The notion of message flows is similar to Message Se-
quence Charts (MSCs) [10] used in the specification of multi-
agent transaction systems. In particular, a flow is a partially
ordered set of events, specifying the transactions of a protocol.
An event is a 5-tuple 〈AGT, GD, RECV, SEND, UP〉 as described
below. Fig. 2 shows the formalization of the ReqExcl1 flow in
Figure 1.

• AGT ∈ {1, . . . , n} specifies the index (or id) of the
agent executing the event.

• GD is guard for ΠAGT∪S and UP is set of assignments
to variables in ΠAGT.
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1) 〈1, true,−, [〈ReqE,Dir〉],−〉
2) 〈Dir,¬ busy ∧ ¬ gntd, [〈ReqE, 1〉], [〈GntE, 1〉], [valid[1] := true; gntd := true]〉
3) 〈1, true, [〈GntE,Dir〉],−, [state := E]〉

Fig. 2: Formalization of three events in ReqExcl1 flow of Fig. 1. Although process ids are restricted to be numbers in the
formalization, we use the symbol Dir for the directory process for pedagogical reasons.

• SEND and RECV are lists of messages. Each message
is a tuple 〈MSG, ID〉 where MSG is the actual message
and ID is the index of the receiving agent (in case of
SEND) or the sending agent (in case of RECV).

We use e.GD, e.AGT, etc. to denote the individual compo-
nents of event e. As with rules, meaning is assigned to events
via guarded commands: e is enabled whenever e.GD holds and
the list of messages specified in e.RECV are available in the
incoming channels of e.AGT; the execution causes the updates
to the local state of e.AGT as specified by e.UP and the list of
messages in e.SEND to be sent through the outgoing channels
of e.AGT.

Based on the above semantics, we impose following
syntactic requirements and restrictions on events: (1) e.GD
is a Boolean expression over the state variables of e.AGT;
(2) e.SEND provides a list of assignments to the outgoing chan-
nels of e.AGT where the right hand side of each assignment
is a tuple 〈MSG, ID〉 specifying the message and receiver id;
(3) e.RECV is similarly a list of tuples 〈MSG, ID〉 containing
the message and sender id.

Definition 5 (Transaction Flows and Flow Model): A
transaction Message Flow (or simply, Flow) is a pair 〈f,≺〉,
where f is a set of events and ≺ is a partial order relation
over f .

Informally, ≺ specifies the temporal ordering on the events
in a flow. For Fig. 1, we can view each diagram as a linearly
ordered sequence of events; the two diagrams represent two
flows describing the two different ways in which a request for
exclusive access can be handled. Note that for this and many
common cases, the events in a flow f form a sequence, i.e.,
the partial order ≺ is in fact a total order. Nevertheless, there
are situations where the generality of partial order is necessary,
e.g.in the “diamond transaction” shown in Fig. 3. For the rest
of the paper, we use f instead of 〈f,≺〉 to refer to a flow
when the relation ≺ is clear from context.

1) Mapping between rules and events: There is an direct
connection between rules and events. For the purpose of
formalization, we assume fixed syntactic mappings rl2ev and
ev2rl that translate a rule into an event and vice versa. The
mapping ev2rl maps an event e to a rule of the following
form. Here the right hand side of the rule, specified as a list
of items enclosed by 〈〉 represents a sequence of assignments
to local and channel variables.

e.GD ∧ (chans[(e.RECV).ID, e.AGT] = (e.RECV).MSG)
→ 〈e.UP; (chans[e.AGT, (e.SEND).ID] := (e.SEND).MSG);

chans[e.AGT, (e.RECV).ID] := ⊥〉

Correspondingly, the mapping rl2ev takes a rule rl and
extracts the five fields above to get an event ev. The only
possible source of ambiguity in a rule rl is about the identity

Fig. 3: A transaction requiring ≺ to be a partial order. The
execution of e1 enables both e2 and e3, and both these events
must be executed before e4 can be enabled.

of the sender of messages in case rl involves multiple agents.
In our model, messages are communicated using fixed uni-
directional channels, and it is simple to identify the sender.1
This agent can be viewed as the executing agent of the event.

2) Flows as templates: Given the correspondence between
events and rules, a flow provides a template or a pattern
for system execution, grouping together related rules with a
temporal ordering on their firing. A flow can be invoked or
instantiated several times, even concurrently, during a run of
the system. To make precise the relation of an execution trace
with flows, we need to disambiguate between these instances.
The notion of tagging accomplishes that by augmenting a flow
with a “tag”. Here we assume that we have an unbounded set
T of tags (which is different from all the previously defined
sets, viz., variables, values, events, rules, etc.).

Definition 6 (Tagged Events and Flows): A tagged event
is a pair [e, t] where e is an event and t is a tag. If 〈f,≺〉 is
a flow, then a tagged flow 〈[f, t],≺〉 is obtained by replacing
each event e ∈ f with the corresponding tagged event [e, t].

Definition 7 (Legal Tagging): Given a set of flows F and
a set T of tags, a set [F, T ] ⊆ {[f, t] : f ∈ F, t ∈ T} is a legal
tagging if and only if for f, f ′ ∈ F such that f 6= f ′, if [f, t]
and [f ′, t′] are members of [F, T ] then t 6= t′.

Informally, we want a unique tag to be associated with each
instance of a flow in an execution trace of the system. The
definition of compliance makes this notion explicit.

Definition 8 (Precedence-Preserving Mapping): Let τ ,
[r1, . . . , rk] be an execution trace of model M, F be a set of
flows, and [F, T ] be a legal tagging of F . Let rl2ev# be a one-
to-one mapping from rules in τ to tagged events in [F, T ]. We
say rl2ev# is precedence preserving if for each ri, i = 1 . . . k

1In practice, the message names usually gives away the sender identity.
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there exists a tagged flow [f, t] ∈ [F, T ] and a tagged event
[e, t] ∈ [f, t] such that the following conditions hold:

• rl2ev#(ri) = [e, t]

• rl2ev(ri) = e

• for each p ∈ f such that p ≺ e, there exists k < i
such that rl2ev#(rk) = [p, t].

Definition 9 (Compliance): Let τ , [r1, . . . , rk] be an
execution trace, and let F be a set of flows. We say that τ
is compliant with F if there exists a precedence preserving
mapping rl2ev# from members of τ to events in a legal
tagging [F, T ]. A model M is compliant with flows F if
every trace of M is compliant with with F .

Flows provide a generalization of control flow graph to
a distributed setting. The definition of compliance essentially
stipulates that the trace τ can be viewed as a composition of
a collection of flow instances. The requirement of precedence
preserving mapping guarantees that each such instance can
be uniquely identified with a tag and respects the precedence
constraints imposed by flows.

We end this section by briefly comparing the notion
of flows introduced here with a related notion in previous
work [11], [12] which was also called “flows”. Flows in
previous papers did not consider state annotations and up-
dates. The more refined notion used here is necessary for
synthesizing protocols, while previous work only used flows
to infer invariants. Nevertheless, we use the same name in
this paper for two reasons. First, the definition here strictly
supersedes the previous notion, viz., the previous usages can
be accomplished with the current notion. Second, the notions
are similar, both in structure and in “spirit”, e.g., both aim to
exploit the transaction-centric view of protocols.

III. SYNTHESIZING MODELS FROM FLOWS

Fig. 4 shows the high-level steps for applying our frame-
work for synthesizing executable models. The user starts from
an initial (possibly incomplete) set of flows F that captures the
algorithmic aspects of protocol being designed, and progres-
sively refines this set in response to feedback from a model-
checker. In more detail, we automatically synthesize a (com-
pliant) model M from F , and model-check M against a set of
user-provided assertions I and a collection of sanity conditions.
If model-checking detects deadlock or invariant violation, or
a sanity condition fails, a counterexample is provided together
with diagnostic information (cf. Section VI). The user modifies
F , possibly by adding more flows or adjusting some existing
one, so that the erroneous behavior is ruled out. The process is
iterated until model-checking succeeds. Note that all the steps
are automatic other than the obviously creative step of “fixing”
F to rule out the counterexample.

The approach requires a set of assertions. The assertions we
use are simple and straightforward, e.g., for cache coherence
protocols the obvious assertion is the coherence property itself.
Sanity checks are also included to ensure that the generated
model M (and, by implication, F ) exhibit certain desired
behaviors. We discuss some generic sanity checks in the next
section. In addition, domain-specific sanity conditions can be
added by the user. For instance, a simple sanity check for cache

Fig. 4: Synthesis-Refinement Loop for Interacting with Flows

coherence protocols is that for every agent a there is a trace
where a can get into shared and exclusive states.

A. Synthesizing M

Consider synthesizing a model from a set of flows F . A
first naı̈ve approach may be simply mapping each event e
in each flow f ∈ F to ev2rl(e). To see why this does not
work, note that ev2rl is a function of e alone and not the
preceding events of e in f . Hence we are not guaranteed that
rule ev2rl(e) is enabled respecting the ordering relation “≺”.
The key task in synthesizing a model M is to create rule guards
in M such that for any execution trace τ each rule r ∈ τ
respects “≺”. To achieve this, we augment the state variables
for each agent a by the following additional components:

• A “local tag list” Ta for each agent a, that dis-
ambiguates concurrently executing flows (including
different instances of the same flow) involving a.

• A mapping ηa : Ta → Id × ∪b6=aTb that associates
every local tag of a with a set (possibly empty) of
local tags of other agents b that a communicates with.

• A set of “history variables” Ha[f, t] ⊆ Ef , where Ef

is the set of events in flow f , for each agent a, flow
f , and each possible tag value t. The history variable
Ha[f, t] records the firing of events in the instance of
flow f with tag t. For example, if event e ∈ Ha[f, t]
then it means event e occurring in f has been fired by
agent a with associated local tag t.

The local tags are different from the global tag introduced
in Section II. Since each agent has only local visibility, it
is impossible to ensure that the tags chosen for concurrently
executing flows are globally unique. The crux of the synthesis
consists of “book-keeping” to disambiguate between different
active transactions based on local history and tags.

Suppose that f is a flow which includes an event e. Then
we generate a rule ev2rl∗(e, f) by extending the rule ev2rl(e)
with (1) additional assignments updating the relevant tag and
history variables and (2) additional conjuncts on the guard. Let
a be the agent executing e, that is, e.AGT = a.

Updates to History and Tag. Fig. 5 shows how these variables
are updated. Note that we must update history variables of a
each time a rule ev2rl(e) fires.
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Fig. 5: Updating History and η Variables when agent a fires
event e

Additional Guard. The additional guard conjunct is given by
the expression ga[e, f ] , ∃t : ∀e′ : e′ ≺ e ⇒ e′ ∈ Ha[f, t].
That is, ga[e, f ] is true only when all events preceding e′ in
flow f have been executed. Note that although we wrote the
guard as a quantified first-order expression, for any system
involving a finite set of flows and active tags, it can be written
as a Boolean expression by enumeration.

Fig. 5 defines an algorithm for each agent to keep track
of the local tag it uses to communicate with other agents
in specific flow instances. This information is sufficient to
create a global tag as required by compliance definition (cf.
Theorem 1). Indeed, the elaborate tagging and history updates
mirror typical RTL implementation of protocols with multiple,
concurrently executing flow instances. Although essential for
correctness, this part of protocol design is typically boring
to humans while still being tricky to get right. Indeed, many
errors in protocols arise by incorrect handling of such disam-
biguation procedures. By synthesizing it automatically, we free
the human to focus on the algorithmically interesting parts.

The history and tag variables can make the synthesized
model unbounded, e.g., we need a history variable Ha[f, t]
for each possible tag value t. In practice, we impose finiteness
by setting an upper bound to the set of possible tag values. This
is reasonable in our case since our protocols are implemented
in hardware with finite resources; consequently, most protocol
definitions already include an upper bound on the possible tag
values to impose implementability. Nevertheless, the model is
more restrictive than flow descriptions. In particular, the set
of possible tags constrains the number of possible concurrent
instantiations of a flow. We can avoid this constraint to some
extent by reusing tags of completed flows.

The correctness of the procedure is given by Theorem 1.
Here ev2rl∗ and rl2ev∗ are augmentations of ev2rl and rl2ev
respectively so that the domain of ev2rl∗ (and range of rl2ev∗)
include additional guards and updates to the history variables.

Lemma 1: Let τ , [r1, . . . , ri] be any execution trace of
the model M obtained by applying the above procedure to F .
Then there exists f ∈ F such that rl2ev∗(ri) is an event in

f and for each e ≺f rl2ev
∗(ri) there exists k < i such that

rl2ev∗(rk) = e.

Proof sketch: The proof follows from induction on the
length of τ . In the induction step, we note that using the guard
specified for Additional Guard and rules for history variable
update, for each event e such that e ≺ rl2ev∗(ri), ev2rl∗(e, f)
must be executed for ri to be enabled.

Theorem 1: If M is an executable model synthesized from
a set of flows F , then M is compliant with F .

Proof sketch: Let τ , [r1, . . . , rk] be any execution trace
of M . It is sufficient to show that there is a legal tagging [F, T ]
and precedence preserving mapping rl2ev# from rule firings
in τ to [F, T ]. Below we provide a construction of T . The
result then follows from Lemma 1.

We construct [F, T ] inductively. Recall that each rule firing
r in τ is associated with a unique 〈AGT, TAG, FLOW〉 triple.
We have to map every tuple 〈AGT, TAG, FLOW〉 seen in the
execution τ to a global tag so that all local tags used for the
same instance of a flow f by different agents get mapped to
the same global tag.

For the base step, the unique tuple of the first rule r1 is mapped
to global tag of 1. In the inductive step, suppose the tuples for
rules [r1, ..., ri−1] have been mapped to global tags Ti−1 ,
{1...g} such that Ti−1 is a legal tagging. We then consider the
following cases for ri.

Case 1: There exists e ≺ rl2ev∗(ri) such that both e and
rl2ev∗(ri) are events in f and e.AGT = (rl2ev∗(ri)).AGT.
Then by Lemma 1 there exists a k < i such that ev2rl∗(e, f) =
rk. By induction hypothesis, ev2rl∗(e) is tagged by Ti−1 and
this global tag can be used for ri.

Case 2: If there is no e satisfying Case 1 then either rl2ev∗(ri)
is an initial event of f or all preceding events of rl2ev∗(ri)
are executed by an agent different from (rl2ev∗(ri)).AGT. In
the former case, we can augment Ti−1 with any unused tag
and map that to ri. In the latter case, (rl2ev∗(ri)).AGT must
have received a non-empty set P of tuples 〈AGT, TAG, FLOW〉
from preceding rule firings. If all these are mapped to the
same global tag g we use that for the current rule as well.
Otherwise, we pick an unused global tag g and map the tuple
of the current rule ri and all the tuples in P to g.

IV. ADDITIONAL CHECKS TO ENSURE REALIZABILITY

The notion of compliance only ensures that each trace
in the model M can be viewed as an interleaving of flow
instances, but not that all flows in F can be exercised by some
trace. Consider the trivial model Mtr in which the guard for
each rule is the logical false. Since the only trace ofMtr is the
empty trace, Mtr is compliant with F . To ensure that every
flow is “necessary”, we introduce the following additional
sanity check.

Non-Triviality Check. We say that a flow f ∈ F is exercised
by M if there is a trace τ in M such that τ is not complaint
with the set of flows F \ {f}. M is non-trivial with respect
to F if every flow f ∈ F is exercised by M .

The non-triviality check ensures that without f , there is
no way to decompose τ into interleaving instances of flows
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from F . In general, it can require exhaustive exploration of
M . However, it is efficient in practice since model-checking
quickly discovers traces exercising all flows (cf. Section VI-A).

In addition to non-triviality, we perform two other checks
which catch frequently observed mistakes in flows. These
checks are done on the flows F directly, not on the synthesized
model M . First check is that for every message m sent by
some event e in flow f , there is some other event e′ in f ,
e ≺ e′ such that e.RECV includes m. The second check, called
prefix consistency is more subtle. Here we assume that for
flow 〈f,≺〉, the relation ≺ is a total order over the events
{e1(f,a), . . . , e

2
(f,a)} executed by agent a (so that they form a

sequence). This is a general restriction and follows well-known
tradition of distributed system definitions [7].

Prefix Consistency Check. Let f1 and f2 be two flows
such that the event sequences executed by agent a
are [e1(f1,a), . . . , e

k
(f1,a)

] and [e1(f2,a), . . . , e
l
(f2,a)

] respectively.
Then f1 and f2 are prefix consistent if the following holds
for n = 2, . . . ,min(k, l): If the first (n − 1) events of both
sequences is identical, and the GD and RECV fields of en(f1,a)
and en(f2,a) are identical, then so must be the UP and SEND
fields.

The motivation for prefix consistency comes from the fact
that when two or more flows share a prefix there may be
“misunderstanding” among agents regarding which flow is
being executed (usually leading to a deadlock). For instance,
suppose en(f1,a) and en(f2,a) cause the same message mb

a to
be sent from agent a to b, but local updates on a and the
expected response from b are different. Suppose a executes
en(f1,a). Receipt of message mb

a can enable b’s response to
en(f2,a) in addition to en(f1,a). That is, from the perspective of b,
the flow its participating in is f2 whereas from the perspective
of a it is f1. Consequently, the response sent by b is discarded
by a which continues to wait for a response to en(f1,a), leading
to a deadlock. Indeed, we introduced this check after observing
that this phenomenon is quite common for many industrial
protocols and leads to subtle errors.

Finally, note that the checks described in this section
only ensure that flows pass a minimum quality screening;
they cannot ensure that only correct models are synthesized.
Indeed, the quality of synthesized model is only as good as
the flows. In practice, particularly in the initial iterations of
the refinement loop of Fig. 4, flows do contain errors that
have to be fixed by the user through analysis of model-
checking counterexamples. The main advantage of using flows
over directly writing executable models from scratch is that it
provides an easier and more intuitive way of creating models.

V. EXTRACTING FLOWS FROM MODELS

In this section we consider the inverse problem of the
preceding section, i.e., extracting a set of compliant flows from
a given executable model. In addition to being of theoretical
interest, e.g., for comparing the semantic richness of flows vis-
a-vis models, an efficient flow extraction algorithm has practi-
cal utilities. For instance, flows can yield powerful invariants
facilitating formal verification [11], [12]. Moreover, there are
legacy models of industrial protocols which are large and hard

to understand; extracting flows may facilitate understanding by
exposing the underlying transaction structures.

Flow Extraction Problem. Let M be any executable model.
Construct a finite set F of flows such that (1) M is compliant
with F , and (2) each flow f ∈ F is exercised by M .

Condition 2 ensures that for each f in F , an instantiation
of f occurs in some trace τ of M . This rules out trivial cases,
e.g., defining each rule in M to be a flow with a single event
and calling the rule set to be the set of “extracted” flows.

Unfortunately, the flow extraction problem as stated is as
hard as model-checking M . To see that, let I be an arbitrary
predicate over M , and consider the model M+ obtained by
extending M with the single rule r : I → NOP, where NOP
does not involve any updates. Let F be a set of flows satisfying
Conditions 1 and 2 above. Then ¬I is an invariant of M if and
only if no f ∈ F includes the event rl2ev(r). This follows by
noting that r occurs in some trace if and only if I is true of
some reachable state of M .

In spite of the result above, it is often possible to extract
approximate flows from a sufficient set of bounded executions
of M by heuristically inferring event precedence. Indeed, in
many cases, we empirically found such an approach to produce
flows similar to those created by architects. Thus, for legacy
protocols with no available flows, such approximations can
be used as substitutes to mine invariants. However, the result
shows that extracting “perfect” flows is an intractable reverse-
engineering problem.

VI. APPLICATIONS

A. Flows2HLM Synthesizer

We developed a tool, Flows2HLM, to synthesize models
from flows. The tool implements the framework in Section III,
augmented with the following facets to facilitate adoption.

Parameterized Flows. The definition of flows required each
event to include the id of the executing agent. But in practice,
ids only specify the type of the executing agent (e.g., Directory
agent vs. Cache agent). Two or more agents of the same
type occurring in the same flow are disambiguated by using
numbers along with type. Our tool supports such parametric
flows. The key change required in the algorithm is to add
agent ids to the local tags to disambiguate same events
from parametric flows executed by different concrete agents.
Dealing with parametric flows keeps the synthesized model
small and manageable.

Murphi Types. The model generated by Flows2HLM is a
Murphi [8] model. Apart from adding tagging information and
event precedence, it also adds a Murphi header file declaring
the types of variables. Type inference in this case is simple,
since all variables are finite enumerated types.

Flows2HLM follows the refinement loop of Section III,
using Murphi as the model-checker. In addition to generic
assertions (e.g., cache coherence) and the sanity checks dis-
cussed in Section IV, the user can write project-specific sanity
checks, constraints, etc. The generated model and any assertion
violations are reported to the user, together with diagnostic
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information culled from the counterexample. The crucial di-
agnostic information is the interaction of flows leading to the
failure. Typos and “shallow” errors are typically identified (and
easily repaired) in initial synthesis iterations. For example, an
error in message type manifests in a deadlock, as follows.
Suppose agent a is inadvertently declared to send b a message
of type E instead of correct type C; then b, which expects
C, waits indefinitely, leading to a deadlock. Finally, while
there is no guarantee, the initial iterations coupled with random
simulations are enough to see that all flows are being exercised;
thus, the non-triviality check of Section IV is easily satisfied.

B. Synthesizing Industrial Protocols

Flows2HLM has been used to synthesize several cache co-
herence protocols for Intel’s next-generation many-integrated-
core (MIC) processors; recently, it has been applied to bus
lock and credit management protocols as well (cf. Table I).
For pedagogical reasons, we also synthesized two academic
cache protocols, German [13] and Flash [14], and their flows
are publicly available [15]. We invite the reader to explore
them, to appreciate the intuitive nature of flow specifications.

We elaborate a bit on our experience with Intel 2, since it
is the most complex protocol synthesized by Flows2HLM so
far (and perhaps the most complex cache coherence protocol
formally analyzed). Interestingly, the synthesis was done fully
by an architect with no prior formal modeling experience.
The initial definition took two days and constituted 40 flows.
Several sanity checks were added by the architect, e.g., that
the cache for each agent can get to an exclusive state. This
description contained many shallow errors which were detected
by Flows2HLM, including the deadlock scenarios discussed
above. Subsequently subtle bugs were exposed, including an
unexpected response to a local snoop message which required
adding a new flow to fix. Overall six major bugs were found,
which required significant modification of flows; any one of
them, if leaked into RTL, would have led to a costly RTL
churn. The effort took a month, including modification to
Flows2HLM; in contrast, an earlier effort developing a hand-
written Murphi model of similar complexity by a formal
verification expert had required 6 months.

In addition to facilitating use of formal models by archi-
tects, a major gain of our approach is easy maintenance and
modification of protocols. For Intel 2, the architect subse-
quently made major changes to flows to create a derivative
protocol in matter of days, something that would be very
hard with hand-written executable models. Furthermore, the
architect used counterexamples returned by model-checker
during the synthesis effort to estimate downstream RTL vali-
dation complexity. If model-checking counterexamples involve
complex interleaving of several flow instances with a number
of agents, one may expect bugs in further elaborated RTL im-
plementations to also exhibit similar characteristics and hence
require significant validation effort. Based on this insight,
the architect simplified the initial protocol to keep the RTL
validation complexity manageable.

Finally, since annotations are written manually as part of
flow description, our approach provides reduction in speci-
fication detail over hand-written executable models only if
they are small. This has been the case for most message-
passing protocols we have seen, including academic cache

coherence protocols as well as SoC and MIC protocols in
Intel. Annotations account for less than 10% of model size
in all our examples, and less than 5% for the larger protocols.
This is not due to bloating from auto-generated code; hand-
written models of protocols of comparable complexity were
typically of a similar size. Note that for microarchitectural
protocols, which involve lower level details like message
buffering and arbitration, annotations may form a larger part
of the description. Investigating application of flows for such
protocols is an interesting future work.

VII. RELATED WORK

Several protocol description techniques have been created
in recent years, e.g., table-based methods, message sequence
charts (MSC), etc. [16], [4], [17], [10]. However, they have
not been widely adopted in industrial practice. We speculate
that a key bottleneck is the need to think about protocols in
terms not natural to the architects. For instance, table-based
methods require manually projecting system-level transactions
to each agent and carefully tracking the set of transactions that
the agent can participate in concurrently. Furthermore, a local
change in one transaction requires modification of multiple
tables. The comparison with MSCs [10] is more interesting.
MSCs capture a diverse range of distributed computing ar-
tifacts, including interface protocols and real-time systems;
consequently, they include several bells and whistles. While
graphical formats provide a more intuitive visualization than
text for small protocols, they become unwieldy and inflexible
for protocols with 40 flows. Rather than identifying a subset of
MSCs for specifying protocols, we found it easier to develop a
simple language analogous to MSCs directly based on artifacts
we observed the architects to use in informal specifications.

There has been recent related work on synthesizing dis-
tributed protocols. Udupa et al. [18] synthesize models from
concolic execution snippets via user-guided iterative refine-
ment using counterexamples from a model checker. Concolic
snippets are analogous to tabular specification, with each snip-
pet corresponding to a row. Synthesis based on snippets cannot
account for the context of an event execution, i.e., preceding
events in a flow. We found flows to provide a more effective
and natural starting point. Alur et al. [19], use scenarios and
temporal properties to synthesize protocols; they address the
problem of automatically synthesizing a model even when the
number of scenarios is inadequate. There is superficial corre-
spondence between scenarios and flows. However, while flows
are self-contained, redundancy-free descriptions of protocol
transactions, scenarios are sample executions. The problem
addressed by Alur et al. is to automatically synthesize a
model when the number of scenarios is inadequate. In contrast,
we take the set of flows F itself to be the description of
system transactions; thus, assertion violation in our refinement
loop identifies inconsistency between the flows in F but no
automatic repair mechanism. The analogous repair problem
in our setting, e.g., repairing protocol model by supplying a
completely missing flow, would be unsolvable: if a flow is
missing it cannot in general be inferred from other flows.
Finally, using temporal assertions to capture behaviors of
complex distributed protocols is hard and requires significant
expertise in formal logic, making it unusable for architects.
In our experience, flow-based design capture is more closely
aligned to industrial design development.
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Protocol Type No. of Flows Murphi Model LOC State Annotation LOC
German Cache Coherence 4 600 30

Flash Cache Coherence 10 1400 100
Intel 1 Cache Coherence 36 5000 200
Intel 2 Cache Coherence 43 6500 200
Intel 3 Bus Lock 3 1600 120
Intel 4 Credit Management 3 200 20

TABLE I: Some protocols synthesized with our tool

VIII. CONCLUSION

We formalized the notion of transaction message flows, and
provided a method to synthesize executable models. We also
showed that flows contain strictly richer semantic information
than models: while generating models from flows is easy,
extracting flows from models is intractable. To our knowledge,
ours is the only technique for automated protocol modeling
that has found consistent use in industry. The cache coherence
protocols analyzed via Flows2HLM are some of the most
complex ones to ever undergo formal verification. Note from
Table I that the industrial cache coherence protocols have about
an order of magnitude more flows than German, Flash, etc.
that constitute representative benchmarks for state-of-the-art
automatic formal verification techniques.

The problem of synthesizing models arose out of the need
to analyze these highly complex industrial protocols early in
the design life-cycle. Previous work [11], [12] addressed this
problem by mining invariants from transaction-level descrip-
tions to facilitate formal verification of protocol models at this
scale. Nevertheless, a limiting factor for its practical adoption
was the complexity of creating these formal models. This
bottleneck, together with the observation that flow diagrams in
architecture documents often represent “authoritative” source
of protocol descriptions for designers and validation engineers,
motivated the approach presented here. The results of this
paper, together with the previous results [11], [12], suggest that
flows provide a powerful and efficient method for modeling,
analysis, and understanding of protocols.

In future work, we plan to exploit flows further in protocol
modeling and analysis. One application is generating test
harness for RTL simulation, e.g., flows can be used to encode
environment behaviors when exercising the RTL implemen-
tation of an agent. Another future work is to use repair
techniques to fix missing annotations in user-provided flows,
perhaps through a user-guided refinement loop. Finally, tabular
specifications, although difficult for architects, are useful for
downstream RTL designers; it will be interesting to explore
synthesis of tabular specifications from flows.

REFERENCES

[1] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore,
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