Microsoft BT Microsoft
Research

Compositional Safety
Verification with Max-SMT

Daniel Larraz, Albert Oliveras, Enric Rodriguez Carbonell, Albert Rubio
(Universitat Politecnica de Catalunya)

Marc Brockschmidt (MSR)

Overview

Compositional Software Analysis

What | mean by it:
Partial proof can be “plugged” into larger proof
Not “whole-program” - No/Limited context information
Clear correspondence between proof parts and code parts

Why it's desirable:

» Scalable (via parallel/distributed analysis)
Incremental (continuous integration setting)

« Open programs have clear semantics

Top-down Bottom-up

(Al: forward) (Al: backward)

Pros: Cons:

+ Can prune infeasible runs - Has to analyse all code &
+ Avoids reasoning over cases leading to property

unused code

Cons: Pros:
- Needs to keep strongest + Can prune unneeded
information information

+ Avoids reasoning over
unused variables

Compositional & Bottom-up: Plan

1.

Propagate assertions backwards

Re

Straight-line code: Weakest precondition
Loops: Conditional Inductive Invariants (via MaxSMT)

peat until
Reached program start: Done
Failure: Backtrack & Refine with Program Narrowing

Examples

Example: Conditional Inductive Invariants

Q=j=0Ax+5(+j) =0}

while j > 0 do Find @, such that
j =3 -1 * Q2Nj=0 = Q4
i=1i+1 Q, inductive
done

{Q1 =x+5i =0}

while i > 0 do ,
Find Q4 such that

X :=x + 5 Ai<0 = x>0
i:=i-1 Ql.:j—t. *=
n
done Q4 Inductive

assert(x >= 0)

Example: Program Narrowing

Find Q4 such that
Q1 =x>yNV0Q, =x<y} c Q1 = x %Yy

if '(x > y) then * Q4 inductive
while nondet() 4& !'(x > y) do
assert(x '= y) Q, doesn’t always hold
x ‘= x + 1 = Add “blocking clause”
y :=y +1
done Find Qz such that
£i * Q2= xFYy

* (@, inductive

Technique

Max-SMT

InpUt CNF Hl/\"'/\Hn/\[Sl,(i)l]/\"'/\[sm,(l)m]

Output: Model o such that
- o0 E H; forall H;
* dgrs, @_L IS maximal

Programs

Variables: V={v,..,v, } (+ post-variables V')
Programs: Graphs of Locations L, Transitions T
States: (Y,v) ELX(V - Z)

Current location + variable valuation

Transitions: ¢, t(V,V'),¢"), T € QF_LIA
Evaluate (£,v) to (¢',v") if t(v(V),v' (V"))

Example: Program Graph

while i > 9 do

1 >0
).(.=).(+5 £, Ax'=x+5
1.=1_1 /\l,=l_1
done

i1 <0
Ax'=xNi'"=1i

assert (x >= 0) —~(x = 0)

Finding Conditional Inductive Invariants

Input: SCC C, SCC entries E., assertion (£, =@, € orror)
Template per ¢: T,(V) (e.9.0 < ay + QyeyaryV)

Constraints:
- Consecution: Neevonec Te(V) ATV, V') = Ty (V)
 Safety: T,(V) = @(V,V")

Initiation: N enyep STV, V') =2 Tp(V'), w_i]

Proving Safety w/ Conditional Invariants

Input: Assertion (€, 2@, €orror), SCC C of £, SCC entries E

Find conditional inductive invariant Q; fort € C U E

1.
2. Try to prove safety for assertion (%, 7, A =Q;, £}
3. If successful for all entries: Done, celebrate
4. Otherwise: Narrow program:
Replace all (4, 14 ,£:) In C U E_ by
(e Te A Q¢ £t)
5. Restart from 1

Optimisations

1. Add more soft constraints, e.g., trying to disable transitions
2. Memoisation for failed proof attempts
3. Store proven invariants in program

4. Parallelisation:
 Visit all predecessors in parallel

 Directly attempt narrowing

.. Wrapping up

Experiments: HOLA Benchmarks
mm

CPAChecker (sv-comp15) 4490
CPAChecker (predicateAnalysis) 25 11 10 2271
SeaHorn 32 13 1 212
HOLA 43 0 3 624
VeryMax-Seq 44 2 0 344
VeryMax-Par 45 1 0 151

46 safe examples from safety proving literature
17-71 LOC, 1-4 loops per example, timeout 200s

Experiments: Numerical Recipes
mmm

CPAChecker (sv-comp15) 5570 251 326 735337
CPAChecker (predicateAnalysis) 5928 170 234 120 64652
SeaHorn 6077 233 80 62 24167
VeryMax-Seq 6105 0 326 21 38981
VeryMax-Par 6106 0 346 0 23668

217 numerical algorithms, array bounds turned into 6452 safety assertions
up to ~300 LOC, up to ~35 loops per example, timeout 300s

Conclusion

Present(ed):
« Compositional, bottom-up safety proofs

+ |nvariant generation from templates with MaxSMT
+ VeryMax precision & performance competitive

Future:

» Interplay with top-down analysis
 Reachability instead of safety

 Liveness properties: (Non)termination, CTL
« Complexity analysis

