

Compositional Safety Verification with Max-SMT

Daniel Larraz, Albert Oliveras, Enric Rodríguez Carbonell, Albert Rubio (Universitat Politècnica de Catalunya)

Marc Brockschmidt (MSR)

Overview

Compositional Software Analysis

What I mean by it:

- Partial proof can be "plugged" into larger proof
- Not "whole-program" No/Limited context information
- Clear correspondence between proof parts and code parts

Why it's desirable:

- Scalable (via parallel/distributed analysis)
- Incremental (continuous integration setting)
- Open programs have clear semantics

Top-down

(Al: forward)

Pros:

- + Can prune infeasible runs
- + Avoids reasoning over unused code

Cons:

- Needs to keep strongest information

Bottom-up

(Al: backward)

Cons:

Has to analyse all code & cases leading to property

Pros:

- + Can prune unneeded information
- + Avoids reasoning over unused variables

Compositional & Bottom-up: Plan

- 1. Propagate assertions backwards
 - Straight-line code: Weakest precondition
 - Loops: Conditional Inductive Invariants (via MaxSMT)
- Repeat until
 - Reached program start: Done
 - Failure: Backtrack & Refine with Program Narrowing

Examples

Example: Conditional Inductive Invariants

```
\{Q_2 \equiv j \geq 0 \land x + 5(i+j) \geq 0\}
while j > 0 do
   j := j - 1
   i := i + 1
done
\{Q_1 \equiv x + 5i \geq 0\}
while i > 0 do
  x := x + 5
```

i := i - 1

assert(x >= 0)

done

Find Q₂ such that

- $Q_2 \land j \leq 0 \implies Q_1$
- Q₂ inductive

Find Q_1 such that

- $Q_1 \wedge i \leq 0 \implies x \geq 0$
- Q_1 inductive

Example: Program Narrowing

```
\{Q_1 \equiv x > y\} \lor Q_2 \equiv x < y\} if ! (x > y) then while nondet() & ! (x > y) do assert(x != y) x := x + 1 y := y + 1 done fi
```

Find Q_1 such that

- $Q_1 \Rightarrow x \neq y$
- Q_1 inductive

Q₁ doesn't always hold⇒ Add "blocking clause"

Find Q₂ such that

- $Q_2 \Rightarrow x \neq y$
- Q₂ inductive

Technique

Max-SMT

Input: CNF

$$H_1 \wedge \cdots \wedge H_n \wedge [S_1, \omega_1] \wedge \cdots \wedge [S_m, \omega_m]$$

Output: Model σ such that

- $\sigma \vDash H_i$ for all H_i
- $\sum_{\sigma \models S_i} \omega_i$ is maximal

Programs

Variables: $V = \{v_1, ..., v_n\}$ (+ post-variables V')

Programs: Graphs of Locations L, Transitions T

States: $(\ell, v) \in L \times (V \to \mathbb{Z})$

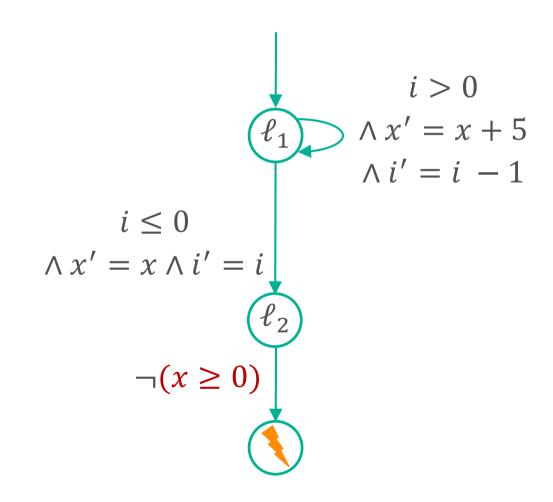
Current location + variable valuation

Transitions: $(\ell, \tau(V, V'), \ell'), \tau \in QF_LIA$ Evaluate (ℓ, v) to (ℓ', v') if $\tau(v(V), v'(V'))$

Example: Program Graph

```
while i > 0 do
    x := x + 5
    i := i - 1
done
```

assert
$$(x >= 0)$$



Finding Conditional Inductive Invariants

Input: SCC C, SCC entries E_C , assertion $(\ell, \neg \varphi, \ell_{error})$

Template per *ℓ*:

$$T_{\ell}(V)$$

(e.g.
$$0 \le a_{\ell} + \sum_{v \in V} a_{\ell,v} v$$
)

Constraints:

Consecution:

$$\wedge_{(\ell,\tau,\ell')\in C} T_{\ell}(\mathbf{V}) \wedge \tau(\mathbf{V},\mathbf{V}') \Rightarrow T_{\ell'}(\mathbf{V})$$

Safety:

$$T_{\ell}(V) \Rightarrow \varphi(V, V')$$

• Initiation:

Proving Safety w/ Conditional Invariants

Input: Assertion $(\ell, \neg \varphi, \ell_{error})$, SCC C of ℓ , SCC entries E_C

- 1. Find conditional inductive invariant Q_t for $t \in C \cup E_C$
- 2. Try to prove safety for assertion $(\widetilde{\ell}_t, \tau_t \land \neg Q_t, \widetilde{\ell}_t')$
- 3. If successful for all entries: Done, celebrate
- 4. Otherwise: Narrow program:

Replace all
$$(\ell_t, \tau_t$$
 , $\ell_t')$ in $C \cup E_c$ by $(\ell_t, \tau_t \land \neg Q_t, \ell_t')$

Restart from 1

Optimisations

- 1. Add more soft constraints, e.g., trying to disable transitions
- 2. Memoisation for failed proof attempts
- 3. Store proven invariants in program
- 4. Parallelisation:
 - Visit all predecessors in parallel
 - Directly attempt narrowing

... wrapping up

Experiments: HOLA Benchmarks

Tool	Safe	Fail	Timeout	Total time (s)
CPAChecker (sv-comp15)	33	3	10	4490
CPAChecker (predicateAnalysis)	25	11	10	2271
SeaHorn	32	13	1	212
HOLA	43	0	3	624
VeryMax-Seq	44	2	0	344
VeryMax-Par	45	1	0	151

Experiments: Numerical Recipes

Tool	Safe	Unsafe	Fail	Timeout	Total time (s)
CPAChecker (sv-comp15)	5570	251	326	305	735337
CPAChecker (predicateAnalysis)	5928	170	234	120	64652
SeaHorn	6077	233	80	62	24167
VeryMax-Seq	6105	0	326	21	38981
VeryMax-Par	6106	0	346	0	23668

Conclusion

Present(ed):

- Compositional, bottom-up safety proofs
- Invariant generation from templates with MaxSMT
- VeryMax precision & performance competitive

Future:

- Interplay with top-down analysis
- Reachability instead of safety
- Liveness properties: (Non)termination, CTL
- Complexity analysis