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The Core Message of the Tutorial

@ Modern Algebraic Geometry
o Study of the zeros of multivariate polynomials
Infeasible to enumerate the solutions
Reason about various properties of the solution-sets
Employ techniques that lie at the cross-roads of number-theory,
commutative algebra, geometry

¢ ¢ ¢

Use of Grobner bases as a powerful reasoning engine
Hardware datapaths possess structure and symmetry in the problem

Grobner bases help identify this structure/symmetry

Exploit this structure/symmetry to engineer domain-specific
implementations for datapath verification

@ Enables verification of hard datapath verification problems
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Tutorial Objective and Agenda

@ Formal verification of datapath implementations (RTL)
o Word-level abstractions from designs, symbolic techniques
@ Model bit-precise semantics at word-level
@ Applications: Cryptography, Error Control Circuits, Signal Processing
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Tutorial Objective and Agenda

@ Formal verification of datapath implementations (RTL)
o Word-level abstractions from designs, symbolic techniques
@ Model bit-precise semantics at word-level
@ Applications: Cryptography, Error Control Circuits, Signal Processing

@ Equivalence check: specification (Spec) vs implementation (/mpl)

@ Spec and Impl: same function?

@ RTL: functions over k-bit vectors
@ k-bit vector — Boolean domain B*
o k-bit vector — integers (mod 25) = Z
@ k-bit vector — Galois (Finite) field F,«
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Tutorial Objective and Agenda

@ Formal verification of datapath implementations (RTL)
o Word-level abstractions from designs, symbolic techniques
@ Model bit-precise semantics at word-level
@ Applications: Cryptography, Error Control Circuits, Signal Processing

@ Equivalence check: specification (Spec) vs implementation (/mpl)

@ Spec and Impl: same function?
@ RTL: functions over k-bit vectors
@ k-bit vector — Boolean domain B*
o k-bit vector — integers (mod 25) = Z
@ k-bit vector — Galois (Finite) field F,«
@ Approach: Computer Algebra Techniques

o Model: Polynomial functions over f : Zox — Zok or f : For — Fox
o Devise decision procedures for polynomial function equivalence
o Commutative algebra, algebraic geometry + contemporary verification
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Verification of Galois field circuits

@ Wide applications of Galois field (GF) circuits
o Cryptography: RSA, Elliptic Curve Cryptography (ECC)
@ Error Correcting Codes, Digital Signal Processing, etc.
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Verification of Galois field circuits

@ Wide applications of Galois field (GF) circuits
o Cryptography: RSA, Elliptic Curve Cryptography (ECC)
@ Error Correcting Codes, Digital Signal Processing, etc.

@ Bugs in GF arithmetic circuits can leak secret keys
o Biham et al., “Bug Attacks”, Crypto 2008 [1]
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Verification of Galois field circuits

@ Wide applications of Galois field (GF) circuits
o Cryptography: RSA, Elliptic Curve Cryptography (ECC)
@ Error Correcting Codes, Digital Signal Processing, etc.
@ Bugs in GF arithmetic circuits can leak secret keys
o Biham et al., “Bug Attacks”, Crypto 2008 [1]
@ Target problems
o Given Galois field Fy«, polynomial f, and circuit C

@ Verify: circuit C implements f; or find the bug
o Given circuit C, with k-bit inputs and outputs

@ Derive a polynomial representation for C over f : Fox — Fax
@ Word-level abstraction as a canonical polynomial representation
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Verification of Galois field circuits

@ Wide applications of Galois field (GF) circuits
o Cryptography: RSA, Elliptic Curve Cryptography (ECC)
@ Error Correcting Codes, Digital Signal Processing, etc.

@ Bugs in GF arithmetic circuits can leak secret keys
o Biham et al., “Bug Attacks”, Crypto 2008 [1]

@ Target problems

@ Given Galois field Fo«, polynomial f, and circuit C
@ Verify: circuit C implements f; or find the bug
o Given circuit C, with k-bit inputs and outputs
@ Derive a polynomial representation for C over f : Fox — Fax
@ Word-level abstraction as a canonical polynomial representation

@ Solutions employing Nullstellensatz over Fo« + Grobner Basis
methods

@ Focus: Techniques and implementations to address scalability
@ Term-orders, custom F4-style reduction
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Galois Field Overview

Galois field I, is a finite field with g elements, g = pX, p = prime
@ 0,1 elements, associate, commutative, distributive laws

@ Closure property: +, —, X, inverse (=)

Our interest: F, = Fo (q = 2¥)
@ [Fox: k-dimensional extension of F, = {0,1}

@ k-bit bit-vector, AND/XOR arithmetic
o Efficient crypto-hardware implementations

To construct Fox
@ Fyox = Fa[x] (mod P(x))
@ P(x) € Fy[x], irreducible polynomial of degree k

@ Operations performed (mod P(x)) and coefficients reduced (mod 2)
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Example Field Construction: g

Construct: Faps = Fa[x] (mod P(x) = x>+ x + 1)
Consider any polynomial A(x) € F,[x]
A(x) (mod x® +x+1) = 32x2 + aix + ag. Let P(a) =0:

® (ap,a1,ap) = (0,0,0) =

® (ap,a1,a9) = (0,0,1) =

® (ap,a1,a9) = (0,1,0) =

® (ap,a1,a0) = (01,1>—a+1

o (ap,a1,a0) = (1,0,0) = a?

o (ap,a1,a0) = (1,0,1) =a? +1

o (ap,a1,a0) = (1,1,0) = +a

o (ap,a1,a0) =(1,1,1) =a?+a+1
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Polynomial Functions f : F, — I,

@ Every function is a polynomial function over [,
@ Consider 1-bit right-shift operation Z[2:0] = A[2:0] >>1

{agalao} A — {222120} Z
000 0 — 000 0
001 1 — 000 0
010 o — 001 1
011 a+1 - 001 1
100 a? — 010 a
101 a?+1 — 010 a
110 ?+a = 011 a+1
111 +a+l — 011 a+1
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Polynomial Functions f : F, — I,

@ Every function is a polynomial function over [,
@ Consider 1-bit right-shift operation Z[2:0] = A[2:0] >>1

{agalao} A — {222120} Z
000 0 — 000 0
001 1 — 000 0
010 o — 001 1
011 a+1 - 001 1
100 a? — 010 a
101 a?+1 — 010 a
110 ?+a = 011 a+1
111 +a+l — 011 a+1

Z = (a? +1)A* + (a® + 1)A? over Fys where o3 +a+1=0
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Verification Application: Elliptic Curve Cryptography

Encryption, Decryption & Authentication using point addition: P+ Q = R

y? 4+ xy = x3 + ax? 4 b over Fo

Compute Slope:u
X2 — X1
P R=P+Q
o Computation of
S inverses over [Fox is

expensive
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Point addition using Projective Co-ordinates

@ Curve: Y24+ XYZ = X3Z+ aX2Z2 + bZ* over Fok
o Let (X3, Y3, Z3) = (Xl, Y1, Zl) + (Xz, Y5, 1)

A=Y, -Z}4+ Y E=A.-C

B=Xo-Z1+X; X;s=A>+D+E
C=27-B F=X3+X-Zs
D =B2.(C+ az?) C=X3+Yy-2Z3
Z3 = C2 Ys=E-F+2Z3-G
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Point addition using Projective Co-ordinates

@ Curve: Y24+ XYZ = X3Z+ aX2Z2 + bZ* over Fok
o Let (X3, Y3, Z3) = (Xl, Yl, Zl) + (Xz, Y2, 1)

A=Y, -Z}4+ Y E=A.-C

B=Xo-Z1+X; X;s=A>+D+E
C=27-B F=X3+X-Zs
D =B2.(C+ az?) C=X3+Yy-2Z3
Z3 = C2 Ys=E-F+2Z3-G

@ No inverses, just addition and multiplication

@ Verify ECC hardware primitives: circuits for GF Multiplication and
exponentiation

@ Challenge: Large datapath size, from k = 163-bits to 1000+ bits
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Field polynomials of I,

Theorem (Fermat's Little Theorem over F)

For any element o € Fg, then a9 = a.

Vanishing Polynomials

The polynomial (x9 — x) vanishes (= 0) on all points in F,. We call
(x9 — x) a vanishing polynomial of F,.
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Computer Algebra Terminology

Let F, = GF(2%), and T, be its closure
® Fy[x1,...,Xs]: ring of all polynomials with coefficients in Fq
@ Polynomial f = 1 X1+ o Xo + -+ 4+ ¢ X

o Coefficients ¢;, monomial X = xi™ - x32 - - - x3", @i € Z>0

@ A monomial ordering is imposed on the ring, so f : X; > Xp > -+ > X;
o Leading term t(f) = c1 X1, tail(f) = Xo+ -+ Xy

o Leading coefficient /t(f) = c; and leading monomial Im(f) = X
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Computer Algebra Terminology

Let F, = GF(2%), and T, be its closure
® Fy[x1,...,Xs]: ring of all polynomials with coefficients in Fq
@ Polynomial f = 1 X1+ o Xo + -+ 4+ ¢ X
Coefficients ¢;, monomial X = x{" - x32 - - - x3", avj € Z>o
A monomial ordering is imposed on the ring, so f : X1 > X5 > --- > X;
Leading term [t(f) = a1 X1, tail(f) = Xo + -+ & Xi

Leading coefficient /t(f) = ¢; and leading monomial Im(f) = X;
3

[

¢ ¢ ¢

e Example: f =2x%yz + 3xy3 — 2x
o LEX with x >y > z: f=—2x3+2x%yz + 3xy3
o DEGLEX with x >y > z: f =2xyz + 3xy3 — 2x3
o DEGREVLEX with x >y > z: f =3xy® 4+ 2x%yz — 2x3
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Computer Algebra Terminology

Let F, = GF(2%), and T, be its closure
® Fy[x1,...,Xs]: ring of all polynomials with coefficients in Fq
@ Polynomial f = 1 X1+ o Xo + -+ 4+ ¢ X
Coefficients ¢;, monomial X = x{" - x32 - - - x3", avj € Z>o
A monomial ordering is imposed on the ring, so f : X1 > X5 > --- > X;
Leading term [t(f) = a1 X1, tail(f) = Xo + -+ & Xi

Leading coefficient /t(f) = ¢; and leading monomial Im(f) = X;
3

[

¢ ¢ ¢

e Example: f =2x%yz + 3xy3 — 2x
o LEX with x >y > z: f=—2x3+2x%yz + 3xy3
o DEGLEX with x >y > z: f =2xyz + 3xy3 — 2x3
o DEGREVLEX with x >y > z: f =3xy® + 2x%yz — 2x°

@ Leading terms /t(f) play an important role
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Polynomial Division as Cancellation of Terms

Divide f = x3 —2x> +2x+8 by g=2x>+3x+1
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Polynomial Division as Cancellation of Terms

Divide f = x3 —2x> +2x+8 by g=2x>+3x+1

2 4

2 +3x+1) x> —2x> +2x +8
—X3—%X2 —%X

—%Xz +3x +38

b+ ox + ]

Py
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Polynomial Division as Cancellation of Terms

Divide f = x3 —2x> +2x+8 by g=2x>+3x+1
1 7
2X T g
2 +3x+1) x> —2x> +2x +8
—X3—%X2 —%X

—%X2+%X +8
7,2 21 7
X T FX T g

27 39
TXT T

@ The key step in division: r = f — % - g, denoted f & r

@ Similarly divide f by a set of polynomials F = {f,...,fs}

fofe
@ Denoted: f =255 r

@ Remainder r is reduced: no term in r is divisible by /t(f;)
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@ We will model the circuit with a set of polynomials F = {f;,...,f}
@ In verification, we need solutions to the system of equations:

fi=0
f=0
f=0

@ Variety: Set of ALL solutions to a given system of polynomial
equations: V/(f1,...,f)

@ Variety depends on the ideal generated by the polynomials
@ Reason about the Variety by analyzing the Ideals
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Ideals in Rings

Ideals of Polynomials: Let fi,f,...,f; € Fq[xi,...,xp]. Let

J=(fh,6....f) ={fih + Hho+ - -+ fhs: hj € Fg[x1,...,xa]}

J={(fi,fr...,f) is an ideal generated by fi,...,f; and the polynomials
are called the generators.

Definition

| \

Ideal Membership: Let f,fi,f,... . f € Fg[xi,...,xn]. Let
J=(f,f...,fs) beanideal C Fg[xq,...,xn].

If f =Ffhy+ fhhy+---+ fsh, then f € J.

Let i(a) =fh(a)=---=1f(a)=0;if f € (f1,...,fs) then f(a) =0
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Ideal Membership Test Requires a Grobner Basis

o Different generators can generate the same ideal

e (fi,-- ,fs)=---=(h1,...,h,)=---={g1, -, &), such that
V(fl,...,fs) = V(hl,...,hr) = V(gl,...,gt)

@ Some generators are a “better” representation of the ideal

@ A Grobner basis is a “canonical” representation of an ideal
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Ideal Membership Test Requires a Grobner Basis

o Different generators can generate the same ideal

e (fi,-- ,fs)=---=(h1,...,h,)=---={g1, -, &), such that
V(fl,...,fs) = V(hl,...,hr) = V(gl,...,gt)

@ Some generators are a “better” representation of the ideal

@ A Grobner basis is a “canonical” representation of an ideal

Definition (Grobner Basis)
G={a,...,8} = GB(J) < Vf e J g s.t. Im(g) | Im(f)

Definition (Grobner Basis for Ideal Membership Test)

G =GB(J) < Vfec JfEe e g

Implies a “decision procedure” for ideal membership
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Buchberger's Algorithm Computes a Grobner Basis

Buchberger’s Algorithm
INPUT : F ={fi,...,fs}, and term order >
OUTPUT : G = {g1,...,8t}
G:=F;
REPEAT
G =G
For each pair {f,g},f # g in G’ DO
S(f.g) i r
IF r#0 THEN G := GU {r}
UNTIL G = G’

L L
)T e €
L= LCM(Im(f),Im(g)), Im(f): leading monomial of f

S(f,g
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Grobner basis for Verification

Intuitively:
o Given a property to verify: f
@ Polynomials corresponding to the circuit: fi,...,fs
o Generate ideal J = (f,...,f)

Formulate verification test: Is f € J?

Compute Grobner basis G = GB(J) = {g1,..., 8t}

Test if £ 2285 (7
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Grobner basis for Verification

Intuitively:
o Given a property to verify: f
@ Polynomials corresponding to the circuit: fi,...,fs
o Generate ideal J = (f,...,f)

Formulate verification test: Is f € J?

Compute Grobner basis G = GB(J) = {g1,..., 8t}

Test if £ 2285 (7

However, it is not sufficient to analyze ideal J, but analyze ideal /(V/(J))
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Need to Analyze /(V(J))

@ Consider ideal J = (x?,y?) with V(J) = (0,0)

® Let f(x,y) = x+ y, then f(0,0) = 0; i.e. f vanishes on V(J)
@ But f ¢ J, as no combination of x2,y? can generate x + y

@ So, f € I(V(J)).
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I(V(J)) and Nullstellensatz

Definition (ldeals of polynomials that vanish on V)

Given an ideal J = (f1,...,fs) C R =Fq[x1,...,xn], let V(J) be its
variety. Then:
I(V(J))={feR:f(a)=0 Vaec V(J)}

@ If f vanishes on V/(J), then f € I(V(J))
@ Given ideal J, not easy to find /(V/(J)) [unless operating over [F]

Theorem (Strong Nullstellensatz over F)

Over Galois fields g, I(Vr,(J)) = J + Jo, where:
e J=(f,...,f5) is an arbitrary ideal

@ Jo=(x —x1,...,x1 — xn) is the ideal of vanishing polynomials in F
Proof: I(VE,(J)) = I(Vir;(J + b)) = VI +Jo=J+ Jo J
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Verification Formulation: The Mathematical Problem

@ Given specification polynomial: f: Z =A-B (mod P(x)) over Fo,
for given k, and given P(x), s.t. P(a) =0
@ Given circuit implementation C
o Primary inputs: A= {ag,...,ak—1},B={bo,...,bxk_1}
o Primary Output Z = {zo,...,2k-1}
o A=ag+aja+ axa? + -+ a0kt
o B= b0+b1a+-~-—|—bk_1ozk_1, Z=z0+zi0 + -+ z 1K1
@ Does the circuit C implement 7

Mathematically:

@ Model the circuit (gates) as polynomials: fi,...,f
J={(f,...,fs) CTFu[x1,...,xn]
@ Does f agree with solutionsto fi = b =--- = f, =07

@ Does f vanish on the Variety Vg (J)?

GB(J+o)
T

olsfel(Vr,(J)=J+Jporisf 1+ 07
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Example Verification Formulation
Ideal J = (fl, ceey ﬂ0>

ao— @ S0
A (D] Zo=5Ds3 — fL:20+5 +s3
e pnl]

z1=r®s3; = h:izi+rn+s3
b
B 0
| b1 so=apAby, — fr:s0+ag- by
Figure: A GF multiplier A=ap+aia; — fg: A+ ap + a1
over [ B =by+ bia; — fo: B+ bg+ bia

=2+ z0; — fi0: 2+ 20+ 50
deal Jo = (22 — 20,52 — s0,..., A% — A, B¥ — B, 7% — Z)

B(J+Jo)
%_’_

Verification problem: Check if f ¢ 07
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Complexity of Grobner Basis and Term Orderings

@ In general, Complexity of Grobner basis: doubly-exponential
o Degree of polynomials in G is bounded by 2(d? + d)*" " [2]

@ However, for zero dimensional ideals: single-exponential complexity
o For J C Fy[xi, ..., x|, Complexity GB(J + Jo) : q°"

® GB(J + Jp) computation explodes for 32-bit circuits
o GB complexity very sensitive to term ordering
Let f = 2x?%yz + 3xy3 — 2x3
o LEX x>y >z f=—-2x3+2x%z + 3xy3
o DEGLEX x > y > z:  f = 2x%yz + 3xy3 — 2x3
@ DEGREVLEX x >y > z: f = 3xy3 + 2x?yz — 2x3

Recall, S-polynomial depends on term ordering:

S(f,g) = %-f—@-g; L =LCM(Im(f),Im(g))
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Buchberger's Algorithm Computes a Grobner Basis

Buchberger’s Algorithm
INPUT : F ={fi,...,fs}, and term order >
OUTPUT : G = {g1,...,8t}
G:=F;
REPEAT
G =G
For each pair {f,g},f # g in G’ DO
S(f.g) i r
IF r#0 THEN G := GU {r}
UNTIL G = G’

L L
)T e €
L= LCM(Im(f),Im(g)), Im(f): leading monomial of f

S(f,g
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Effect of Term Orderings on Buchberger's Algorithm

Product Criteria

If Im(f) - Im(g) = LCM(Im(f),Im(g)), then S(f, g) i’>+ 0.

Irr?(f) -Im(g) = LCM(Im(f), Im(g)), implies Im(f), Im(g) are relatively
prime

Our investigations...
Find a term order that makes ALL {/m(f), Im(g)} relatively prime. Then:
All Spoly(f, g) £>+ 0 and we will already have a Grobner basis!

| A\
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For Circuits, such an order can be derived

a— S0

ai

bo D=1

b1
fiiso+ao-bo; fp:si+ag- bi; f3: 5 + a1 - bo;
fo:s3+ar-by; f5:r0+s+ s fo : 20 + 50 + S3
f7:z14+r+s3 fg:A+ay+ a1 fo: B+ by + b«

fio: Z + 20+ z1cx;

@ Reverse Topological Traversal of the Circuit

o LEX with Z>{A> B} >{zg>z1} > {ro> s >s3} > {s1 > s} >
{a0>a1>b0>b1}
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Our Discovery: Grobner Basis of J + Jy

Using Our Topological Term Order:
@ F={f,...,fs} is a Grobner Basis of J = (f1,...,fs)
® Fo={x{ —x1,...,x5 — xa} is also a Grobner basis of Jy

@ But we have to compute a Grobner Basis of
J+ = (A,fh... f, xlq—xl,...,x,?—xn>

o We show that {fi, ..., f, X/ —x1,...,x7 —xp} is a Grobner basis!!
@ From our circuit: f; = x; + P; Vanishing polynomials x,-q — Xj
@ Only pairs to consider: S(f;, x7 — x;) in Buchberger’s Algorithm:

S(i=xi+P, x7—x;))= xiq_IP + X;

- i+P - i+P i+P
XITWP 4 x 5 xITPP g L L PP 0
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Our Overall Approach

Given the circuit, perform reverse topological traversal

@ Derive the term order to represent the polynomials for every gate

The set: {F,Fo} ={f,...,fs, X{ —X1,..., X1 — xn} is a Grobner
Basis

Obtain: f ﬂJr r

If r =0, the circuit is correct

If r # 0, then r contains only the primary input variables
Any SAT assignment to r # 0 generates a counter-example

Counter-example found in no time as r is simplified by Grobner basis
reduction
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Improve GB-reduction: F4-style reduction

Our approach moves the “complexity’ from GB(J + Jy) to f ghr r
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Improve GB-reduction: F4-style reduction

Our approach moves the “complexity’ from GB(J + Jy) to f Qnr r

New algorithm to compute a Grobner basis by J.C. Faugére: F4

@ Buchberger's algorithm S(f, g) i>+ r
@ Instead, compute a “set” of S(f,g) in one-go
@ Reduces them “simultaneously”
@ Significant speed-up in computing a Grobner basis
@ Models the problem using sparse linear algebra
@ Gaussian elimination on a matrix representation of the problem
Our term order: already a Grobner basis. We only need Fj-style reduction:

F,F
FER, .
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F4-style reduction

@ Spec: f:Z+ A- B, compute f gnr r
@ Find a polynomial f; that divides f, or “cancels” LT(f)

Te(f) " Te(F) "~ Im(f) "
o Construct a matrix: rows = polynomials, columns = monomials,
entries = coefficient of monomial present in the polynomial

Z AB Bao Ba1 Zy Z1 h ao bo do b1 al bo al b1
f 1 1 0 0 0 0 O 0 0 0 0
f3 1 0 0 0 1 o O 0 0 0 0
Bf |0 1 1 a 0 0 O 0 0 0 0
aoh| 0 O 1 0 0 0 O 1 o 0 0
afb] 0 O 0 1 0 0 O 0 0 1 o
fs 0 O 0 0 1 0 O 1 0 0 1
fe 0 O 0 0 0 1 1 0 0 0 1
fa 0 0 0 0 0 0 1 0 1 1 0
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F4-style reduction

@ Spec: f: Z+ A B, computefM)Jrr
° fé:Z:zO"i‘Zla

Z AB Bao Bal Zy Z1 h ao bo dag b1 dai bo ai b1
f 1 1 0 0 0 0 O 0 0 0 0
f3 1 0 0 0 1 a O 0 0 0 0
Bf |0 1 1 a 0 0 O 0 0 0 0
afkh| 0 O 1 0 0 0 O 1 o 0 0
aih| 0 O 0 1 0 0 O 0 0 1 o
fs 0 O 0 0 1 0 O 1 0 0 1
fe 0 O 0 0 0 1 1 0 0 0 1
fa 0 O 0 0 0 0 1 0 1 1 0
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F4-style reduction

@ To cancel the term AB
o f1: A= a3+ a1x
@ Bfi : AB = Bag + Baja

Z AB Bao Bal Zy Z1 h ao bo dag b1 dai bo ai b1
f 1 1 0 0 0 0 O 0 0 0 0
f3 1 0 0 0 1 o O 0 0 0 0
BfA 10 1 1 a 0 0 O 0 0 0 0
aoh| 0 O 1 0 0 0 O 1 o 0 0
afb] 0 O 0 1 0 0 O 0 0 1 o
fs 0 O 0 0 1 0 O 1 0 0 1
fe 0 O 0 0 0 1 1 0 0 0 1
fa 0 O 0 0 0 0 1 0 1 1 0
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F4-style reduction

o Construct the Matrix for polynomial reduction
@ Apply Gaussian elimination on the matrix

@ Last row = result of reduction = a2 +a+1=0

Z AB Bao Ba1 Z0 21 n aobo aobl a1 bo a1 b1

1 1 0 0 0 0 O 0 0 0 0

0 1 0 0 1 a O 0 0 0 0

0 O 1 « 1 a O 0 0 0 0

0 O 0 « 1 a O 1 « 0 0

0 O 0 0 1 a O 1 « « a?

00 0 0 0 a 0 O a o« a?+1

0 O 0 0 0 0 « 0 « a a’4+a+1

o 0 0 0 0 0 0 O 0 0 a?+a+l
See publication [Lv et al, TCAD 2013] [3] for more details
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Problem 2: Polynomial Interpolation from Circuits

ao Zo0 |
Al ai zZ1 |4
7Z = F(A) !

| k-1 Zk—1
e Circuit: f:B¥ — Bk
@ Model it as a polynomial function f : Fox — Fok
@ Interpolate a word-level polynomial from the circuit: Z = F(A)
@ A=ag+aia+...a105 Y, Z=zg4+zna+...ze_10kt
°

Compute Grobner basis of circuit polynomials with elimination (LEX)
order: circuit-variables > Z > A

Obtain Z = F(A) as a unique, canonical, polynomial representation
from the circuit
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fA:zotzia+2Z;, h:by+bia+B;, fz:ag+aia+A, fz:
So+ap-bo; fs:si+ap-b1; fe:sp+ar-by; fr:s3+a1-by; fy:
ro+si+s forzo+so+s3; fio:zi+ro+ss ldeal J = (fi,..., fo).

Add Jp and compute GB(J + Jp) with x; > Z > A > B, then G :
g z2tzana+2Z;, @ bp+bia+B;, gg:a+aa+A gy

S3+rtzi;g&:Ss1+S2+r;, g&:So+ss+z, g:Z+AB; gg:
aiby +a1B+ biA+z1; go:rg+aiby +z1; go: s+ aibo
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A Proof Outline for this result

@ Let unknown specification polynomial f: Z + F(A) (Z = F(A))
| have already shown that £ € J+ Jy

Let G = {g1,...,8t} be a reduced GB(J + Jy) with LEX “circuit
variables > Z > A

Definition of GB: 3g; such that Im(g;) | Z
So gi=Z+ F(A)

Play the same tricks with term-ordering and scale your verification

For more details, see [4] [5].

For the algebraists....

In general, m(V(J)) € V(J;). However, over Galois fields I,
7T/(V(J - Jo)) = V((J - Jo)/).
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Tool Development and Experimental Results

Initial experiments with SINGULAR computer algebra tool [6]
Developed a custom verification tool, written in C4++
GF library, ring operations Fg[xi, ..., xp], LEX order

°
°
°
@ Euclidean algorithm, F4-style reduction fine-tuned for circuits
@ Solves verification & abstraction

°

Tools and benchmarks can be obtained from:
http://www.ece.utah.edu/~pruss/abstract.html
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Experimental Results — Verification of GF Multipliers

A— mod
B—H >< | P(x) YA

Array Mult

Figure: Mastrovito Multiplier

FLATTENED MASTROVITO MULTIPLIERS. TIME IS GIVEN IN
SECONDS.MEMORY IS GIVEN IN MB. TO = 3 DAYS (259,200 SECONDS.)

Size (k) 163 | 233 283 409 571

# of Gates 153K | 167K | 399K | 508K 1.6M
Time (s) Bug Free | 1,443 | 1,913 | 11,116 | 17,848 | 192,032
Buggy | 1,487 | 2,106 | 11,606 | 20,263 | 204,194

Max Memory (MB) | 213 269 561 845 2,855

P. Kalla (Univ. of Utah) Verify Datapath using Algebra & Geometry



Composite Field Arithmetic Circuits: Fox = F(omy.

A 81— transfor- [
a,— mation

B blf transfor- [
b.— mation
2

Figure: 4-bit composite multiplier designed over [F(,2).
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Abstraction of Composite Field Multipliers

Abstraction of Mastrovito multipliers over F(am)n.
Time is given in seconds. Memory is given in MB.

k =1024
Time Max
Bug Free | Buggy | Mem
512 | 11,883 | 12,050 | 414
256 1,520 1,536 106

W= -
M@m#l\)|:§
(o))
=

128 209 211 29

38 37 10
32 10 10 5
64 | 16 4 4 3
128 | 8 2 2 3
256 | 4 1 1 3
512 | 2 1 1 3

See publication [5] for more details
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Limitations of the Abstraction Approach

(a) XOR logic (b) OR logic
For XOR logic:
A:z4+f+d h:f+e+c fL:e+b+a
The reduction procedure z MJF r will be computed as follows:
0 z XM r g
o (f+d) S erdtc

o (etdtc) M dicrbta

P. Kalla (Univ. of Utah) Verify Datapath using Algebra & Geometry



Limitations of the Abstraction Approach

For OR logic:

fi:z+fd+f+d fh:f+ec+e+c fz:et+bat+b+a

. fi,fa, F .
The reduction procedure, z =225 r is now computed as:

o z T fy fid
o (fd+f+d) Tt £ 1 ede + ed + de + d;

(f + edc + ed + dc + d) 2 ede +ed +ec+ e+ dc+d + ¢
o (edc+ed + ec+ e+ dc+d + c) S2tbEe,

dcba+ dcb+ dca+ dba—+ dc+ db+ da+ d+ cba+ cb+ca+c+ba+b+a
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Use “implicit” representations: ZBDDs

Chain of OR-gates: ZDD size is 2n — 1 instead of 2" — 1

Figure: ZDD for remainder (mod chain of OR gates) for 4 variables
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Further Work pursued by my research group

Implement GB-reduction tool using GPU computing
Formal verification of sequential Galois field circuits (see [7])

Designed using optimal normal bases over Fo«

Extensions of our work to Sequential Circuits
@ Reachability analysis of finite state machines at word-level

@ New directions in Boolean Grobner bases Zy[xi, ..., xa] using implicit
representation, such as Zero-suppressed BDDs

@ Abstraction from f : BX — BX to f : Zopx — Zo

@ Explore over-approximations of functions of the circuit through
elimination ideals
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Sequential Galois field circuits

Combinational Logic

T [l

Figure: A typical normal basis GF sequential circuit model.

A= (ao,...,ak_1) and similarly B, R are k-bit registers;
k-cycle execution of the FSM: R = F(A, B)

Project the variety V/(J + Jp) on the state-variables
Word-Level Reachability Analysis of FSM over Fy«
Efficient solutions for quantifier elimination over Fy« [8]
See our recent [DATE 2015] paper [7]
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Datapath Verification over Z«

Consider the signal processing computation:

_ 1
° ,:_2\/32—i-b2
o Let x=a%+ b%2 >0, then F = 1L

2V x?
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Datapath Verification over Zo«

Consider the signal processing computation:

_ 1
° ,:_2\/32—i-b2
o Let x=a%+ b%2 >0, then F = 1L

2v/x2
Approximate using Taylor's series, and implement with X[15 : 0]
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Datapath Verification over Zo«

Consider the signal processing computation:

_ 1
° ,:_2\/32—i-b2
o Let x=a%+ b%2 >0, then F = 1L

2v/x2
Approximate using Taylor's series, and implement with X[15 : 0]

F[15:0] = 156(X[15:0])° + 62724(X[15: 0])° + 17968(X[15 : 0])*
+18661(X[15 : 0])* + 43593(X[15 : 0])?
140224(X[15 : 0]) + 13281
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Datapath Verification over Zo«

Consider the signal processing computation:

_ 1
° ,:_2\/32—i-b2
o Let x=a%+ b%2 >0, then F = 1L

2v/x2
Approximate using Taylor's series, and implement with X[15 : 0]

F[15:0] = 156(X[15:0])° + 62724(X[15: 0])° + 17968(X[15 : 0])*
+18661(X[15 : 0])* + 43593(X[15 : 0])?
140224(X[15 : 0]) + 13281

G[15:0] = 156(X[15:0])° + 5380(X[15: 0])° + 1584(X[15 : 0])*
+10469(X[15 : 0])* + 27209(X[15 : 0])2
+7456(X[15 : 0]) + 13281
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Datapath Verification over Zo«

Consider the signal processing computation:

_ 1
° ,:_2\/32—i-b2
o Let x=a%+ b%2 >0, then F = 1L

2V/x2
Approximate using Taylor's series, and implement with X[15 : 0]

F[15:0] = 156(X[15:0])° + 62724(X[15: 0])° + 17968(X[15 : 0])*
+18661(X[15 : 0])* + 43593(X[15 : 0])?
140224(X[15 : 0]) + 13281

G[15:0] = 156(X[15:0])° + 5380(X[15: 0])° + 1584(X[15 : 0])*
+10469(X[15 : 0])* + 27209(X[15 : 0])2
+7456(X[15 : 0]) + 13281

F+#G, butF[15:00=G[15:0] or F =G (mod 2%)
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What's the big deal over Zy«?

The finite integer ring Zo« is a non-unique factorization domain (non-UFD)

f=1*+6z (mod 2°)

z(x + 6) (x+4)(x+2)

The presence of zero-divisors, lack of inverses, and - - -
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The ideal of vanishing polynomials (again!)

F=G (mod2K) <= F—G=0 (mod 2
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The ideal of vanishing polynomials (again!)
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The ideal of vanishing polynomials (again!)

@ Ideal of vanishing polynomials (Jy) in Z«[x]
@ If the generators of Jy are known in Z,kx, compute Grobner basis

@ How do we generate this ideal?
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Number theory: Divisibility properties

o f (mod 2%) = 0 means that 2 | f
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Number theory: Divisibility properties

o f (mod 2%) = 0 means that 2 | f
o n! divides the product of any n consecutive integers
o E.g. 4! divides 99 x 100 x 101 x 102
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Number theory: Divisibility properties

o f (mod 2%) = 0 means that 2 | f
o n! divides the product of any n consecutive integers
o E.g. 4! divides 99 x 100 x 101 x 102

o Find the least integer A s.t. 2 | Al
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Number theory: Divisibility properties

o f (mod 2%) = 0 means that 2 | f
o n! divides the product of any n consecutive integers
o E.g. 4! divides 99 x 100 x 101 x 102

o Find the least integer A s.t. 2 | Al

@ Therefore, 2% divides the product of any \ consecutive integers
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Number theory: Divisibility properties

f (mod 2%) = 0 means that 2% | f
n! divides the product of any n consecutive integers
o E.g. 4! divides 99 x 100 x 101 x 102

Find the least integer A s.t. 25 | Al

Therefore, 2% divides the product of any A consecutive integers
Example: In Zos, A =4, as 8 | 4!
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Number theory: Divisibility properties

f (mod 2%) = 0 means that 2% | f
n! divides the product of any n consecutive integers
o E.g. 4! divides 99 x 100 x 101 x 102

Find the least integer A s.t. 25 | Al
Therefore, 2% divides the product of any A consecutive integers
Example: In Zos, A =4, as 8 | 4!

o Product of 4 consecutive integers vanishes in Zg
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Number theory: Divisibility properties

o f (mod 2%) = 0 means that 2 | f
o n! divides the product of any n consecutive integers
o E.g. 4! divides 99 x 100 x 101 x 102
o Find the least integer A s.t. 2 | Al
@ Therefore, 2% divides the product of any \ consecutive integers

Example: In Zos, A =4, as 8 | 4!
o Product of 4 consecutive integers vanishes in Zg
o Factorize f as a product of 4 consecutive integers
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Number theory: Divisibility properties

f (mod 2%) = 0 means that 2% | f
n! divides the product of any n consecutive integers
o E.g. 4! divides 99 x 100 x 101 x 102

Find the least integer A s.t. 25 | Al

Therefore, 2% divides the product of any A consecutive integers
Example: In Zos, A =4, as 8 | 4!
o Product of 4 consecutive integers vanishes in Zg

o Factorize f as a product of 4 consecutive integers
o (x+1)(x+2)(x+3)(x+4)=0 (mod 8)
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Basis for factorization

In Zok, find least A s.t. 2K | Al
@ So(x)=1
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Basis for factorization

In Zok, find least A s.t. 2K | Al
@ So(x)=1
° Si(x)=(x+1)
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Basis for factorization

In Zok, find least A s.t. 2K | Al
@ So(x)=1
° Si(x)=(x+1)
@ Sy(x) = (x + 1)(x + 2): Product of 2 consecutive integers
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Basis for factorization

In Zok, find least A s.t. 2K | Al
@ So(x)=1
° Si(x)=(x+1)
@ Sy(x) = (x + 1)(x + 2): Product of 2 consecutive integers
° ...

® Sy(x) = (x+ A)Sx_1(x): Product of X\ consecutive integers
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Basis for factorization

In Zok, find least A s.t. 2% | Al
@ So(x)=1
° Si(x)=(x+1)
@ Sy(x) = (x + 1)(x + 2): Product of 2 consecutive integers
° ...
® Sy(x) = (x+ A)Sx_1(x): Product of X\ consecutive integers
o If f = Fy-S\(x), Fx € Zx[x], then f =0 (mod 2¥)
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Basis for factorization

® What is f cannot be factorized as f = F) - 5,7
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Basis for factorization

® What is f cannot be factorized as f = F) - 5,7
@ Example: In Zys[x],A =4

P. Kalla (Univ. of Utah) Verify Datapath using Algebra & Geometry



Basis for factorization

® What is f cannot be factorized as f = F) - 5,7
@ Example: In Zys[x],A =4
o f=4x>+4x=4(x+1)(x+2)=0 (mod 23)
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Basis for factorization

® What is f cannot be factorized as f = F) - 5,7
@ Example: In Zys[x],A =4
o f=4x>+4x=4(x+1)(x+2)=0 (mod 23)

@ The missing factors are compensated by the coefficient
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Basis for factorization

@ What is f cannot be factorized as f = Fy - 5,7

e Example: In Zy[x],A =4

o f=4x>+4x=4(x+1)(x+2)=0 (mod 23)

@ The missing factors are compensated by the coefficient

@ Deciding vanishing polynomials: V(x) =0 (mod 2¥) iff
o V(x)=Fy-Sy+ Aj: an - Sn(x)

=i ltiple of —2.
9 a, = Integer multiple o m
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Basis for factorization

@ What is f cannot be factorized as f = Fy - 5,7
Example: In Zos[x],\ = 4

f=4x24+4x =4(x+1)(x +2) =0 (mod 23)

The missing factors are compensated by the coefficient

Deciding vanishing polynomials: V(x) =0 (mod 2¥) iff

A—1
o V(X) =F, -S,+ E an 'Sn(X)
n=0

=i ltiple of —2.
9 a, = Integer multiple o W

@ V/(x) = canonical representation of the vanishing ideal in Z,«[x]
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Basis for factorization

@ What is f cannot be factorized as f = Fy - 5,7

e Example: In Zy[x],A =4

o f=4x>+4x=4(x+1)(x+2)=0 (mod 23)

@ The missing factors are compensated by the coefficient

@ Deciding vanishing polynomials: V(x) =0 (mod 2¥) iff
o V(x)=Fy-Sy+ Aj: an - Sn(x)

=i ltiple of —2.
9 a, = Integer multiple o W

@ V/(x) = canonical representation of the vanishing ideal in Z,«[x]

V/(x) constitutes a Grobner basis
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Basis for factorization

@ What is f cannot be factorized as f = Fy - 5,7
Example: In Zos[x],\ = 4

f=4x2+4x =4(x+1)(x +2) =0 (mod 23)

The missing factors are compensated by the coefficient

Deciding vanishing polynomials: V(x) =0 (mod 2¥) iff

A—1
o V(X) =F, -S,+ E an 'Sn(X)
n=0

=i ltiple of —2.
9 a, = Integer multiple o W

V/(x) = canonical representation of the vanishing ideal in Zy[x]

V/(x) constitutes a Grobner basis
To prove f = g (mod 2¥), compute (f — g) (mod V(x)) = r, is
r=207
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For the SMT community....

@ Application to simulation and BV-constraint solving
A—1

@ V(x) =Fy-Sy+ 3 ap-Sn(x) =0 (mod 2¥)
n=0

@ Exhaustive simulation is not always necessary for polyfunction
equivalence (mod 2¥)

@ V/(x) vanishes on any A consecutive integers

® In Zok, A is very small

@ For example, in Zoyis, A =18
@ Instead of a 16-bit solver, can you not design a 5-bit solver?

@ Doesn't invalidate NP-hardness results of polynomial identity testing
@ In Zp[x], A = p, so exhaustive simulation is needed
@ Related Publications: [9] [10]
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Conclusions

@ Formal Verification of large Galois Field circuits

o Computer algebra approach:

Nullstellensatz+Grobner Bases methods

Engineering — a term order to obviate Grobner basis computation
Can verify up to 571-bit multiplier circuits

NIST specified 571-bit field.... practical verification!

For Composite Field circuits, verification scales to 1024-bit fields

¢ € ¢ ¢ ¢

@ Our approach relies on Grobner basis theory, circuit analysis and
efficient symbolic computation

@ Also described polynomial RTL equivalence checking over finite
integer rings

@ Nature loves Grobner basis!
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Questions?

Thanks for listening!

Questions?
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