

IC3 Software Model Checking on Control Flow Automata

Tim Lange ¹ Martin R. Neuhäußer ² Thomas Noll ¹

¹ Software Modeling and Verification Group, RWTH Aachen ² Siemens AG

FMCAD 2015 at Austin, TX, USA, September 29, 2015

Outline

Introduction

Preliminaries

Original IC3

Related Work

IC3 on Control Flow Automata

Conclusion

Motivation

Lifting to software model checking

- IC3 had a deep impact in hardware model checking
- Showed much better performance than CEGAR and BMC
- Nowadays employed in most major hardware model checking tools

Challenges

- Domain in hardware model checking finite (bit-level)
- How to handle infinite state spaces?
- How to encode finite control flow?

Outline

Introduction

Preliminaries

Original IC3

Related Work

IC3 on Control Flow Automata

Conclusion

Control Flow Automaton (CFA)

A CFA $\mathcal{A} = (L, G, l_0, l_E)$ consists of a set of locations $L = \{0, ..., n\}$ and edges in $G \subseteq L \times QFFO \times L$ labeled withquantifier-free first-order formulas, an initial location l_0 , and an error location l_E .

Transition formula

Given two locations $l_1, l_2 \in L$, we define the transition formula

$$T_{l_1 \rightarrow l_2} = \begin{cases} (pc = l_1) \land t \land (pc^{'} = l_2) & \text{, if } (l_1, t, l_2) \in G \\ false & \text{, otherwise.} \end{cases}$$

Preliminaries

Relative Inductivity

[Bra11]

Given a transition formula $T = \bigvee_{(l_1,t,l_2)\in G} T_{l_1\to l_2}$, a formula φ is inductive relative to another formula ψ if

$$\psi \wedge \varphi \wedge T \Rightarrow \varphi'$$

is valid.

Edge-Relative Inductivity

Given a CFA A and locations $l_1, l_2 \in L$, a formula φ is inductive edge-relative to another formula ψ if

$$\psi \wedge \varphi \wedge T_{l_1 \rightarrow l_2} \Rightarrow \varphi^{'}$$

is valid.

[Bra11] Aaron R. Bradley. ``SAT-Based Model Checking without Unrolling". In: VMCAI. 2011, pp. 70-87

Region

[Hen+02]

A region r = (l, s) is a pair consisting of location l and formula s. The set of corresponding formulas for r is given as $\{\varphi \mid \varphi \equiv (pc = l \land s)\}$. Similarly, for $\neg r$ corresponding formulas are defined as $\{\varphi \mid \varphi \equiv \neg (pc = l \land s)\}$.

Edge-Relative Inductive Regions

Assume two regions $r_1=(l_1,s_1),\,\neg r_2=\neg(l_2,s_2),$ we can reduce edge-relative inductivity of $\neg r_2$ to r_1 to

$$\begin{split} s_1 \wedge T_{l_1 \rightarrow l_2} \Rightarrow \neg s_2^{'} & \text{, if } l_1 \neq l_2 \\ s_1 \wedge \neg s_2 \wedge T_{l_1 \rightarrow l_2} \Rightarrow \neg s_2^{'} & \text{, if } l_1 = l_2 \end{split}$$

[Hen+02] Thomas A. Henzinger et al. "Lazy abstraction". In: POPL. 2002, pp. 58–70

Outline

Introduction

Preliminaries

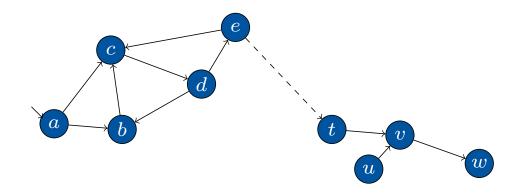
Original IC3

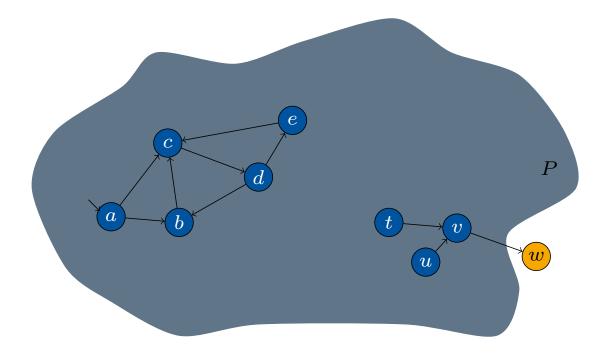
Related Work

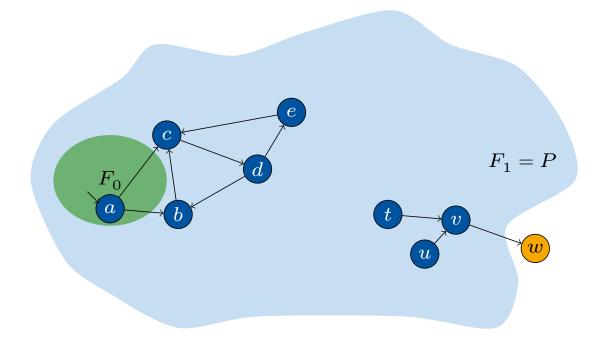
IC3 on Control Flow Automata

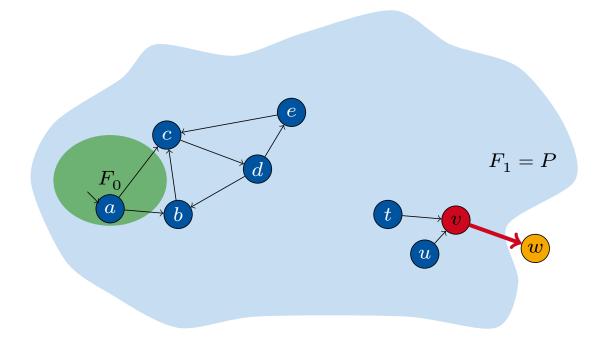
Conclusion

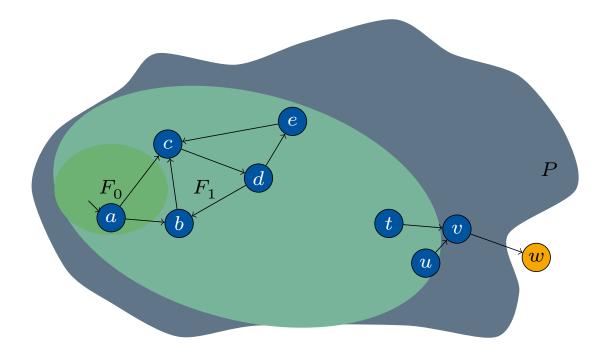
Consider the transition system $\mathcal{M} = (X, I, T)$

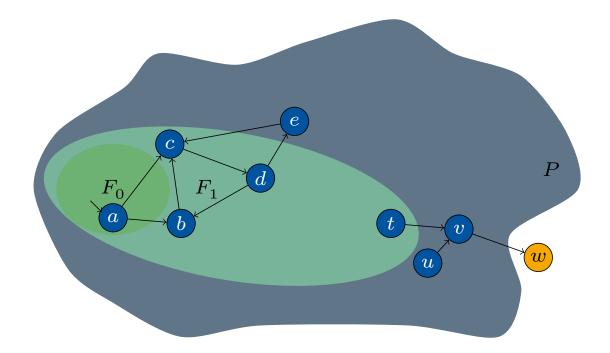


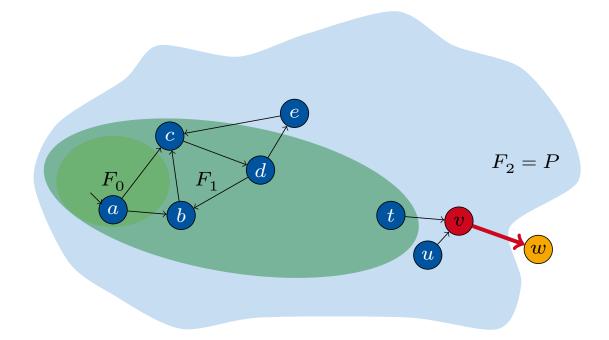


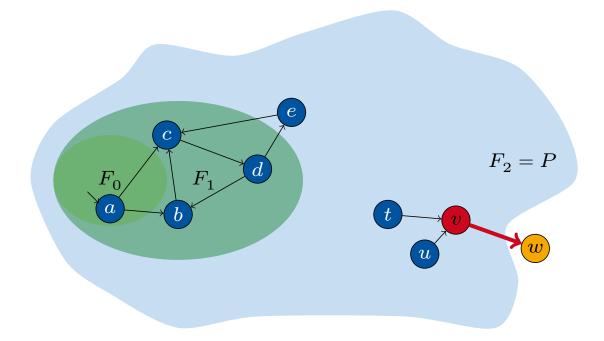


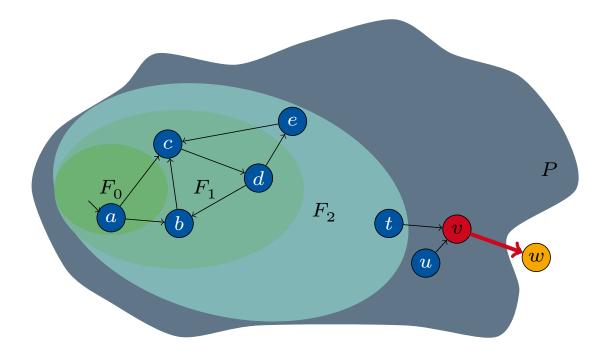


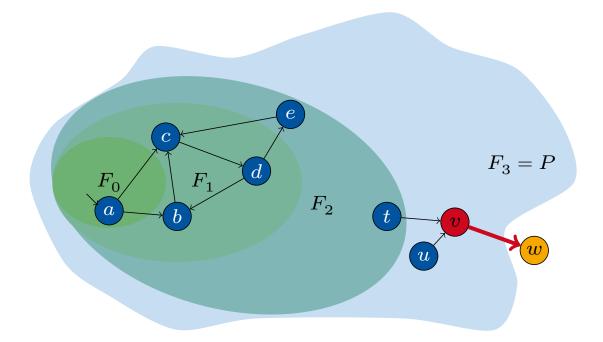


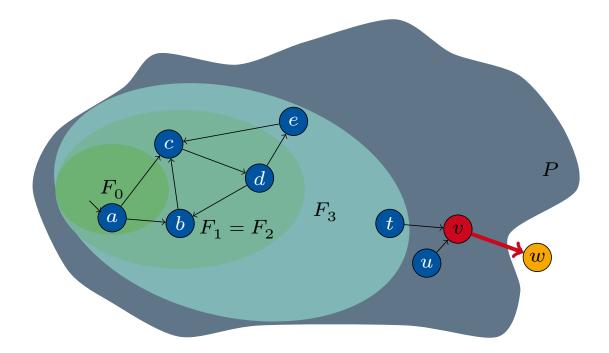


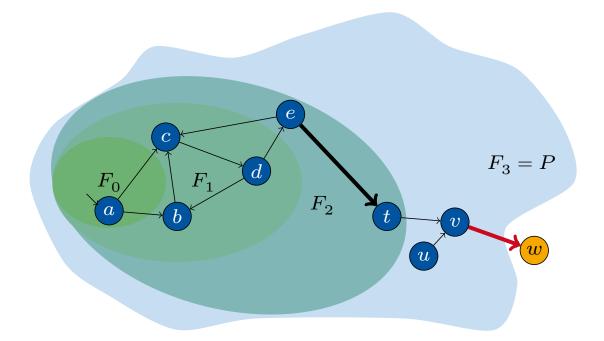


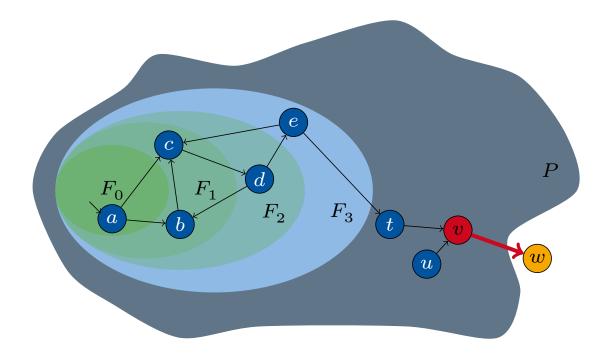


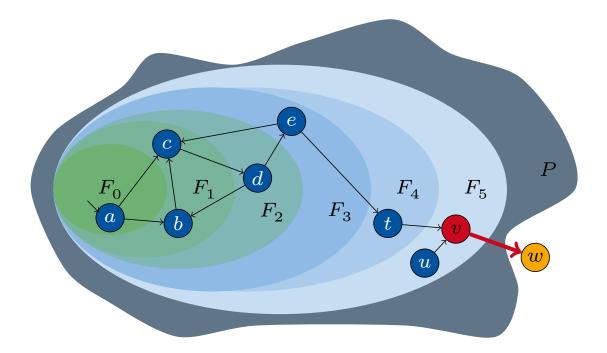












Outline

Introduction

Preliminaries

Original IC3

Related Work

IC3 on Control Flow Automata

Conclusion

Abstract reachability tree (ART) unrolling

Unroll ART, search error path and refute (similarly to blocking phase of IC3).

Bit-blasting

Encode variables as bit-vectors and use bit-blasting with bit-level IC3.

Implicit Abstraction

Express abstract transitions without explicitly computing the abstract system.

Predicate Abstraction

Use predicate abstraction and refine predicates based on CTIs.

[CG12] Alessandro Cimatti and Alberto Griggio. ``Software Model Checking via IC3". In: CAV. 2012, pp. 277–293
[WK13] Tobias Welp and Andreas Kuehlmann. ``QF BV model checking with property directed reachability". In: DATE. 2013, pp. 791–796
[Cim+14] Alessandro Cimatti et al. ``IC3 Modulo Theories via Implicit Predicate Abstraction". In: TACAS. 2014, pp. 46–61
[BBW14] Johannes Birgmeier, Aaron R. Bradley, and Georg Weissenbacher. ``Counterexample to Induction-Guided Abstraction-Refinement (CTIGAR)". In: CAV. 2014, pp. 831–848

[Cim+14]

[BBW14]

[CG12]

[WK13]

Outline

Introduction

Preliminaries

Original IC3

Related Work

IC3 on Control Flow Automata

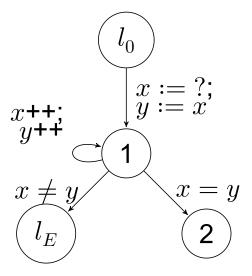
Conclusion

Idea

- Encoding of control flow using special pc variable not efficient ^[CG12]
- Extraction of control flow advantageous
- Instead of unrolling into ART apply IC3 directly on CFA
- For every location in the CFA construct frames F_0, \ldots, F_k
- Frames represent overapproximations of *i*-step reachability in location
- Explicit control flow locations allow to take only single transitions into account

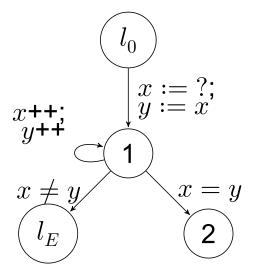
[CG12] Alessandro Cimatti and Alberto Griggio. ``Software Model Checking via IC3". In: CAV. 2012, pp. 277–293

Example



Initial location: l_0 Error location: l_E Terminating location: 2

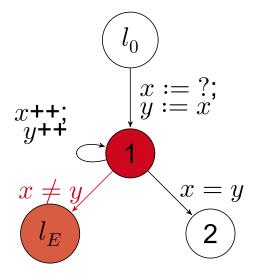
Example



Frames $F_{(i,l)}$

l: i:	l_0	1
0	true	false
1	true	true

Example

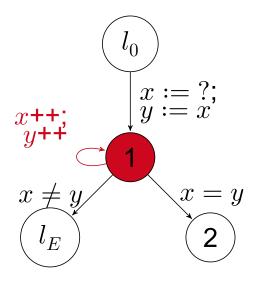


Frames $F_{(i,l)}$

<i>l</i> : <i>i</i> :	l_0	1
0	true	false
1	true	true

CTI (1, $x \neq y$), level 1

Example

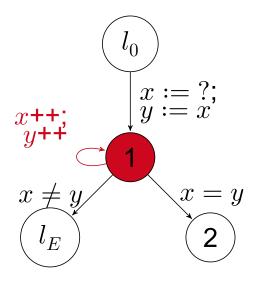


Frames $F_{(i,l)}$

l: i:	l_0	1
0	true	false
1	true	true

CTI (1, $x \neq y$), level 1 $SAT(F_{(0,1)} \land \neg(x \neq y) \land T_{1 \rightarrow 1} \land x^{'} \neq y^{'})$

Example

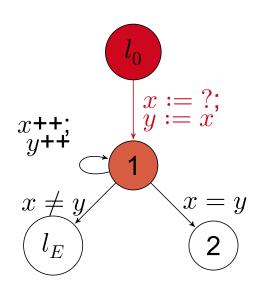


Frames $F_{(i,l)}$

l: i:	l_0	1
0	true	false
1	true	true

 $\begin{array}{l} \mathsf{CTI} \ (\mathbf{1}, x \neq y), \ \mathsf{level} \ \mathbf{1} \\ SAT(F_{(0,1)} \land \neg (x \neq y) \land T_{1 \rightarrow 1} \land x^{'} \neq y^{'}) \end{array} \textbf{X} \end{array}$

Example

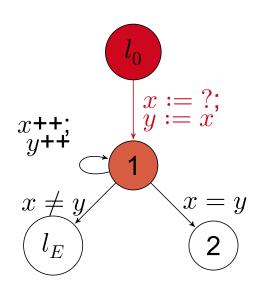


Frames $F_{(i,l)}$

l: i:	l_0	1
0	true	false
1	true	true

 $\begin{array}{l} \mathsf{CTI} \ (\mathbf{1}, x \neq y), \ \mathsf{level} \ \mathbf{1} \\ SAT(F_{(0,1)} \land \neg (x \neq y) \land T_{1 \rightarrow 1} \land x^{'} \neq y^{'}) \\ SAT(F_{(0,l_{0})} \land T_{l_{0} \rightarrow 1} \land x^{'} \neq y^{'}) \end{array} \mathsf{X} \end{array}$

Example

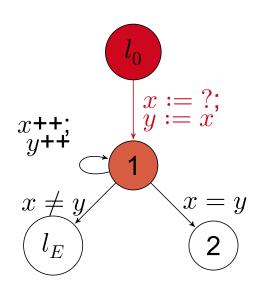


Frames $F_{(i,l)}$

l: i:	l_0	1
0	true	false
1	true	true

 $\begin{array}{l} \mathsf{CTI} \ (\mathbf{1}, x \neq y), \ \mathsf{level} \ \mathbf{1} \\ SAT(F_{(0,1)} \land \neg (x \neq y) \land T_{1 \rightarrow 1} \land x^{'} \neq y^{'}) \ \mathbf{X} \\ SAT(F_{(0,l_{0})} \land T_{l_{0} \rightarrow 1} \land x^{'} \neq y^{'}) \ \mathbf{X} \end{array}$

Example

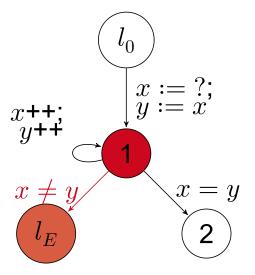


Frames $F_{(i,l)}$

l: i:	l_0	1
0	true	false
1	true	x = y

 $\begin{array}{l} \mathsf{CTI} \ (\mathbf{1}, x \neq y), \ \mathsf{level} \ \mathbf{1} \\ SAT(F_{(0,1)} \land \neg (x \neq y) \land T_{1 \rightarrow 1} \land x^{'} \neq y^{'}) \ \mathbf{X} \\ SAT(F_{(0,l_{0})} \land T_{l_{0} \rightarrow 1} \land x^{'} \neq y^{'}) \ \mathbf{X} \end{array}$

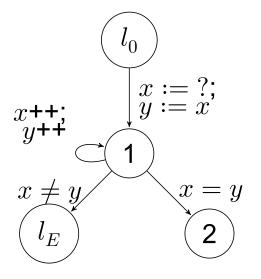
Example



Frames $F_{(i,l)}$

l: i:	l_0	1
0	true	false
1	true	x = y

Example

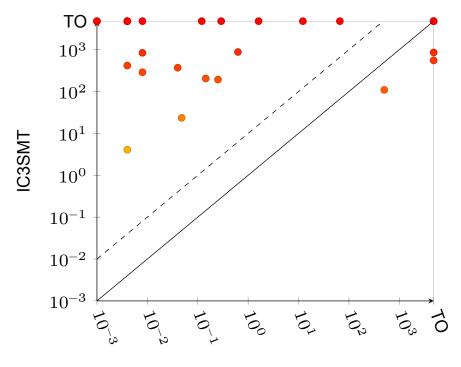


Frames $F_{(i,l)}$

l: i:	l_0	1
0	true	false
1	true	x = y
2	true	x = y

Evaluation

28 benchmarks from SVCOMP & device drivers, subset of ^[CG12].



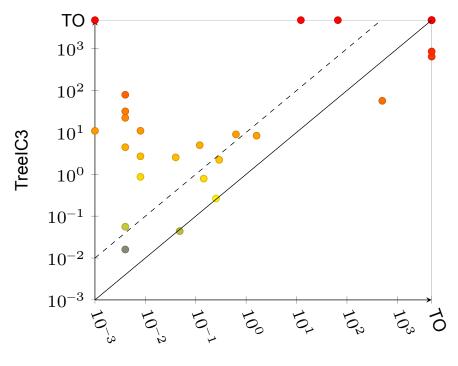
Algorithm	solved	solve time	total time
IC3SMT	13/28	6328s	24328s
IC3CFA	22/28	584s	7784s

IC3CFA

[CG12] Alessandro Cimatti and Alberto Griggio. ``Software Model Checking via IC3". In: CAV. 2012, pp. 277-293

Evaluation

28 benchmarks from SVCOMP & device drivers, subset of ^[CG12].



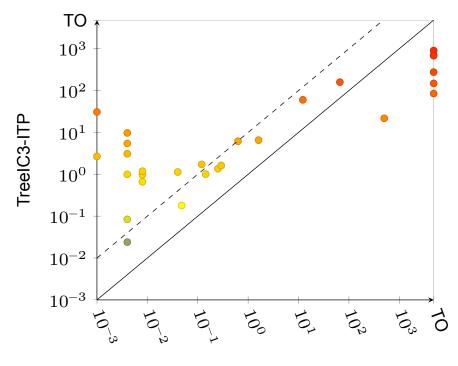
Algorithm	solved	solve time	total time
TreeIC3	21/28	1752s	10152s
IC3CFA	22/28	584s	7784s

IC3CFA

[CG12] Alessandro Cimatti and Alberto Griggio. ``Software Model Checking via IC3". In: CAV. 2012, pp. 277-293

Evaluation

28 benchmarks from SVCOMP & device drivers, subset of ^[CG12].



Algorithm	solved	solve time	total time
TreeIC3-ITP	28/28	3107s	3107s
IC3CFA	22/28	584s	7784s

IC3CFA

[CG12] Alessandro Cimatti and Alberto Griggio. ``Software Model Checking via IC3". In: CAV. 2012, pp. 277-293

Outline

Introduction

Preliminaries

Original IC3

Related Work

IC3 on Control Flow Automata

Conclusion

Contributions

Small SMT queries

Through inspection of only specific transitions, we can use a single edge formula instead of giving the whole transition relation to the solver.

No unrolling

By using F_i frames in every location of the CFA, we can operate on the CFA exclusively. Thus no need for unrolling the CFA.

Stronger relative inductivity

When considering self-loops we can use the stronger relative inductivity that is used in the original IC3.

Conclusion

References

- Johannes Birgmeier, Aaron R. Bradley, and Georg Weissenbacher. ``Counterexample to Induction-Guided Abstraction-Refinement (CTIGAR)". In: CAV. 2014, pp. 831–848.
- Aaron R. Bradley. ``SAT-Based Model Checking without Unrolling". In: VMCAI. 2011, pp. 70–87.
- Alessandro Cimatti and Alberto Griggio. ``Software Model Checking via IC3". In: CAV. 2012, pp. 277–293.
- Alessandro Cimatti et al. ``IC3 Modulo Theories via Implicit Predicate Abstraction". In: TACAS. 2014, pp. 46–61.
 - Thomas A. Henzinger et al. "Lazy abstraction". In: POPL. 2002, pp. 58–70.
 - Tobias Welp and Andreas Kuehlmann. ``QF BV model checking with property directed reachability". In: DATE. 2013, pp. 791–796.

