

Approximations for Deciding Quantified Floating-Point Constraints

Peter Backeman, Aleksandar Zeljić

Motivation

Efficient model construction of satisfiable constraints is an important challenge with applications in, for example, automatic test-case generation, synthesis of invariants, computation ranking functions, etc. Computing models for quantified constraints remains a very difficult problem. With continuous success of applying approximations in reasoning, we propose extending an approximation framework [1] with support for quantified reasoning.

Using Approximations

- $flue{1}$ Lift ϕ to an approximated problem $\hat{\phi}$
- Solve it in the approximation theory
- Reconstruct the model

Approximation Refinement Framework

Lifting the constraints

- Introduce *precision* arguments for each quantifier, function and relation symbol.
- Allows control over approximations.

Lifting the formula:

$$\exists x \forall a \exists y. \phi(x, a, y)$$

results in:

$$\exists_{\gamma_x} x \forall_{\gamma_a} a \exists_{\gamma_y} y. \phi_{\gamma}(x, a, y)$$

Eliminating the Existential Quantifier

- By Skolemization
- Alternating quantifiers introduce functions

Applied to:

$$\exists_{\gamma_{\mathsf{x}}} \mathbf{x} \forall_{\gamma_{\mathsf{a}}} \mathbf{a} \exists_{\gamma_{\mathsf{y}}} \mathbf{y}. \phi_{\gamma}(\mathbf{x}, \mathbf{a}, \mathbf{y})$$

becomes:

$$\forall_{\gamma_a} a. \phi_{\gamma}(f_{\mathsf{x}}, a, f_{\mathsf{y}}(a))$$

Approximating the Universal Quantifier

- Precision regulates domain size of the bound variable.
- Quantifier is replaced by a finite conjuction

Let
$$D(a) = \{a_0, a_1, \dots, a_n\}$$
. The formula:

$$\forall_{\gamma_{\mathsf{a}}} \mathsf{a}.\phi_{\gamma}(\mathit{f}_{\mathsf{x}}, \mathit{a}, \mathit{f}_{\mathsf{y}}(\mathit{a}))$$

becomes the following:

$$\phi(f_x, a_0, f_v(a_0)) \wedge \ldots \wedge \phi(f_x, a_n, f_v(a_n))$$

Reducing the Domain

- Consider theory-specific solutions
- FPA is parametrized by design
- Domains of FPA are scaled based on precision
- The framework aims to exploit the domain reduction
- For universally bound variables, model reconstruction can depend on the choice of the reduced domain.

Reducing the range and precision of the floating-point sorts

Representing Skolem Functions

Consider the following formula and several candidate models:

$$\exists x \forall a \exists y.a - x = a$$

$$D(a) = \begin{cases} 0 \\ f_x \end{cases} = \begin{cases} 0 \\ 0 \end{cases} \qquad \begin{cases} 0,1 \\ 0 \end{cases} \qquad \begin{cases} 0,1,2 \\ 0 \end{cases} \qquad \begin{cases} 0,1,2,\ldots \end{cases}$$

$$f_y(a) = \begin{cases} 0 \\ 0 \end{cases} \qquad \begin{cases} 1 & \text{if } a \neq 0 \\ 0 & \text{if } a = 0 \end{cases} \qquad \begin{cases} 2 & \text{if } a \neq 2 \\ 1 & \text{if } a = 1 \\ 0 & \text{if } a = 0 \end{cases} \qquad a$$

$$CEx \qquad \begin{cases} 0-0 \neq 1 \\ 1-0 \neq 2 \end{cases} \qquad 2-0 \neq 3 \qquad \text{None}$$

- Representation of Skolem functions needs to be compact and allow generalization
- Reconstruction can attempt to obtain various classes of functions.

Future Work and Challenges

- Compact Skolem-function representation
- Finding useful function templates
- Generalizing Skolem functions

- Informed reduction of the quantified domain
- Expanding the reduced domain in a meaningful way
- Balancing domain reduction with function generalization
- [1]: Approximations For Model Construction A. Zeljić, C. M. Wintersteiger, P. Rümmer, IJCAR 2014