
CODE ANALYSIS WITH LOCAL POLICY
ITERATION

George Karpenkov and David Monniaux

PROBLEM
Problem: automated software verification,
prove the error property unreachable.
Safety proof is done by induction — finding an
inductive invariant, for which initial and con-
secution condition hold. Once we are in the
invariant, we are guaranteed to stay there. We
look for the separating inductive invariant, s.t.
bad state P (X) is not reachable from I(X) by
following the transition τ(X,X ′).

I(X)

τ(X,X ′)

P (X)

Figure 1: Separating Inductive Invariant

ABSTRACT INTERPRETATION
A usual tool for generating inductive invari-
ants is abstract interpretation — interpreting
the program in the abstract domain of choice.
Memory locations instead of assuming con-
crete values assume abstract values. Tem-
plate constraints domain fixes in advance a
set of interesting linear expressions over pro-
gram variables (e.g. i, i+x, i-x) called
templates. Abstract value is propagated using
convex maximization. Abstract values i ≤ 4
under the increment operation i := i + 1
becomes i ≤ 5.

x

y

Figure 2: x ≤ 4 ∧ y ≤ 4 ∧ x+ y ≤ 4

REFERENCES

[1] T. Gawlitza, D. Monniaux Invariant Gen-
eration through Strategy Iteration in Suc-
cinctly Represented Control Flow Graphs
In Logical Methods in Computer Science,
2012.

[2] T. Gawlitza, H. Seidl Precise Relational
Invariants Through Strategy Iteration In
CSL, 2007.

POLICY ITERATION APPROACH
Abstract interpretation relies on widening to enforce convergence, which is often imprecise. Pol-
icy Iteration guarantees to find the least inductive invariant in the given abstract domain. Program
is represented as a set of equations.

int i=0;
while (i<1000000)
i++;

I

A

i′ = 0 ∧ j′ = 0

i < 1000000 ∧ i′ = i+ 1

h = (max i′ s.t. i′ = 0)

∨ h = (max i′ s.t.
i′ = i+ 1

∧ i < 10000000

∧ i ≤ h)

This fixpoint equation system is solved for h by considering different possible arguments for
disjunction:

(i) h = (max i′ s.t. i′ = 0) = 0, which is not inductive, since one can iterate from i = 0 to
i = 1.

(ii) h = max i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ h, which has two solutions: h = −∞
(representing unreachable state, discarded) and h = 1000000, which is inductive.

CONTRIBUTION
Despite strong optimality claims, policy iteration remained quite obscure compared to standard
Kleene (fixpoint) iteration techniques. Some reasons for these are:

• Global view of the program is required to construct the equation system, which may be
prohibitive for very large programs.

• Collaboration is difficult due to heavy pre-processing.

We present new Local-Policy-Iteration algorithm (LPI) for computing inductive invariants using
policy iteration. Open-source implementation is available at http://metaworld.me/lpi/.
This is the first policy-iteration implementation that is capable of dealing with C code. Our
solution improves on earlier max-policy approaches in the following ways:
(i) Scalability LPI constructs optimization queries that are at most of the size of the largest loop
in the program. At every step we only solve the optimization problem necessary for deriving the
local candidate invariant.
(ii) Ability to cooperate with other analyses LPI is defined within the Configurable Program
Analysis framework, which is designed to allow easy inter-analysis collaboration. Expressing
policy iteration as a fixpoint-propagation algorithm allows invariant exchange with other analy-
ses.

RESULTS
Evaluation is done on “Loops” category of SV-Comp’15. We compare LPI with: BLAST (lazy
abstraction), PAGAI (abstract intepretation), and CPAchecker (ensemble of different techniques).

0 20 40 60 80 100 120

101

102

Programs

C
PU

Ti
m

e
(s

)

Intervals (verified: 29)
Above +Octagons (38)
+Unrolling (42)
+Rich Templates (46)
+Congruence (52)

0 20 40 60 80

10−2

10−1

100

101

102

103

Programs

PAGAI (verified: 52)
LPI-Refinement (60)
BLAST (43)
CPAchecker (57)
LPI-Intervals (29)


