
A Constraint-Based Approach to
Multi-Threaded Program Location Reachability

Konstantinos Athanasiou
Northeastern University, Boston

Introduction

•Safety properties, such as absence of assertion
failures, over shared-memory concurrent
programs with unknown number of threads are
decidable, yet of EXPSPACE complexity.

•Systems that require extra threads to serve
requests coming from their environment showcase
such behavior, since the number of threads can’t
be determined a priori.

•We consider an incomplete method, that can
effectively decide a large number of benchmarks.

Method Overview

•Encode the reachability problem as a set of
over-approximating integer linear constraints. If
the constraints are unsatisfiable, then the safety
property is verified.

•Otherwise, incrementally strengthen the
constraints.

• If the constraints are still satisfiable, check if the
safety property is violated, using a guided
explicit-state search.

Thread-Transition Systems (TTS)

Finite-state models extracted through predicate ab-
straction of procedures executed by threads. Defined
over
• the set of thread states T = S × L, where S and

L are the finite sets of shared (valuations of
shared variables) and local states (valuations of
local variables) respectively.

• the set of transitions R ⊆ T × T

For n threads, a TTS gives rise to the state space
Vn = S × Ln of configurations of the form v =
(s|l1, . . . , ln) ∈ Vn.
Transitions can asynchronously fire given that their
source shared state is the same as the shared state of
the current configuration, and they affect the local
state of exactly one thread.

A witnessing sequence of configurations for tF = (2, 2):
(0|0)→ (1|1)→ (0|2)→ (1|1, 2)→ (2|1, 1, 2)

Problem Statement

Given an initial thread state tI = (sI, lI) ∈ T ,
a final thread state tF = (sF , lF) is reachable if
there exists a finite sequence of configurations in
Vn starting from vI = (sI|l1, . . . ln) where for all
i ∈ {1, . . . , n}, li = lI, and ending at vF =
(sF |l′1, . . . , l′n) where there exists i ∈ {1, . . . , n}
such that l′i = lF .

Thread-State Equation(TSE)

A set of linear integer constraints that over-
approximates the set of reachable configurations, in-
spired by [1]. CL models the changes in the local
states and CS the synchronization imposed by the
shared states between configurations. TSE := CL∧CS.

CL := (l0 + cr = l) ∧ (l ≥ 0) ∧ (r ≥ 0) ∧ (l(F) ≥ 1)

• c: |L| × |R| incidence matrix defined as

c(i, r) =


1 if r = ((s, lk), (s′, li)) ∈ R

−1 if r = ((s, li), (s′, lk)) ∈ R

0 otherwise

• l0, l: |L| vectors of threads in the initial and final
configuration respectively,

• r: |R| vector of transitions.
CS :=

∧
s∈S

syn(s)

syn(s) :=



∑
r∈inc(s)

r(r)− ∑
r∈out(s)

r(r) = 0 if s /∈ {sI, sF}∑
r∈inc(s)

r(r)− ∑
r∈out(s)

r(r) = −1 if s = sI 6= sF∑
r∈inc(s)

r(r)− ∑
r∈out(s)

r(r) = 1 if s = sF 6= sI∑
r∈inc(s)

r(r)− ∑
r∈out(s)

r(r) = 0 if s = sF = sI

Connectivity Constraints for TSE

•No guarantee that the transitions of the satisfying
assignment of TSE give rise to a connected path
from tI to tF .

•Define as active the transitions with a non-zero
assignment

•Require that they form a path in the shared-state
projection of (T, R).

•Augment TSE with
CCON :=

∧
u∈{1,...,|S|}

act(sI)∧act(su) =⇒ P(sI, su)

where act(si) enforces that shared state si has at
least an adjacent active transition, and P (si, sj)
enforces existence of a path between shared states
si and sj.

Witness Generation

•The set of constraints can still be satisfiable for
safe target states.

•The connectivity constraints guarantee the
existence of a path in the shared state projection,
and the solution to TSE provides a candidate
number of required threads n̄.

•Good indicators that an explicit-state forward
search(FWS) will reveal a reachability witness
violating the safety property.

• If not the satisfying assignment is spurious, and
at least n̄ number of threads are required for a
witness.

Algorithm

Require: TTS (T, R), final thread-state tF

Ensure: “unreachable”, or “reachable” + witness
TSE := CL ∧ CS

if TSE = UNSAT then
return “unreachable”

else
TSECON := TSE ∧ CCON

while TSECON = SAT do
n̄ := threadCnt(TSECON)
if Fws((T, R), n̄) = reachable then
return “reachable” + witness path

TSECON := TSECON ∧ (n > nm)
return “unreachable”

Evaluation Goals and Results

•Use a benchmark suite comprised of TTS
originating from Boolean Programs and Petri
Nets.

•Evaluate our method on both safe and unsafe
instances.

• Identify how precise our incomplete method is.
•Measure the method’s efficiency and compare it
against other tools, both complete and
incomplete.
• TSE proves efficiently all safe TTS.
• TSE proves efficiently most of safe Petri Nets.
• TSE proves most of unsafe TTS with comparable
execution time.

• TSE proves efficiently all unsafe Petri Nets.

Instance Safe S L R TSE BFC Petrinizer MIST IIC
Boop_simple2 ◦ 129 201 7488 0.65 0.07 6.29 TO TO

Function_Pointer3 ◦ 9 2817 8960 1.21 840.54 45.7 5.16 TO
pthread5 ◦ 513 131 17408 13.13 3.05 48.46 TO TO

over_depth_2 ◦ 266 1355 2397 3.94 13.96 44.62 TO MO
conditionals2 • 5 209 280 0.03 13.88 0.01 0.03 2.01

double_lock_p2_3 • 1025 63 16448 1.12 MO 7.69 MO MO
QRCU_4_5 • 33 203 2344 0.18 MO 2.53 5.36 3.27

[1] Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp Meyer, and Filip Niksic. An SMT-based approach to coverability
analysis. In CAV, 2014.

Joint work with Peizun Liu and Thomas Wahl. Supported by NSF grant no. 1253331.

