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Introduction

• Approximate computing is an emerging area for trading off
the accuracy of an application for improved performance,
lower energy costs, and tolerance to unreliable hardware

• There is a lack of techniques for rigorous analysis of
approximation acceptability criteria such as safety,
termination, and quality of results

• Our main contribution is to leverage SymDiff[1], a semantic
diff tool based on SMT, to rigorously and automatically
verify acceptability criteria of approximate programs

Motivating Example: Swish++

function RelaxedEq (x:int , y:int) returns (bool) {
(x <= 10 && x == y) || (x > 10 && y >= 10)

}
procedure swish(max_r:int , N:int)

returns (num_r:int) {
old_max_r := max_r; havoc max_r;
assume RelaxedEq(old_max_r, max_r);
num_r := 0;
while (num_r < max_r && num_r < N)

num_r := num_r + 1;
return;

}

Generates search results[2]. The underlined statements denote the approximation that
non-deterministically changes the threshold to a possibly smaller number, without
suppressing the top few (10 in this case) results.

Checking QoR[3]

• Quality of results (QoR) is encoded into mutual summaries, a
relational specification over the inputs and outputs of the
original and approximate procedures

• The verification of mutual summaries over two procedures is
converted into a verification problem over a single product
procedure

• Arbitrary boolean combination over manually specified
predicate templates is automatically computed to improve
automation

procedure MS_v1. swish_v2 .swish(v1.max_r: int , v1.N: int ,
v2.max_r: int , v2.N: int)

returns (v1.num_r: int , v2.num_r: int);
::::::::::::::::
requires

:::::::::::::::::::::::::::::::::::::::::::::::
abshoudini(v1.in_max_r

::::::
<=

::::::::
10,

::::::::::::::::::::::::
v2.in_max_r

::::::
>=

::::::
10

::::::::::::::
v1.in_N

::::::
<=

::::::::::::::::::
v2.in_N,

::::::::::::::::
v2.in_N

::::::
<=

::::::::::::::::::
v1.in_N,

::::::::::
...)

ensures v1.max_r == v2.max_r && v1.N == v2.N
==> RelaxedEq(v1.num_r, v2.num_r)

{
// inline v1.swish
// inline v2.swish
call MS_v1. swish_loop_v2 . swish_loop (...)

}

Signature and skeleton of the product program for Swish++ example. Underlined
ensure clause defines the mutual summary and wavy-underlined requires clause
invokes full predicate abstraction over simple atomic predicates.

Tool Flow

• SymDiff takes as input two program versions and
user-provided acceptability criteria

• It generates a product program from the two versions
• Invariants are inferred using the Houdini algorithm
• Boogie[4] verifier checks the correctness of the product

program using Z3 theorem prover

Experimental Results

Benchmark #Preds #Manual #Min-disj Time(s)
Swish++ 14 4 1 5.7
LU Decomposition 32 4 0 6.7
Water 27 0 0 6.7
ReplaceChar 10 1 0 7.2
Selection Sort 66 4 6 306.7
Bubble Sort 38 4 3 48.8
Array Operations 41 1 0 6.7

#Preds and #Manual is the number of atomic predicates automatically generated
and manually provided respectively; #Min-disj is the minimum number of disjunctions
required in invariants.

Future Work

• Connect our framework to an approximate compiler[5]
• Improve scalability on large programs
• Prove relative termination
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