
Towards Automated Differential Program
Verification For Approximate Computing

Student: Shaobo He, Advisor: Zvonimir Rakamarić
{shaobo,zvonimir@cs.utah.edu}

School of Computing, University of Utah

Introduction

• Approximate computing is an emerging area for trading off
the accuracy of an application for improved performance,
lower energy costs, and tolerance to unreliable hardware

• There is a lack of techniques for rigorous analysis of
approximation acceptability criteria such as safety,
termination, and quality of results

• Our main contribution is to leverage SymDiff[1], a semantic
diff tool based on SMT, to rigorously and automatically
verify acceptability criteria of approximate programs

Motivating Example: Swish++

function RelaxedEq (x:int , y:int) returns (bool) {
(x <= 10 && x == y) || (x > 10 && y >= 10)

}
procedure swish(max_r:int , N:int)

returns (num_r:int) {
old_max_r := max_r; havoc max_r;
assume RelaxedEq(old_max_r, max_r);
num_r := 0;
while (num_r < max_r && num_r < N)

num_r := num_r + 1;
return;

}

Generates search results[2]. The underlined statements denote the approximation that
non-deterministically changes the threshold to a possibly smaller number, without
suppressing the top few (10 in this case) results.

Checking QoR[3]

• Quality of results (QoR) is encoded into mutual summaries, a
relational specification over the inputs and outputs of the
original and approximate procedures

• The verification of mutual summaries over two procedures is
converted into a verification problem over a single product
procedure

• Arbitrary boolean combination over manually specified
predicate templates is automatically computed to improve
automation

procedure MS_v1. swish_v2 .swish(v1.max_r: int , v1.N: int ,
v2.max_r: int , v2.N: int)

returns (v1.num_r: int , v2.num_r: int);
::::::::::::::::
requires

:::
abshoudini(v1.in_max_r

::::::
<=

::::::::
10,

::::::::::::::::::::::::
v2.in_max_r

::::::
>=

::::::
10

::::::::::::::
v1.in_N

::::::
<=

::::::::::::::::::
v2.in_N,

::::::::::::::::
v2.in_N

::::::
<=

::::::::::::::::::
v1.in_N,

::::::::::
...)

ensures v1.max_r == v2.max_r && v1.N == v2.N
==> RelaxedEq(v1.num_r, v2.num_r)

{
// inline v1.swish
// inline v2.swish
call MS_v1. swish_loop_v2 . swish_loop (...)

}

Signature and skeleton of the product program for Swish++ example. Underlined
ensure clause defines the mutual summary and wavy-underlined requires clause
invokes full predicate abstraction over simple atomic predicates.

Tool Flow

• SymDiff takes as input two program versions and
user-provided acceptability criteria

• It generates a product program from the two versions
• Invariants are inferred using the Houdini algorithm
• Boogie[4] verifier checks the correctness of the product

program using Z3 theorem prover

Experimental Results

Benchmark #Preds #Manual #Min-disj Time(s)
Swish++ 14 4 1 5.7
LU Decomposition 32 4 0 6.7
Water 27 0 0 6.7
ReplaceChar 10 1 0 7.2
Selection Sort 66 4 6 306.7
Bubble Sort 38 4 3 48.8
Array Operations 41 1 0 6.7

#Preds and #Manual is the number of atomic predicates automatically generated
and manually provided respectively; #Min-disj is the minimum number of disjunctions
required in invariants.

Future Work

• Connect our framework to an approximate compiler[5]
• Improve scalability on large programs
• Prove relative termination

References

[1] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo.
SymDiff: A language-agnostic semantic diff tool for imperative programs.
In International Conference on Computer Aided Verification (CAV), pages 712–717, 2012.

[2] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard.
Proving acceptability properties of relaxed nondeterministic approximate programs.
In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 169–180, 2012.

[3] Chris Hawblitzel, Ming Kawaguchi, Shuvendu K. Lahiri, and Henrique Rebelo.
Towards modularly comparing programs using automated theorem provers.
In International Conference on Automated Deduction (CADE ’13). Springer, June 2013.

[4] K Rustan M Leino.
This is Boogie 2.
Manuscript KRML, 178:131, 2008.

[5] Accept: An approximate compiler.
http://accept.rocks.

http://accept.rocks

