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Refinement
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• Compilers must guarantee refinement between an optimized 
thread T’ and an original thread T

• We assume the sequential consistency (SC) for data-race-free 
(DRF) programs execution model (e.g. pthreads)

• Current theories specify the valid optimizations in terms of 
allowed reorderings, eliminations, and introductions

• Contribution: New way of specifying refinement
– Based on comparing the state of T’ and T at synchronization operations

– Supports the implementation of efficient refinement checkers

– Supports new compiler optimizations
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Evaluation: Checking Traces
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• Compared our tool tracecheck to cmmtest (Morisset et al. 
PLDI ‘13)

• tracecheck outperforms cmmtest on every program we tried
– On average ~3 orders of magnitude faster
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Thank You!


