
Efficient Checking of Thread Refinement

Daniel Poetzl

University of Oxford



Refinement

2

• Compilers must guarantee refinement between an optimized 
thread T’ and an original thread T

• We assume the sequential consistency (SC) for data-race-free 
(DRF) programs execution model (e.g. pthreads)

• Current theories specify the valid optimizations in terms of 
allowed reorderings, eliminations, and introductions

• Contribution: New way of specifying refinement
– Based on comparing the state of T’ and T at synchronization operations

– Supports the implementation of efficient refinement checkers

– Supports new compiler optimizations



Event-Based Refinement

3

lock L

write x 1

write y 3

read z 8

read z 8

unlock L

lock L

write y 3

write x 1

read z 8

unlock L

Original Optimized



Event-Based Refinement

4

lock L

write x 1

write y 3

read z 8

read z 8

unlock L

lock L

write y 3

write x 1

read z 8

unlock L

Original Optimized



Event-Based Refinement

5

lock L

write x 1

write y 3

read z 8

read z 8

unlock L

lock L

write y 3

write x 1

read z 8

unlock L

Original Optimized



State-Based Refinement

6

lock L

write x 1

write y 3

read z 8

read z 8

unlock L

lock L

write y 3

write x 1

read z 8

unlock L

Original Optimized



State-Based Refinement

7

lock L

write x 1

write y 3

read z 8

read z 8

unlock L

lock L

write y 3

write x 1

read z 8

unlock L

Original Optimized
{x = 0,

y = 0,

z = 0}



State-Based Refinement

8

lock L

write x 1

write y 3

read z 8

read z 8

unlock L

lock L

write y 3

write x 1

read z 8

unlock L

Original Optimized
{x = 0,

y = 0,

z = 0}

{x = 1,

y = 3,

z = 8}



Evaluation: Checking Traces

9

• Compared our tool tracecheck to cmmtest (Morisset et al. 
PLDI ‘13)

• tracecheck outperforms cmmtest on every program we tried
– On average ~3 orders of magnitude faster



Evaluation: Checking Traces

10

• Compared our tool tracecheck to cmmtest (Morisset et al. 
PLDI ‘13)

• tracecheck outperforms cmmtest on every program we tried
– On average ~3 orders of magnitude faster

Thank You!


