Program Analysis with Local Policy Iteration

George Karpenkov

VERIMAG

September 28, 2015

Inductive Invariant

Motivation

- Task: verify programs, unreachability of error state
- Prove: by induction
- Finding separating inductive invariant
 - Includes initial state
 - Closed under transition
 - \circ Separates bad state P(X)

Abstract Interpretation Limitations

- Usual tool: abstract interpretation
- Interpret the program in the abstract domain
- Use widening to enforce convergence

Abstract Interpretation Limitations

- Usual tool: abstract interpretation
- Interpret the program in the abstract domain
- Use widening to enforce convergence
 - ∘ *i* < 1
 - \circ $i \leq 2$
 - \circ $i \leq 3$
 - o ...
 - \circ $i < \infty$
- Loss of precision

Abstract Interpretation Limitations

- Usual tool: abstract interpretation
- Interpret the program in the abstract domain
- Use widening to enforce convergence
 - \circ $i \leq 1$
 - \circ $i \leq 2$
 - \circ $i \leq 3$
 - o ...
 - \circ $i < \infty$
- Loss of precision
- Narrowing: very brittle

- Finds least inductive invariant in the given abstract domain
- Solves the equation an inductive invariant has to satisfy

- Finds least inductive invariant in the given abstract domain
- Solves the equation an inductive invariant has to satisfy
- Works only with certain domains
 - Template Constraints Domain
 - Upper bound on a fixed in advance set of linear expression
 - E.g. $\{x, y, x + y\}$

- Finds least inductive invariant in the given abstract domain
- Solves the equation an inductive invariant has to satisfy
- Works only with certain domains
 - Template Constraints Domain
 - Upper bound on a fixed in advance set of linear expression
 - \circ E.g. $\{x,y,x+y\}$
 - Abstract semantics given using convex optimization $\max x'$ s.t. $x' = x + 1 \land x \le 5$

Simple Example

- Template constraints domain $\{i\}$
- Aim: find smallest d, s.t. $i \leq d$ is an inductive invariant
- Necessary and sufficient condition for d to be an inductive invariant:

Simple Example

- Template constraints domain $\{i\}$
- Aim: find smallest d, s.t. $i \leq d$ is an inductive invariant
- Necessary and sufficient condition for d to be an inductive invariant:
- $d = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \leq d \lor i' = 0 \lor \bot$
 - Disjunctions come from multiple edges
 - \circ \perp represents an unreachable state

Algorithm Overview

- Solve by iterating over policies: choice of an argument per disjunction
- Find a value for policy using convex maximization

Algorithm Overview

- Solve by iterating over policies: choice of an argument per disjunction
- Find a value for policy using convex maximization

Exit

•
$$d = \sup i'$$
 s.t.
$$i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$$

•
$$d = \sup i'$$
 s.t. $i' = i + 1 \land i < 1000000 \land i \leq d \lor i' = 0 \lor \bot$
1. Equation $d = \sup i'$ s.t. \bot evaluates to $d = -\infty$

- $d = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$
 - 1. Equation $d = \sup i'$ s.t. \perp evaluates to $d = -\infty$
 - 2. Substitute the value, not inductive:

$$-\infty = \sup i'$$
 s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

Algorithm Run

- $d = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i < d \lor i' = 0 \lor \bot$
 - 1. Equation $d = \sup i'$ s.t. \perp evaluates to $d = -\infty$
 - 2. Substitute the value, not inductive:

$$-\infty = \sup i'$$
 s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

3. Increase the value to 0 using policy $d = \sup i'$ s.t. i' = 0

- $d = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$
 - 1. Equation $d = \sup i'$ s.t. \perp evaluates to $d = -\infty$
 - 2. Substitute the value, not inductive:

$$-\infty = \sup i'$$
 s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

- 3. Increase the value to 0 using policy $d = \sup i'$ s.t. i' = 0
- 4. Substituting, not inductive:

$$0 = \sup i'$$
 s.t. $i' = i + 1 \land i < 1000000 \lor i' = 0 \lor \bot$

Algorithm Run

- $d = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$
 - 1. Equation $d = \sup i'$ s.t. \perp evaluates to $d = -\infty$
 - 2. Substitute the value, not inductive:

$$-\infty = \sup i'$$
 s.t. $i' = i + 1 \land i < 1000000 \land i \leq d \lor i' = 0 \lor \bot$

- 3. Increase the value to 0 using policy $d = \sup i'$ s.t. i' = 0
- 4. Substituting, not inductive:

$$0 = \sup i'$$
 s.t. $i' = i + 1 \land i < 1000000 \lor i' = 0 \lor \bot$

5. Increase to 1000000 using

$$d = \sup i'$$
 s.t. $i' = i + 1 \land i < 1000000 \land i \le d$

Algorithm Run

- $d = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$
 - 1. Equation $d = \sup i'$ s.t. \perp evaluates to $d = -\infty$
 - 2. Substitute the value, not inductive:

$$-\infty = \sup i'$$
 s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

- 3. Increase the value to 0 using policy $d = \sup i'$ s.t. i' = 0
- 4. Substituting, not inductive:

$$0 = \sup i'$$
 s.t. $i' = i + 1 \land i < 1000000 \lor i' = 0 \lor \bot$

5. Increase to 1000000 using

$$d = \sup i'$$
 s.t. $i' = i + 1 \land i < 1000000 \land i \le d$

6. Substitute, finally inductive!

$$1000000 = \sup i'$$
 s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

Contribution

- Policy Iteration: solving global system of equations
- Contribution: local algorithm for Policy Iteration
 - At every step search for local candidate invariant
- Improved Scalability and Precision
- Ability to cooperate with other analyses

Results

Evaluated on SV-Comp "Loops" category

