
SMT Unsat Core Minimization
O F E R G U T H M A N N ,

O F E R S T R I C H M A N , A N N A T R O S TA N E T S K I

F M C A D 2 0 1 6

1SMT MUCS

Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT): decides satisfiability of

formulas over first order theories, by combining

◦ a SAT solver, and

◦ decision procedures for conjunctions of first order literals.

2SMT MUCS

SMT solvers use Boolean Abstraction

Let 𝜑 be an SMT formula

𝜑’s Boolean Abstraction, 𝑒 𝜑 , assigns a Boolean variable to
every theory literal in 𝜑.

Example:

◦ 𝜑 = 𝑥 = 0 ∧ 𝑥 = 1 ∨ ¬ 𝑥 = 2

◦ 𝑒 𝜑 = 𝑒1 ∧ 𝑒2 ∨ ¬𝑒3
◦ Boolean structure unchanged.

Decoding: 𝑑 𝑒1 ≔ 𝑥 = 0 , 𝑑 𝑒2 ≔ 𝑥 = 1 , etc.

3

𝑒1 𝑒2 𝑒3

SMT MUCS

The Minimal Unsat Core Problem (MUC)

Let 𝜑 be an unsat SMT formula (in CNF).

Find a minimal (i.e., irreducible) unsat core of 𝜑’s clauses.

𝜑 = 𝑎 ∧ ¬𝑎 ∨ 𝑏 ∧ ¬𝑎 ∨ ¬𝑏 ∧ 𝑏 ∨ 𝑐

𝐶 = 𝑎, ¬𝑎 ∨ 𝑏 , ¬𝑎 ∨ ¬𝑏

𝐶 is a minimal unsat core.

Many applications may benefit from finding a MUC:
◦ Abstraction refinement.

◦ Formal equivalence verification.

◦ Decision procedures.

◦ Etc.

We know of no SMT MUC extractors in the public domain

4SMT MUCS

Deletion-based MUC Extraction
(propositional case)

5

𝑹𝒆𝒎𝒐𝒗𝒆 𝒖𝒏𝒎𝒂𝒓𝒌𝒆𝒅
𝒄𝒍𝒂𝒖𝒔𝒆 𝒄 ∈ 𝑪

𝑪

𝑹𝒆𝒕𝒖𝒓𝒏 𝑪
𝒀𝒆𝒔

𝑴𝒂𝒓𝒌 𝒄, 𝒂𝒏𝒅
𝒂𝒅𝒅 𝒊𝒕 𝒃𝒂𝒄𝒌 𝒕𝒐 𝑪

𝑨𝒍𝒍 𝒄𝒍𝒂𝒖𝒔𝒆𝒔
𝒎𝒂𝒓𝒌𝒆𝒅?

𝑺𝑨𝑻 𝑪 ?

𝒀𝒆𝒔𝑵𝒐

𝑵𝒐

𝑪 ← 𝒄𝒐𝒓𝒆

SMT MUCS

Z3 and Cores

Z3 is an open-source competitive SMT solver:
◦ Developed by Microsoft Research.

◦ Emits an unsat core (set of clauses used in proof).

◦ Uses high-level proof rules

*Diagram taken from L. Zhang and S. Malik: Validating SAT Solvers Using an Independent
Resolution-Based Checker: Practical Implementations and Other Applications. 2003.

SMT MUCS 6

Unsat
Core

HSmtMuc
A Deletion-based SMT MUC Extractor

7

𝑹𝒆𝒎𝒐𝒗𝒆 𝑼𝒏𝒎𝒂𝒓𝒌𝒆𝒅
𝒄𝒍𝒂𝒖𝒔𝒆 𝒄 ∈ 𝑪

𝑪

𝑹𝒆𝒕𝒖𝒓𝒏 𝑪

𝑴𝒂𝒓𝒌 𝒄, 𝒂𝒏𝒅
𝒂𝒅𝒅 𝒊𝒕 𝒃𝒂𝒄𝒌 𝒕𝒐 𝑪

𝑨𝒍𝒍 𝒄𝒍𝒂𝒖𝒔𝒆𝒔
𝒎𝒂𝒓𝒌𝒆𝒅?

𝑺𝑨𝑻 𝑪 ?

𝒀𝒆𝒔𝑵𝒐

𝒀𝒆𝒔𝑵𝒐

𝑪 ← 𝒄𝒐𝒓𝒆

𝒁𝟑 𝑪 ?

SMT MUCS

Optimization: Rotation

* A. Belov and J. Marques-Silva. Accelerating MUS extraction with recursive model
rotation. 2011.

Let 𝑐 be a marked clause.
◦ 𝜑 ∖ 𝑐 is satisfiable.

◦ 𝛼 ⊨ 𝜑 ∖ 𝑐 .

Rotate(c, α)
◦ Find α′ ≠ α and c′ ≠ c, s.t. α′ ⊨ φ ∖ c′

◦ By flipping variables in α that appear in c.

◦ If such c′ was found:

◦ Mark c′

◦ Rotate(c′, α′)

8SMT MUCS

Now in SMT: Theory Rotation

Let 𝑐 be a marked clause.
◦ 𝜑 ∖ 𝑐 is satisfiable.

◦ 𝛼 ⊨ 𝑒 𝜑 ∖ 𝑐 .

Rotate(c, α)
◦ Find α′ ≠ α and c′ ≠ c, s.t. α′ ⊨ e φ ∖ c′ :

◦ By flipping variables in α that appear in c.

◦ If such c′ was found:

◦ Mark c′

◦ Rotate(c′, α′)

The problem: the new assignment may not be T-consistent
9

Recall: 𝑒 applies
Boolean

abstraction

Recall: 𝑒 applies
boolean

abstraction

SMT MUCS

Theory Rotation – Contradiction Example

𝜑 = 𝑥 = 0

𝑐

∧ ¬ 𝑥 = 0 ∨ 𝑥 = 1 ∧ ¬ 𝑥 = 0 ∨ 𝑥 = 2

𝑒 𝜑 = 𝑒1
𝑒 𝑐

∧ ¬𝑒1 ∨ 𝑒2 ∧ ¬𝑒1 ∨ 𝑒3

For a model\interpretation where 𝑥 ⟼ 1 we have:

𝛼 ≔ 𝑒1, 𝑒3 ⟼ 𝐹, 𝑒2 ⟼ 𝑇

10SMT MUCS

Theory Rotation – Contradiction Example

𝜑 = 𝑥 = 0

𝑐

∧ ¬ 𝑥 = 0 ∨ 𝑥 = 1 ∧ ¬ 𝑥 = 0 ∨ 𝑥 = 2

𝑒 𝜑 = 𝑒1
𝑒 𝑐

∧ ¬𝑒1 ∨ 𝑒2 ∧ ¬𝑒1 ∨ 𝑒3

For a model\interpretation where 𝑥 ⟼ 1 we have:

𝛼 ≔ 𝑒1, 𝑒3 ⟼ 𝐹, 𝑒2 ⟼ 𝑇

𝛼 ⊨ 𝑒 𝜑 ∖ 𝑐

Flipping 𝑒1 in 𝛼 results in a T−contradiction.
◦ both e1 → 𝑥 = 0 and e2 → (𝑥 = 1) now hold.

11SMT MUCS

Theory Rotation - Solution

After finding (c’, 𝛼′), check if 𝛼′ is T-consistent.

If it is T-consistent use Rotate (c’, 𝛼′) as before.

If it’s not...
◦ One possibility is to give up and stop the recursion.

◦ Let’s try and do better.

12SMT MUCS

Theory Rotation – Fixing a T-Contradiction

Try and find more variables to flip in 𝛼′.

Variables to flip: choose from 𝑐𝑜𝑟𝑒 𝛼′ .
◦ If resulting 𝛼′′ still contradictory, recursively flip more vars.

◦ Recursion depth is determined heuristically.

𝛼′′ ⊨ 𝜑 ∖ 𝑐′′ and is T-consistent ⇒
◦ mark 𝑐′′, and

◦ Rotate (𝑐′′, 𝛼′′).

13SMT MUCS

Adaptive Activation of Theory Rotation

Failed Theory Rotation can be costly.

Determine at runtime whether rotations is be continued:

First option:
◦ Fail Bound: stop after 𝑥 consecutive failures.

◦ Failure: no clauses were marked.

Observation: Rotation success-rate declines through time.

14SMT MUCS

Adaptive Activation of Theory Rotation

Another option

◦ Dynamic Measurement: estimate 𝑡𝑠𝑚𝑡 <
𝑡𝑟

𝑛𝑟
to stop rotation.

◦ Problem: measurement is non-monotonic.

15SMT MUCS

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ti
m

e
(m

s)

Iteration

Time cost per clause marking

SMT SAT check time

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ti
m

e
(m

s)

Iteration

Time cost per clause marking

SMT SAT check time Rotation time

Adaptive Activation of Theory Rotation

Exponential smoothing: Given a stream of measurements

𝑡𝑠𝑚𝑡
𝑖 , 𝑡𝑟𝑜𝑡
𝑖 , 𝑛𝑟𝑜𝑡
𝑖
𝑖=1

𝑛
define:

𝑇𝑠𝑚𝑡
0 = 𝑡𝑠𝑚𝑡

0

𝑇𝑠𝑚𝑡
𝑖 = 𝛼 ⋅ 𝑡𝑠𝑚𝑡

𝑖 + 1 − 𝛼 ⋅ 𝑇𝑠𝑚𝑡
𝑖−1, 0 ≤ 𝛼 ≤ 1

◦ Do the same for 𝑇𝑟𝑜𝑡
𝑖 and 𝑁𝑟𝑜𝑡

𝑖

Stop rotation when 𝑇𝑠𝑚𝑡
𝑖 <

𝑇𝑟𝑜𝑡
𝑖

𝑁𝑟𝑜𝑡
𝑖 holds.

𝛼 chosen heuristically.

SMT MUCS 16

Adaptive Activation of Theory Rotation

Back to the example, now with exponential smoothing:

SMT MUCS 17

0

0.5

1

1.5

2

2.5

3

3.5

4

0

100

200

300

400

500

600

700

800

900

1000

1

2
1

3
3

4
4

5
8

6
7

7
6

8
8

9
9

1
0

7

1
1

8

1
2

7

1
3

6

1
4

7

1
5

6

1
6

5

1
7

1

1
8

0

1
8

9

1
9

8

2
0

7

2
1

6

2
2

3

2
3

5

2
4

5

2
5

1

2
5

7

2
6

4

2
7

1

2
7

8

2
8

4

2
9

4

3
0

3

3
0

9

3
1

6

3
2

5

3
3

3

3
4

1

3
4

8

3
5

4

3
6

1

3
6

9

N
u

m
b

er
 o

f
m

ar
ke

d
 c

la
u

se
s

Ti
m

e
(m

s)

Iteration

Time cost per clause marking
(Uses exp. smoothing w. alpha = 0.1)

smt call time rotation call time (ratio) #clauses marked in rotation

Experimental Results – Avg. core size reduction

561 unsat SMT-LIB instances*

Avg. core size:
◦ Z3: 820 clauses.

◦ Min:454 clauses.

*Same instances seleScted in A. Cimatti, A. Griggio, and R. Sebastiani: Computing small unsatisfiable
cores in satisfiability modulo theories. 2011.

SMT MUCS 18

Experimental Results – Theory Rotation

Reduces the number of (deletion) iterations.

19SMT MUCS

Experimental Results – Theory Rotation

Translates to a modest run-time improvement (~6%-10%)

Can be attributed to time spent on failed rotations,
T-contradiction checks and additional var. flipping.

Best configuration is for Theory Rotation w. fail bound = 5

SMT MUCS 20

𝐶𝑜𝑛𝑓𝑖𝑔. Time
(sec.)

T-check
Time (sec.)

T-Conflicts
Resolved

(base) 30.5 0.0 0.0

T-Rotate 29.7 1.4 20.8

T-Rotate b 5 28.9 1.0 10.2

T-Rotate b 7 29.2 1.2 12.3

T-Rotate exp 29.6 1.2 11.2

And now... Small Unsatisfiable Core (SUC)

[1] suggested an algorithm that finds a small (not
necessarily minimal) SMT core
◦ Based on MathSat and the propos. MUC extractor Muser2

We re-implemented [1] based on Z3 + HaifaMuc

We also tested a hybrid approach in which we find a small
core and then minimize it with HSmtMuc

HAIFA SMT MUCS 21

[1] A. Cimatti, A. Griggio, and R. Sebastiani. Computing small unsatisfiable cores in
satisfiability modulo theories (2011).

Small Unsatisfiable Core (SUC)

Our re-implementation with Z3 and HaifaMUC:
◦ Requires proof logging (slows Z3 a lot).

◦ Requires a propositional encoding of Z3’s proof objects.

◦ Produces much larger proofs on avg. comparing to MathSat.

◦ Turned-out to be slower

SMT MUCS 22

MathSat Muser2
Extract
𝑑(𝑟𝑜𝑜𝑡𝑠′)Proof

𝑒(𝑟𝑜𝑜𝑡𝑠 + 𝑙𝑒𝑚𝑚𝑎𝑠)
𝑒(𝑟𝑜𝑜𝑡𝑠’) SUC

We also tried a hybrid approach

MathSat-based SUC + minimization with HSmtMuc.
◦ Result is minimal.

The overall winner.

Less time-outs (HSmtMuc alone: 171 vs. Hybrid: 138).
◦ (but higher runtime than HSmtMuc on instances that

completed, HSmtMuc: 22.9 sec. vs. Hybrid: 27.9 sec.).

23SMT MUCS

MathSat
+

Muser2
HSmtMuc

𝜑 𝑆𝑈𝐶 𝑀𝑈𝐶

Summary

HSmtMuc is the first SMT-MUC extractor in the public
domain.
◦ Based on Z3.

Best observed results:

MUC: the Hybrid algorithm
◦ MathSat SUC extraction, followed by HSmtMuc.

SUC:
◦ MathSat SUC extraction.

More information & our implementation is available at
http://strichman.net.technion.ac.il/

24SMT MUCS

http://strichman.net.technion.ac.il/

Questions?

25SMT MUCS

Thank you!

◦ ofers@ie.technion.ac.il

◦ ofer.guthmann@cs.technion.aci.il

◦ annat@cs.technion.ac.il

26SMT MUCS

mailto:ofers@ie.technion.ac.il
mailto:ofer.guthmann@cs.technion.aci.il
mailto:annat@cs.technion.ac.il

