
On Sound Relative Error Bounds for
Floating-Point Arithmetic

Anastasiia Izycheva and Eva Darulova
Max Planck Institute for Software Systems, Saarland Informatics Campus, Germany

Email: izycheva@mpi-sws.org, eva@mpi-sws.org

Abstract—State-of-the-art static analysis tools for verifying
finite-precision code compute worst-case absolute error bounds
on numerical errors. These are, however, often not a good esti-
mate of accuracy as they do not take into account the magnitude
of the computed values. Relative errors, which compute errors
relative to the value’s magnitude, are thus preferable. While
today’s tools do report relative error bounds, these are merely
computed via absolute errors and thus not necessarily tight or
more informative. Furthermore, whenever the computed value
is close to zero on part of the domain, the tools do not report
any relative error estimate at all. Surprisingly, the quality of
relative error bounds computed by today’s tools has not been
systematically studied or reported to date.

In this paper, we investigate how state-of-the-art static tech-
niques for computing sound absolute error bounds can be
used, extended and combined for the computation of relative
errors. Our experiments on a standard benchmark set show that
computing relative errors directly, as opposed to via absolute
errors, is often beneficial and can provide error estimates up
to six orders of magnitude tighter, i.e. more accurate. We also
show that interval subdivision, another commonly used technique
to reduce over-approximations, has less benefit when computing
relative errors directly, but it can help to alleviate the effects of
the inherent issue of relative error estimates close to zero.

I. INTRODUCTION

Numerical software, common in embedded systems or sci-
entific computing, is usually designed in real-valued arith-
metic, but has to be implemented in finite precision on digital
computers. Finite precision, however, introduces unavoidable
roundoff errors which are individually usually small, but which
can accumulate and affect the validity of computed results. It
is thus important to compute sound worst-case roundoff error
bounds to ensure that results are accurate enough - especially
for safety-critical applications. Due to the unintuitive nature of
finite-precision arithmetic and its discrepancy with continuous
real arithmetic, automated tool support is essential.

One way to measure worst-case roundoff is absolute error:

errabs = max
x∈I

∣∣∣f(x)− f̂(x̂)∣∣∣ (1)

where f and x denote a possibly multivariate real-valued
function and variable respectively, and f̂ and x̂ their finite-
precision counter-parts. Note that absolute roundoff errors are
only meaningful on a restricted domain, as for unrestricted
x the error would be unbounded in general. In this paper, we
consider interval constraints on input variables, that is for each
input variable x ∈ I = [a, b], a, b ∈ R.

Furthermore, we focus on floating-point arithmetic, which
is a common choice for many finite-precision programs, and

for which several tools now exist that compute absolute errors
fully automatically for nonlinear straight-line code [1]–[4].

Absolute errors are, however, not always an adequate mea-
sure of result quality. Consider for instance an absolute error
of 0.1. Whether this error is small and thus acceptable for
a computation depends on the application as well as the
magnitude of the result’s value: if |f(x)| � 0.1, then the error
may be acceptable, while if |f(x)| ≈ 0.1 we should probably
revise the computation or increase its precision. Relative error
captures this relationship:

errrel = max
x∈I

∣∣∣∣∣f(x)− f̂(x̂)f(x)

∣∣∣∣∣ (2)

Note that the input domain needs to be restricted also for
relative errors.

Today’s static analysis tools usually report absolute as well
as relative errors. The latter is, however, computed via absolute
errors. That is, the tools first compute the absolute error and
then divide it by the largest function value:

errrel_approx =
maxx∈I

∣∣∣f(x)− f̂(x̂)∣∣∣
minx∈I |f(x)|

(3)

Clearly, Equation 2 and Equation 3 both compute sound
relative error bounds, but errrel_approx is an over-approximation
due to the loss of correlation between the nominator and
denominator. Whether this loss of correlation leads to coarse
error bounds in practice has, perhaps surprisingly, not been
studied yet in the context of automated sound error estimation.

Beyond curiosity, we are interested in the automated compu-
tation of relative errors for several reasons. First, relative errors
are more informative and often also more natural for user
specifications. Secondly, when computing sound error bounds,
we necessarily compute over-approximations. For absolute
errors, the over-approximations become bigger for larger input
ranges, i.e. the error bounds are less tight. Since relative errors
consider the range of the expression, we expect these over-
approximations to be smaller, thus making relative errors more
suitable for modular verification.

One may think that computing relative errors is no more
challenging than computing absolute errors; this is not the case
for two reasons. First, the complexity of computing relative
errors is higher (compare Equation 1 and Equation 2) and
due to the division, the expression is now nonlinear even
for linear f . Both complexity and nonlinearity have already

been challenging for absolute errors computed by automated
tools, usually leading to coarser error bounds. Furthermore,
whenever the range of f includes zero, we face an inherent
division by zero. Indeed, today’s static analysis tools report no
relative error for most standard benchmarks for this reason.

Today’s static analysis tools employ a variety of differ-
ent strategies (some orthogonal) for dealing with the over-
approximation of worst-case absolute roundoff errors due to
nonlinear arithmetic: the tool Rosa uses a forward dataflow
analysis with a linear abstract domain combined with a nonlin-
ear decision procedure [3], Fluctuat augments a similar linear
analysis with interval subdivision [1], and FPTaylor chooses
an optimization-based approach [2] backed by a branch-and-
bound algorithm.

In this paper, we investigate how today’s methods can
be used, extended and combined for the computation of
relative errors. To the best of our knowledge, this is the
first systematic study of fully automated techniques for the
computation of relative errors. We mainly focus on the issue
of computing tight relative error bounds and for this extend
the optimization based approach for computing absolute errors
to computing relative errors directly and show experimentally
that it often results in tighter error bounds, sometimes by up
to six orders of magnitude. We furthermore combine it with
interval subdivision (we are not aware of interval subdivision
being applied to this approach before), however, we note that,
perhaps surprisingly, the benefits are rather modest.

We compare this direct error computation to forward anal-
ysis which computes relative errors via absolute errors on a
standard benchmark set, and note that the latter outperforms
direct relative error computation only on a single univariate
benchmark. On the other hand, this approach clearly benefits
from interval subdivision.

We also observe that interval subdivision is beneficial for
dealing with the inherent division by zero issue in relative error
computations. We propose a practical (and preliminary) solu-
tion, which reduces the impact of potential division-by-zero’s
to small subdomains, allowing our tool to compute relative
errors for the remainder of the domain. We demonstrate on
our benchmarks that this approach allows our tool to provide
more useful information than state-of-the-art tools.

Contributions:

• We extend an optimization-based approach [2] for bound-
ing absolute errors to relative errors and thus provide the
first feasible and fully automated approach for computing
relative errors directly.

• We perform the first experimental comparison of different
techniques for automated computation of sound relative
error bounds.

• We show that interval subdivision is beneficial for re-
ducing the over-approximation in absolute error compu-
tations, but less so for relative errors computed directly.

• We demonstrate that interval subdivision provides a prac-
tical solution to the division by zero challenge of relative
error computations for certain benchmarks.

We have implemented all techniques within the tool Daisy [5],
which is available at https://github.com/malyzajko/daisy.

II. BACKGROUND

We first give a brief overview over floating-point arithmetic
as well as state-of-the-art techniques for automated sound
worst-case absolute roundoff error estimation.

A. Floating-Point Arithmetic

The error definitions in section I include a finite-precision
function f̂(x̂) which is highly irregular and discontinuous and
thus unsuitable for automated analysis. We abstract it follow-
ing the floating-point IEEE 754 standard [6], by replacing
every floating-point variable, constant and operation by:

x� y = (x ◦ y)(1 + e) + d,

x̃ = x(1 + e) + d
√
x◦ =
√
x(1 + e) + d

(4)

where � ∈ {⊕,	,⊗,�} and ◦ ∈ {+,−,×, /} are floating-
point and real arithmetic operations, respectively. e is the
relative error introduced by rounding at each operation and is
bounded by the so-called machine epsilon |e| ≤ εM . Denor-
mals (or subnormals) are values with a special representation
which provide gradual underflow. For these, the roundoff error
is expressed as an absolute error d and is bounded by δM ,
(for addition and subtraction d = 0). This abstraction is valid
in the absence of overflow and invalid operations resulting
in Not a Number (NaN) values. These values are detected
separately and reported as errors. In this paper, we consider
double precision floating-point arithmetic with εM = 2−53 and
δM = 2−1075. Our approach is parametric in the precision, and
thus applicable to other floating-point types as well.

Using this abstraction we replace f̂(x̂) with a function
f̃(x, e, d), where x are the input variables and e and d the
roundoff errors introduced for each floating-point operation. In
general, x, e and d are vector-valued, but for ease of reading
we will write them without vector notation. Note that our
floating-point abstraction is real-valued. With this abstraction,
we and all state-of-the-art analysis tools approximate absolute
errors as:

errabs ≤ max
x∈I,|ei|≤εM ,|di|≤δ

∣∣∣f(x)− f̃(x, e, d)∣∣∣ (5)

B. State-of-the-art in Absolute Error Estimation

When reviewing existing automated tools for absolute
roundoff error estimation, we focus on their techniques for
reducing over-approximations due to nonlinear arithmetic in
order to compute tight error bounds.

Rosa [3] computes absolute error bounds using a forward
data-flow analysis and a combination of abstract domains.
Note that the magnitude of the absolute roundoff error at
an arithmetic operation depends on the magnitude of the
operation’s value (this can easily be seen from Equation 4),
and these are in turn determined by the input parameter ranges.
Thus, Rosa tracks two values for each intermediate abstract
syntax tree node: a sound approximation of the range and
the worst-case absolute error. The transfer function for errors

2

https://github.com/malyzajko/daisy

uses the ranges to propagate errors from subexpressions and to
compute the new roundoff error committed by the arithmetic
operation in question.

One may think that evaluating an expression in interval
arithmetic [7] and interpreting the width of the resulting
interval as the error bound would be sufficient. While this
is sound, it computes too pessimistic error bounds, especially
if we consider relatively large ranges on inputs: we cannot
distinguish which part of the interval width is due to the input
interval or due to accumulated roundoff errors. Hence, we need
to compute ranges and errors separately.

Rosa implements different range arithmetics with differ-
ent accuracy-efficiency tradeoffs for bounding ranges and
errors. To compute ranges, Rosa offers a choice between
interval arithmetic, affine arithmetic [8] (which tracks linear
correlations between variables) and a combination of interval
arithmetic with a nonlinear arithmetic decision procedure. The
latter procedure first computes the range of an expression
in standard interval arithmetic and then refines, i.e. tightens,
it using calls to the nlsat [9] decision procedure within the
Z3 SMT solver [10]. For tracking errors, Rosa uses affine
arithmetic; since roundoff errors are in general small, tracking
linear correlations is in general sufficient.

Fluctuat [1] is an abstract interpreter which separates er-
rors similarly to Rosa and which uses affine arithmetic for
computing both the ranges of variables and for the error
bounds. In order to reduce the over-approximations introduced
by affine arithmetic for nonlinear operations, Fluctuat uses
interval subdivision. The user can designate up to two variables
in the program whose input ranges will be subdivided into
intervals of equal width. The analysis is performed separately
and the overall error is then the maximum error over all
subintervals. Interval subdivision increases the runtime of the
analysis significantly, especially for multivariate functions, and
the choice of which variables to subdivide and by how much
is usually not straight-forward.

FPTaylor, unlike Daisy and Fluctuat, formulates the round-
off error bounds computation as an optimization problem,
where the absolute error expression from Equation 1 is to
be maximized, subject to interval constraints on its parame-
ters. Due to the discrete nature of floating-point arithmetic,
FPTaylor optimizes the continuous, real-valued abstraction
(Equation 5). However, this expression is still too complex
and features too many variables for optimization procedures
in practice, resulting in bad performance as well as bounds
which are too coarse to be useful (see subsection V-A for our
own experiments). FPTaylor introduces the Symbolic Taylor
approach, where the objective function of Equation 5 is
simplified using a first order Taylor approximation with respect
to e and d:

f̃(x, e, d) = f̃(x, 0, 0) +

k∑
i=1

∂f̃

∂ei
(x, 0, 0)ei +R(x, e, d), (6)

R(x, e, d) =
1

2

2k∑
i,j=1

∂2f̃

∂yi∂yj
(x, p)yiyj +

k∑
i=1

∂f̃

∂di
(x, 0, 0)di

where y1 = e1, . . . , yk = ek, yk+1 = d1, . . . , y2k = dk and
p ∈ R2k such that |pi| ≤ εM for i = 1 . . . k and |pi| ≤ δ for
i = k+1 . . . 2k. The remainder term R bounds all higher order
terms and ensures soundness of the computed error bounds.

The approach is symbolic in the sense that the Taylor
approximation is taken wrt. e and d only and x is a symbolic
argument. Thus, f(x, 0, 0) represents the function point where
all inputs x remain symbolic and no roundoff errors are
present, i.e. e = d = 0 and f(x, 0, 0) = f(x). Choosing
e = d = 0 as the point at which to perform the Taylor
approximation and replacing ei with its upper bound εM
reduces the initial optimization problem to:

errabs ≤ εM max
x∈I

k∑
i=1

∣∣∣∣∣ ∂f̃∂ei (x, 0, 0)
∣∣∣∣∣+MR (7)

where MR is an upper bound for the error term R(x, e, d)
(more details can be found in [2]). FPTaylor uses interval
arithmetic to estimate the value of MR as the term is second
order and thus small in general.

To solve the optimization problem in Equation 7, FPTaylor
uses rigorous branch-and-bound optimization. Branch-and-
bound is also used to compute the resulting real function f(x)
range, which is needed for instance to compute relative errors.
Real2Float [4], another tool, takes the same optimization-
based approach, but uses semi-definite programming for the
optimization itself.

III. BOUNDING RELATIVE ERRORS

The main goal of this paper is to investigate how to-
day’s sound approaches for computing absolute errors fare
for bounding relative errors and whether it is possible and
advantageous to compute relative errors directly (and not
via absolute errors). In this section, we first concentrate on
obtaining tight bounds in the presence of nonlinear arithmetic,
and postpone a discussion of the orthogonal issue of division
by zero to the next section. Thus, we assume for now that
the range of the function for which we want to bound relative
errors does not include zero, i.e. 0 /∈ f(x) and 0 /∈ f̃(x̃), for
x, x̃ within some given input domain. We furthermore consider
f to be a straight-line arithmetic expression. Conditionals and
loops have been shown to be challenging [11] even for absolute
errors and we thus leave their proper treatment for future work.
We consider function calls to be an orthogonal issue; they can
be handled by inlining, thus reducing to straight-line code, or
require suitable summaries in postconditions, which is also
one of the motivations for this work.

The forward dataflow analysis approach of Rosa and Fluc-
tuat does not easily generalize to relative errors, as it re-
quires intertwining the range and error computation. Instead,
we extend FPTaylor’s approach to computing relative errors
directly (subsection III-A). We furthermore implement interval
subdivision (subsection III-B), which is an orthogonal measure
to reduce over-approximation and experimentally evaluate
different combinations of techniques on a set of standard
benchmarks (subsection V-A).

3

A. Bounding Relative Errors Directly

The first strategy we explore is to compute relative errors
directly, without taking the intermediate step through absolute
errors. That is, we extend FPTaylor’s optimization based
approach and maximize the relative error expression using the
floating-point abstraction from Equation 4:

max |g̃(x, e, d)| = max
x∈I,|ei|≤εM ,|di|≤δ

∣∣∣∣∣f(x)− f̃(x, e, d)f(x)

∣∣∣∣∣ (8)

The hope is to preserve more correlations between variables
in the nominator and denominator and thus obtain tighter and
more informative relative error bounds.

We call the optimization of Equation 8 without simpli-
fications the naive approach. While it has been mentioned
previously that this approach does not scale well [2], we
include it in our experiments (in subsection V-A) nonetheless,
as we are not aware of any concrete results actually being
reported. As expected, the naive approach returns error bounds
which are so large that they are essentially useless.

We thus simplify g̃(x, e, d) by applying the Symbolic Taylor
approach introduced by FPTaylor [2]. As before, we take the
Taylor approximation around the point (x, 0, 0), so that the first
term of the approximation is zero as before: g̃(x, 0, 0) = 0.
We obtain the following optimization problem:

max
x∈I,|ei|≤εM ,|di|≤δ

k∑
i=1

∣∣∣∣ ∂g̃∂ei (x, 0, 0)ei
∣∣∣∣+MR

where MR is an upper bound for the remainder term
R(x, e, d). Unlike in Equation 7 we do not pull the factor ei
for each term out of the absolute value, as we plan to compute
tight bounds for mixed-precision in the future, where the upper
bounds on all ei are not all the same (this change does not
affect the accuracy for uniform precision computations).

Computing Upper Bounds: The second order remainder R
is still expected to be small, so that we use interval arithmetic
to compute a sound bound on MR (in our experiments R
is indeed small for all benchmarks except ‘doppler’). To
bound the first order terms ∂g̃

∂ei
we need a sound optimization

procedure to maintain overall soundness, which limits the
available choices significantly.

FPTaylor uses the global optimization tool Gelpia [12],
which internally uses a branch-and-bound based algorithm.
Unfortunately, we found it difficult to integrate because of
its custom interface. Furthermore, we observed unpredictable
behavior in our experiments (e.g. nondeterministic crashes and
substantially varying running times for repeated runs on the
same expression).

Instead, we use Rosa’s approach which combines interval
arithmetic with a solver-based refinement. Our approach is
parametric in the solver and we experiment with Z3 [10]
and dReal [13]. Both support the SMT-lib interface, provide
rigorous results, but are based on fundamentally different
techniques. Z3 implements a complete decision procedure
for nonlinear arithmetic [9], whereas dReal implements the
framework of δ-complete decision procedures. Internally, it is

based on a branch-and-bound algorithm and is thus in principle
similar to Gelpia’s optimization-based approach.

Note that the queries we send to both solvers are
(un)satisfiability queries, and not optimization queries. For
the nonlinear decision procedure this is necessary as it is
not suitable for direct optimization, but the branch-and-bound
algorithm in dReal is performing optimization internally. The
reason for our roundabout approach for dReal is that while
the tool has an optimization interface, it uses a custom input
format and is difficult to integrate. We expect this approach to
affect mostly performance, however, and not accuracy.

B. Interval Subdivision

The over-approximation committed by static analysis tech-
niques grows in general with the width of the input intervals,
and thus with the width of all intermediate ranges. Intuitively,
the worst-case error which we consider is usually achieved
only for a small part of the domain, over-approximating
the error for the remaining inputs. Additionally the domain
where worst-case errors are obtained may be different at
each arithmetic operation. Thus, by subdividing the input
domain we can usually obtain tighter error bounds. Note that
interval subdivision can be applied to any error estimation
approach. Fluctuat has applied interval subdivision to absolute
error estimation, but we are not aware of a combination with
the optimization-based approach, nor about a study of its
effectiveness for relative errors.

We apply subdivision to input variables and thus compute:

max
k∈[1...m]

(
max
xj∈Ijk

|g̃(x, e, d)|
)

(9)

where m is an number of subdivisions for each input in-
terval. That is, for multivariate functions, we subdivide the
input interval for each variable and maximize the error over
the Cartesian product. Clearly, the analysis running time is
exponential in the number of variables. While Fluctuat limits
subdivisions to two user-designated variables and a user-
defined number of subdivisions each, we choose to limit the
total number of analysis runs by a user-specified parameter
p. That is, given p, m (the desired number of subdivisions
for each variable), and n (number of input variables), the first
blogm(p−n)c variables’ domains are subdivided m times, with
larger input domains subdivided first. The remaining variable
ranges remain undivided.

C. Implementation

We implement all the described techniques in the tool
Daisy [5]. Daisy, a successor of Rosa [3], is a source-to-source
compiler which generates floating-point implementations from
real-valued specifications given in the following format:

def bspline3(u: Real): Real = {
require(0 <= u && u <= 1)

- u * u * u / 6.0
}

Daisy is parametric in the approach (naive, forward dataflow
analysis or optimization-based), the solver used (Z3 or dReal)

4

and the number of subdivisions (including none). Any combi-
nation of these three orthogonal choices can be run by simply
changing Daisy’s input parameters.

Furthermore, Daisy simplifies the derivative expressions in
the optimization-based approach (x+ 0 = x, x× 1 = x, etc.).
Unsimplified expressions may affect the running time of the
solvers (and thus also the accuracy of the error bounds), as
we observed that the solvers do not necessarily perform these
otherwise straight-forward simplifications themselves.

Finally, to maintain soundness, we need to make sure
that we do not introduce internal roundoff errors during the
computation of error bounds. For this purpose we implement
all internal computations in Daisy using infinite-precision
rationals.

IV. HANDLING DIVISION BY ZERO

An important challenge arising while computing relative
errors is how to handle potential divisions by zero. State-
of-the-art tools today simply do not report any error at all
whenever the function range contains zero. Unfortunately, this
is not a rare occurrence; on a standard benchmark set for
floating-point verification, many functions exhibit division by
zero (see Table III for our experiments).

Note that these divisions by zero are inherent to the ex-
pression which we consider and are usually not due to over-
approximations in the analysis. Thus, we can only reduce the
effect of division by zero, but we cannot eliminate it entirely.
Here, we aim to reduce the domain for which we cannot
compute relative errors. Similar to how relative and absolute
errors are combined in the IEEE 754 floating-point model
(Equation 4), we want to identify parts of the input domain on
which relative error computation is not possible due to division
by zero and compute absolute errors. For the remainder of the
input domain, we compute relative errors as before.

We use interval subdivision (subsection III-B), attempting
to compute relative errors (with one of the methods described
before) on every subdomain. Where the computation fails due
to (potential) division by zero, we compute the absolute error
and report both to the user:

relError: 6.6614143807162e-16
On several sub-intervals relative error cannot be computed.
Computing absolute error on these sub-intervals.
For intervals (u -> [0.875,1.0]), absError: 9.66746937132909e-19

While the reported relative error bound is only sound for parts
of the domain, we believe that this information is nonetheless
more informative than either no result at all or only an absolute
error bound, which today’s tools report and which may suffer
from unnecessary over-approximations.

We realize that while this approach provides a practical
solution, it is still preliminary and can be improved in several
ways. First, a smarter subdivision strategy would be beneficial.
Currently, we divide the domain into equal-width intervals, and
vary only their number. The more fine-grained the subdivision,
the bigger part of the domain can be covered by relative
error computations, however the running time increases corre-
spondingly. Ideally, we could exclude from the relative error

computation only a small domain around the zeros of the
function f . While for univariate functions, this approach is
straight-forward (zeros can be, for instance, obtained with a
nonlinear decision procedure), for multivariate functions this
is challenging, as the zeros are not simple points but curves.
Secondly, subdivision could only be used for determining
which sub-domains exhibit potential division by zero. The
actual relative error bound computation can then be performed
on the remainder of the input domain without subdividing it.
This would lead to performance improvements, even though
the ‘guaranteed-no-zero’ domain can still consist of several
disconnected parts. Again, for univariate functions this is
a straight-forward extension, but non-trivial for multivariate
ones. Finally, we could compute maxxj∈Ijk

∣∣∣ f(x)−f̃(x,e,d)f(x)+ε

∣∣∣.
for some small ε, which is a standard approach in scientific
computing. It is not sound, however, so that we do not consider
it here.

V. EXPERIMENTAL EVALUATION

We compare the different strategies for relative error com-
putation on a set of standard benchmarks with FPTaylor
and the forward dataflow analysis approach from Rosa (now
implemented in Daisy) as representatives of state-of-the-art
tools. We do not compare to Fluctuat directly as the underlying
error estimation technique based on forward analysis with
affine arithmetic is very similar to Daisy’s. Indeed experiments
performed previously [2], [11] show only small differences
in computed error bounds. We rather choose to implement
interval subdivision within Daisy.

All experiments are performed in double floating-point
precision (the precision FPTaylor supports), although all tech-
niques in Daisy are parametric in the precision. The ex-
periments were performed on a desktop computer running
Debian GNU/Linux 8 64-bit with a 3.40GHz i5 CPU and
7.8GB RAM. The benchmarks bsplines, doppler, jetEngine,
rigidBody, sine, sqrt and turbine are nonlinear functions
from [3]; invertedPendulum and the traincar benchmarks are
linear embedded examples from [14]; and himmilbeau and
kepler are nonlinear examples from the Real2Float project [4].

A. Comparing Techniques for Relative Error Bounds

To evaluate the accuracy and performance of the different
approaches for the case when no division by zero occurs,
we modify the standard input domains of the benchmarks
whenever necessary such that the function ranges do not
contain zero and all tools can thus compute a non-trivial
relative error bound.

Table I shows the relative error bounds computed with the
different techniques and tools, and Table II the corresponding
analysis times. Bold marks the best result, i.e. tightest com-
puted error bound, for each benchmark. The column ‘Under-
approx’ gives an (unsound) relative error bound obtained with
dynamic evaluation on 100000 inputs; these values provide an
idea of the true relative errors. The ‘Naive approach’ column
confirms that simplifications of the relative error expression are
indeed necessary (note the exponents of the computed bounds).

5

TABLE I
RELATIVE ERROR BOUNDS COMPUTED BY DIFFERENT TECHNIQUES

Bench-
mark

Under-
approx Daisy FPTaylor Naive

approach
Daisy

+ subdiv
DaisyOPT

Z3 dReal Z3+subdiv dReal+subdiv

U
ni

va
ri

at
e

bspline0 1.46e-15 4.12e-13 4.26e-13 5.11e+02 7.44e-14 3.00e-15 3.00e-15 3.00e-15 3.00e-15
bspline1 7.91e-16 2.54e-15 3.32e-15 4.16e-01 5.32e-15 3.22e-15 3.22e-15 3.22e-15 3.22e-15
bspline2 2.74e-16 1.11e-15 1.16e-15 5.22e-01 1.61e-15 8.92e-16 9.76e-16 8.92e-16 8.92e-16
bspline3 5.49e-16 2.46e-10 3.07e-10 5.12e+05 5.23e-11 6.66e-16 6.66e-16 6.66e-16 6.66e-16

sine 2.84e-16 8.94e-16 8.27e-16 4.45e-01 1.39e-15 7.66e-16 7.66e-16 7.66e-16 7.66e-16
sineOrder3 3.65e-16 1.04e-15 1.10e-15 1.39e-01 1.99e-15 8.94e-16 8.94e-16 8.94e-16 8.94e-16

sqroot 4.01e-16 1.04e-15 1.21e-15 1.02e+00 2.20e-15 1.02e-15 1.02e-15 1.02e-15 1.02e-15

M
ul

tiv
ar

ia
te

doppler 1.06e-15 2.08e-04 6.13e-07 2.09e+08 2.60e-05 1.93e-13 1.94e-13 1.93e-13 1.94e-13
himmilbeau 8.46e-16 6.55e-13 7.89e-13 6.69e+02 9.81e-15 6.54e-13 1.98e-15 7.05e-15 1.99e-15

invPendulum 3.74e-16 2.09e-11 2.48e-11 1.64e+00 1.22e-11 1.21e-15 1.35e-15 1.21e-15 1.52e-15
jet 1.45e-15 9.26e-15 7.53e-15 3.87e+00 1.40e-13 4.47e-15 5.12e-15 6.03e-15 6.51e-15

kepler0 4.39e-16 1.31e-12 1.64e-12 2.16e+03 3.63e-12 3.97e-12 2.39e-15 1.63e-15 2.64e-15
kepler1 7.22e-16 2.17e-11 2.59e-11 7.93e+04 8.70e-13 3.80e-11 1.29e-15 2.85e-13 1.71e-15
kepler2 5.28e-16 4.01e-10 5.65e-15 4.09e+05 1.35e-11 4.56e-10 2.42e-15 8.58e-12 2.26e-15

rigidBody1 4.49e-16 8.77e-11 1.14e-10 1.55e+00 2.50e-11 9.78e-16 1.27e-15 9.78e-16 1.46e-15
rigidBody2 5.48e-16 3.91e-12 4.73e-12 5.14e+03 1.77e-12 2.21e-15 2.33e-15 2.21e-15 2.96e-15
traincar_state8 2.72e-15 2.16e-13 2.69e-13 2.91e+02 2.16e-13 7.67e-14 2.72e-13 7.67e-14 2.50e-13
traincar_state9 8.11e-16 3.44e-13 4.31e-13 3.47e+02 1.91e-13 3.45e-14 4.15e-13 3.45e-14 2.38e-13

turbine1 5.79e-16 6.47e-13 1.48e-13 4.16e+02 6.81e-13 2.06e-15 3.07e-15 2.06e-15 3.90e-15
turbine2 1.03e-15 5.26e-15 4.25e-15 4.81e+00 1.66e-13 4.12e-15 4.30e-15 4.12e-15 4.33e-15
turbine3 7.41e-16 3.52e-13 7.43e-14 2.13e+02 3.91e-13 1.91e-14 1.92e-14 1.91e-14 1.93e-14

TABLE II
ANALYSIS TIME OF DIFFERENT TECHNIQUES FOR RELATIVE ERRORS ON BENCHMARKS WITHOUT DIVISION BY ZERO

Benchmark Daisy FPTaylor Naive
approach

Daisy
+ subdiv

DaisyOPT
Z3 dReal Z3 + subdiv dReal + subdiv

bsplines 6s 13s 13m 25s 0.34s 20s 25s 27s 30s
sines 5s 8s 13m 45s 0.42s 1m 4s 1m 21s 1m 8s 1m 9s

sqroot 3s 6s 6m 4s 0.15s 14s 12s 14s 14s

doppler 5s 2m 11s 2m 14s 1s 1m 59s 2m 35s 2m 58s 7m 28s
himmilbeau 9s 4s 5m 30s 0.36s 1m 50s 1m 16s 6m 15s 8m 5s

invPendulum 3s 5s 1m 31s 0.15s 7s 37s 25s 3m 54s
jet 20s 17s 19m 35s 7s 30m 40s 32m 24s 45m 31s 2 h 20m 49s

kepler 37s 39s 14m 41s 1s 3m 27s 16m 29s 12m 20s 27m 56s
rigidBody 11s 8s 10m 4s 0.39s 30s 1m 18s 1m 26s 8m 37s

traincar 10s 42s 8m 15s 1s 1m 1s 10m 43s 4m 7s 18m 35s
turbine 11s 28s 17m 25s 2s 5m 29s 11m 28s 12m 30s 42m 36s

total 1m 60s 5m 1s 1h 52m 28s 13s 46m 42s 1h 18m 45s 1h 27m 22s 4h 19m 53s

The last four columns show the error bounds when relative
errors are computed directly using the optimization based
approach (denoted ‘DaisyOPT’) from subsection III-A, with
the two solvers and with and without subdivisions. For subdi-
visions, we use m = 2 for univariate benchmarks, m = 8 for
multivariate and p = 50 for both as in our experiments these
parameters showed a good trade-off between performance and
accuracy. For most of the benchmarks we find that direct eval-
uation of relative errors computes tightest error bounds with
acceptable analysis times. Furthermore, for most benchmarks
Z3, resp. its nonlinear decision procedure, is able to compute
slightly tighter error bounds, but for three of our benchmarks
dReal performs significantly better, while the running times
are comparable.

Somewhat surprisingly, we note that interval subdivision
has limited effect on accuracy when combined with direct

relative error computation, while also increasing the running
time significantly.

Comparing against state-of-the-art techniques (columns
Daisy and FPTaylor), which compute relative errors via ab-
solute errors, we notice that the results are sometimes several
orders of magnitude less accurate than direct relative error
computation (e.g. six orders of magnitude for the bspline3
and doppler benchmarks).

The column ‘Daisy+subdiv’ shows relative errors computed
via absolute errors, using the forward analysis with subdivi-
sion (with the same parameters as above). Here we observe
that unlike for the directly computed relative errors, interval
subdivision is mostly beneficial.

Finally, for the experiments in Table I, we use as large input
domains as possible, without introducing result ranges which
include zero. When comparing relative error bounds computed

6

for smaller and larger input domains, where a small input
domain means that the input intervals have smaller width, we
observe that relative errors computed directly usually scale
better than relative errors computed via absolute errors, i.e. the
over-approximation committed is smaller. For example, (for
space reasons only) for the doppler benchmark we obtain the
following relative errors:

Daisy (via absolute) relative err. directly
small input domain 1.48e-11 1.26e-15
large input domain 2.08e-04 1.93e-13

B. Handling Division by Zero

To evaluate whether interval subdivision is helpful when
dealing with the inherent division by zero challenge, we now
consider the standard benchmark set, with standard input
domains. Table III summarizes our results. We first note that
division by zero indeed occurs quite often, as the missing
results in the Daisy and FPtaylor columns show.

The last three columns show our results when using interval
subdivision. Note that to obtain results on as many benchmarks
as possible we had to change the parameters for subdivision
to m = 8 and p = 50 for univariate and m = 4, p = 100 for
multivariate benchmarks. The result consists of three values:
the first value is the maximum relative error computed over the
sub-domains where relative error was possible to compute; in
the brackets we report the maximum absolute error for the sub-
domains where relative error computation is not possible, and
the integer is the amount of these sub-domains where absolute
errors were computed. We only report a result if the number
of sub-domains with division by zero is less than 80% of the
total amount of subdomains, as larger numbers would probably
be impractical to be used within, e.g. modular verification
techniques. Whenever we report ’-’ in the table, this means
that division by zero occurred on too many or all subdomains.

We observe that while interval subdivision does not provide
us with a result for all benchmarks, it nonetheless computes
information for more benchmarks than state-of-the-art tech-
niques.

VI. RELATED WORK

The goal of this work is an automated and sound static
analysis technique for computing tight relative error bounds for
floating-point arithmetic. Most related are current static analy-
sis tools for computing absolute roundoff error bounds [1]–[4].

Another closely related tool is Gappa [15], which computes
both absolute and relative error bounds in Coq. It appears
relative errors can be computed both directly and via abso-
lute errors. The automated error computation in Gappa uses
intervals, thus, a computation via absolute errors will be less
accurate than Daisy performs. The direct computation amounts
to the naive approach, which we have shown to work poorly.

The direct relative error computation was also used in the
context of verifying computations which mix floating-point
arithmetic and bit-level operations [16]. Roundoff errors are
computed using an optimization based approach similar to

FPTaylor’s. Their approach is targeted to specific low-level
operations including only polynomials, and the authors do not
use Taylor’s theorem. However, tight error estimates are not
the focus of the paper, and the authors only report that they
use whichever bound (absolute or relative) is better. we are not
aware of any systematic evaluation of different approaches for
sound relative error bounds.

More broadly related are abstract interpretation-based static
analyses which are sound wrt. floating-point arithmetic [17],
[18], some of which have been formalized in Coq [19] These
domains, however, do not quantify the difference between the
real-valued and the finite-precision semantics and can only
show the absence of runtime errors such division-by-zero or
overflow.

Floating-point arithmetic has also been formalized in an
SMT-lib [20] theory and solvers exist which include floating-
point decision procedures [20], [21]. These are, however, not
suitable for roundoff error quantification, as a combination
with the theory of reals would be at the propositional level
only and thus not lead to useful results.

Floating-point arithmetic has also been formalized in the-
orem provers such as Coq [22] and HOL Light [23], and
some automation support exists in the form of verification
condition generation and reasoning about ranges [24], [25].
Entire numerical programs have been proven correct and
accurate within these [26], [27]. While very tight error bounds
can be proven for specific computations [28], these verification
efforts are to a large part manual and require substantial user
expertise in both floating-point arithmetic as well as theorem
proving. Our work focuses on a different trade-off between
accuracy, automation and generality.

Another common theme is to run a higher-precision pro-
gram alongside the original one to obtain error bounds by
testing [29]–[32]. Testing has also been used as a verification
method for optimizing mixed-precision computations [33],
[34]. These approaches based on testing, however, only con-
sider a limited number of program executions and thus cannot
prove sound error bounds.

VII. CONCLUSION

We have presented the first experimental investigation into
the suitability of different static analysis techniques for sound
accurate relative error estimation. Provided that the function
range does not include zero, computing relative errors directly
usually yields error bounds which are (orders of magnitude)
more accurate than if relative errors are computed via absolute
errors (as is current state-of-the-art). Surprising to us, while
interval subdivision is beneficial for absolute error estimation,
when applied to direct relative error computation it most often
does not have a significant effect on accuracy.

We furthermore note that today’s rigorous optimization tools
could be improved in terms of reliability as well as scalability.
Finally, while interval subdivision can help to alleviate the
effect of the inherent division by zero issue in relative error
computation, it still remains an open challenge.

7

TABLE III
RELATIVE ERROR BOUNDS COMPUTED BY DIFFERENT TECHNIQUES ON STANDARD BENCHMARKS (WITH POTENTIAL DIVISION BY ZERO)

Benchmark Daisy FPTaylor Daisy
+ subdiv

DaisyOPT
Z3 + subdiv dReal + subdiv

bspline0 - - 1.58e-01 (1.08e-18, 1) 3.00e-15 (1.08e-18, 1) 3.00e-15 (1.08e-18, 1)
bspline1 - 3.32e-15 2.80e-13 3.22e-15 3.22e-15
bspline2 - 3.50e-15 9.20e-16 8.92e-16 8.92e-16
bspline3 - - 1.31e-14 (9.67e-19, 1) 6.66e-16 (9.67e-19, 1) 6.66e-16 (9.67e-19, 1)

sine - - 1.07e-15 (2.00e-16, 2) 7.02e-16 (2.02e-16, 2) 7.02e-16 (2.02e-16, 2)
sineOrder3 - - 2.29e-15 (3.10e-16, 2) 8.94e-16 (3.17e-16, 2) 8.94e-16 (3.17e-16, 2)

sqroot - - 7.09e-15 (2.83e-14, 3) 1.92e-15 (3.11e-14, 3) 1.92e-15 (3.11e-14, 3)

doppler 1.48e-11 4.99e-12 8.95e-13 1.26e-15 1.35e-15
himmilbeau - - 3.75e-14 (1.00e-12, 12) 2.57e-14 (1.00e-12, 12) 2.84e-15 (1.00e-12, 12)

invPendulum - - 4.94e-15 (2.60e-14, 32) 2.82e-15 (2.60e-14, 32) 3.08e-15 (2.60e-14, 32)
jet - - - - -

kepler0 4.35e-15 4.57e-15 2.38e-13 (8.08e-14, 49) 2.16e-15 (7.92e-14, 49) 3.88e-15 (8.32e-14, 49)
kepler1 1.33e-14 1.17e-14 - - -
kepler2 - 4.21e-14 - - -

rigidBody1 - - 2.29e-14 (2.16e-13, 46) 1.07e-15 (2.16e-13, 46) 1.78e-15 (2.16e-13, 46)
rigidBody2 - - 2.65e-12 (3.51e-11, 50) 1.67e-15 (3.65e-11, 50) 3.80e-15 (3.65e-11, 50)

traincar_state8 - - - - -
traincar_state9 - - - - -

turbine1 6.12e-14 1.18e-14 6.03e-15 1.75e-15 5.21e-15
turbine2 - - 5.64e-14 (3.65e-14, 25) 2.74e-15 (1.20e-13, 25) 6.97e-14 (3.90e-14, 25)
turbine3 1.52e-13 2.21e-14 2.77e-14 6.50e-15 6.71e-15

REFERENCES

[1] E. Goubault and S. Putot, “Static Analysis of Finite Precision Compu-
tations,” in VMCAI, 2011.

[2] A. Solovyev, C. Jacobsen, Z. Rakamarić, and G. Gopalakrishnan,
“Rigorous Estimation of Floating-Point Round-off Errors with Symbolic
Taylor Expansions,” in FM, 2015.

[3] E. Darulova and V. Kuncak, “Sound Compilation of Reals,” in POPL,
2014.

[4] V. Magron, G. A. Constantinides, and A. F. Donaldson, “Certified
Roundoff Error Bounds Using Semidefinite Programming,” CoRR, vol.
abs/1507.03331, 2015.

[5] MPI-SWS, “Daisy - a framework for accuracy analysis and synthesis of
numerical programs,” 2017, https://github.com/malyzajko/daisy.

[6] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, Aug
2008.

[7] R. Moore, Interval Analysis. Prentice-Hall, 1966.
[8] L. H. de Figueiredo and J. Stolfi, “Affine Arithmetic: Concepts and

Applications,” Numerical Algorithms, vol. 37, no. 1-4, 2004.
[9] D. Jovanović and L. de Moura, “Solving non-linear arithmetic,” in

IJCAR, 2012.
[10] L. De Moura and N. Bjørner, “Z3: an efficient SMT solver,” in TACAS,

2008.
[11] E. Darulova and V. Kuncak, “Towards a Compiler for Reals,” ACM

TOPLAS, vol. 39, no. 2, 2017.
[12] M. S. Baranowski and I. Briggs, “Gelpia - global extrema locator

parallelization for interval arithmetic,” https://github.com/soarlab/gelpia.
[13] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT Solver for

Nonlinear Theories over the Reals,” in CADE, 2013.
[14] E. Darulova, V. Kuncak, R. Majumdar, and I. Saha, “Synthesis of Fixed-

point Programs,” in EMSOFT, 2013.
[15] M. Daumas and G. Melquiond, “Certification of bounds on expressions

involving rounded operators,” ACM Trans. Math. Softw., vol. 37, no. 1,
pp. 2:1–2:20, Jan. 2010.

[16] W. Lee, R. S. 0001, and A. Aiken, “Verifying Bit-Manipulations of
Floating-Point.” PLDI, 2016.

[17] L. Chen, A. Miné, and P. Cousot, “A Sound Floating-Point Polyhedra
Abstract Domain,” in APLAS, 2008.

[18] B. Jeannet and A. Miné, “Apron: A Library of Numerical Abstract
Domains for Static Analysis,” in CAV, 2009.

[19] J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy, and D. Pichardie, “A
Formally-Verified C Static Analyzer,” in POPL, 2015.

[20] P. R. Martin Brain, Cesare Tinelli and T. Wahl, “An Automatable Formal
Semantics for IEEE-754 Floating-Point Arithmetic,” Technical Report,
http://smt-lib.org/papers/BTRW15.pdf, 2015.

[21] M. Brain, V. D’Silva, A. Griggio, L. Haller, and D. Kroening, “Deciding
floating-point logic with abstract conflict driven clause learning,” Formal
Methods in System Design, vol. 45, no. 2, pp. 213–245, Dec. 2013.

[22] S. Boldo and G. Melquiond, “Flocq: A Unified Library for Proving
Floating-Point Algorithms in Coq,” in ARITH, 2011.

[23] C. Jacobsen, A. Solovyev, and G. Gopalakrishnan, “A Parameterized
Floating-Point Formalizaton in HOL Light,” Electronic Notes in Theo-
retical Computer Science, vol. 317, pp. 101–107, 2015.

[24] M. D. Linderman, M. Ho, D. L. Dill, T. H. Meng, and G. P. Nolan,
“Towards program optimization through automated analysis of numeri-
cal precision,” in CGO, 2010.

[25] A. Ayad and C. Marché, “Multi-prover verification of floating-point
programs,” in IJCAR, 2010.

[26] S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, and
P. Weis, “Wave Equation Numerical Resolution: A Comprehensive
Mechanized Proof of a C Program,” Journal of Automated Reasoning,
vol. 50, no. 4, pp. 423–456, 2013.

[27] T. Ramananandro, P. Mountcastle, B. Meister, and R. Lethin, “A
Unified Coq Framework for Verifying C Programs with Floating-Point
Computations,” in CPP, 2016.

[28] S. Graillat, V. Lefèvre, and J.-M. Muller, “On the maximum relative error
when computing xn in floating-point arithmetic,” Université Pierre et
Marie Curie Paris 6 ; CNRS, Research Report, ensl-00945033, 2014.

[29] F. Benz, A. Hildebrandt, and S. Hack, “A Dynamic Program Analysis
to Find Floating-point Accuracy Problems,” in PLDI, 2012.

[30] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamaric, and A. Solovyev,
“Efficient Search for Inputs Causing High Floating-point Errors,” in
PPoPP, 2014.

[31] M. O. Lam, J. K. Hollingsworth, and G. Stewart, “Dynamic Floating-
point Cancellation Detection,” Parallel Computing, vol. 39, no. 3, 2013.

[32] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock, “Auto-
matically Improving Accuracy for Floating Point Expressions,” in PLDI,
2015.

[33] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning
Assistant for Floating-point Precision,” in SC, 2013.

[34] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P. Legendre,
“Automatically Adapting Programs for Mixed-precision Floating-point
Computation,” in ICS, 2013.

8

https://github.com/malyzajko/daisy
https://github.com/soarlab/gelpia
http://smt-lib.org/papers/BTRW15.pdf

	Introduction
	Background
	Floating-Point Arithmetic
	State-of-the-art in Absolute Error Estimation

	Bounding Relative Errors
	Bounding Relative Errors Directly
	Interval Subdivision
	Implementation

	Handling Division by Zero
	Experimental Evaluation
	Comparing Techniques for Relative Error Bounds
	Handling Division by Zero

	Related work
	Conclusion
	References

