
Efficient Generation of All Minimal Inductive
Validity Cores

Elaheh Ghassabani, Michael Whalen
Department of Computer Science & Engineering

University of Minnesota
MN, USA

ghass013, mwwhalen@umn.edu

Andrew Gacek
Rockwell Collins

Advanced Technology Center
IA, USA

andrew.gacek@rockwellcollins.com

Abstract—Symbolic model checkers can construct proofs of
safety properties over complex models, but when a proof suc-
ceeds, the results do not generally provide much insight to
the user. Recently, proof cores (alternately, for inductive model
checkers, Inductive Validity Cores (IVCs)) were introduced to
trace a property to a minimal set of model elements necessary
for proof. Minimal IVCs facilitate several engineering tasks,
including performing traceability and analyzing requirements
completeness, that usually rely on the minimality of IVCs.
However, existing algorithms for generating an IVC are either
expensive or only able to find an approximately minimal IVC.

Besides minimality, computing all minimal IVCs of a given
property is an interesting problem that provides several useful
analyses, including regression analysis for testing/proof, determi-
nation of the minimum (as opposed to minimal) number of model
elements necessary for proof, the diversity examination of model
elements leading to proof, and analyzing fault tolerance.

This paper proposes an efficient method for finding all
minimal IVCs of a given property proving its correctness and
completeness. We benchmark our algorithm against existing IVC-
generating algorithms and show, in many cases, the cost of finding
all minimal IVCs by our technique is similar to finding a single
minimal IVC using existing algorithms.

Keywords-Inductive Validity Cores; UNSAT-core generation;
SMT-based model checking; Inductive proofs;

I. INTRODUCTION

Most modern sequential model checking techniques for
safety properties, including IC3/PDR [1] and k-induction [2],
use a form of induction to establish proof. These techniques
are very powerful, and can often reason successfully over very
large or even infinite state spaces. The proofs provided by
these tools can provide rigorous evidence that a software or
hardware system works as intended.

On the other hand, there are many situations in which
properties can be proved, but systems still will not perform
as intended. Issues such as vacuity [3], incorrect environ-
mental assumptions [4], and errors either in English language
requirements or formalization [5] can all lead to failures of
“proved” systems. Thus, even if proofs are established, one
must approach verification with skepticism.

Recently, proof cores [6] have been proposed as a mecha-
nism to determine which elements of a model are used when
constructing a proof. This idea is formalized by Ghassabani et
al. for inductive model checkers in [7] as Inductive Validity

Cores (IVCs). IVCs offer proof explanation as to why a
property is satisfied by a model in a formal and human-
understandable way. The idea lifts UNSAT cores [8] to the
level of sequential model checking algorithms using induc-
tion. Informally, if a model is viewed as a conjunction of
constraints, a minimal IVC (MIVC) is a set of constraints
that is sufficient to construct a proof such that if any con-
straint is removed, the property is no longer valid. IVCs and
MIVCs can be used for several purposes, including performing
traceability between specification and design elements [9],
assessing model coverage [10], and explaining unsatisfiable
test obligations when using model checkers for test case
generation. Ghassabani et al. [7] presented two algorithms: one
that computes an approximately minimal IVC using UNSAT
cores (IVC_UC) that is computationally inexpensive, and a
more accurate algorithm that usually produces a minimal IVC
using a brute-force post-processing step (IVC_UCBF) that is
considerably more expensive to compute.1

The IVC and proof core ideas share many similarities
with approaches for computing minimal invariant sets for
inductive proofs (such as is performed for inductive proof
certificates [11], [12]), and in fact the IVC_UC algorithm
performs a minimal lemma set computation. However, there is
a substantive difference: to find a minimal set of constraints, it
is usually necessary to find new proofs involving new lemmas
not used in the original proof, which accounts for the expense
of the IVC_UCBF algorithm.

It is often the case that there are multiple MIVCs for a
given property. In this case, computing a single IVC provides,
at best, an incomplete picture of the traceability information
associated with the proof. Depending on the model and prop-
erty to be analyzed, there is often substantial diversity between
the IVCs used for proof, and there can also be a substantive
difference in the size of a minimal IVC and a minimum IVC,
which is the (not necessarily unique) smallest MIVC. If all
MIVCs can be found, then several additional analyses can be
performed:
• Coverage Analysis: MIVCs can be used to define cov-

1In [7] it is shown that minimization is as hard as model checking, so
for model checking problems that generally undecidable, the minimization
process is also generally undecidable, so the IVC_UCBF algorithm may
time out and return an approximate result.

erage metrics by examining the percentage of model
elements required for a proof. However, since MIVCs are
not unique, there are multiple, equally legitimate coverage
scores possible. Having all MIVCs allows one to define
additional metrics: coverage of MAY elements, coverage
of MUST elements, as well as policies for the existing
MIVC metric: e.g., choose the smallest MIVC [10].

• Optimizing Logic Synthesis: synthesis tools can benefit
from MIVCs in the process of transforming an abstract
behavior into a design implementation. A practical way
of calculating all MIVCs allows to find a minimum
set of design elements (optimal implementation) for a
certain behavior. Such optimizations can be performed at
different levels of synthesis.

• Impact Analysis: Given all MIVCs, it is possible to de-
termine which requirements may be falsified by changes
to the model. This analysis allows for selective regression
verification of tests and proofs: if there are alternate proof
paths that do not require the modified portions of the
model, then the requirement does not need to be re-
verified [9].

• Robustness Analysis: It is possible to partition the model
elements into MUST and MAY sets based on whether
they are in every MIVC or only some MIVCs, respec-
tively. This may allow insight into the relative importance
of different model elements for the property. For example,
if the MUST set is empty, then the requirement has been
implemented in multiple ways, such as would be expected
in a fault-tolerant system [9].

In addition, the Requirements Engineering community is
keenly interested in approaches to manage requirements trace-
ability. In most cases, it is assumed that there is a single
“golden” set of trace links that describes how requirements
are implemented in software [13]–[15]. However, if there are
multiple MIVCs, then it is possible that there are several
equally valid sets of trace links. Examining the diversity of all
MIVCs could lead to changes in how traceability is performed
for critical systems.

In this paper, we propose a new method for computing all
IVCs that is always minimal for decidable model checking
problems and usually (and detectably) minimal for model-
checking problems that are generally undecidable. In recent
years, a number of efficient algorithms for extracting minimal
UNSAT subformulae (MUSes) have been proposed [16], most
of which are focused on computing a single MUS [17]–[21].
In this paper, we adapt the recent work by Liffiton et al.
[22] from the generation of MUSes from UNSAT-cores to all
IVCs for inductive model checking. This requires changing the
underlying mechanisms that are used to construct candidate
solutions and also changing the structure of the proof of
correctness. In addition, we demonstrate that the approach can
terminate with all minimal IVCs even if the witness generator
only generates approximately minimal IVCs (utilizing the
“fast” IVC_UC algorithm from [7]). In our empirical results,
this allows our algorithm to be quite efficient to the extent

Fig. 1. Altitude Switch Model

that in many cases, the cost of extracting all minimal IVCs is
similar to the cost of finding a single guaranteed-minimal IVC,
and on average is approximately 1.6x the cost of determining
a single minimal IVC. The contributions of the work are
therefore as follows:
• An algorithm for computing all minimal IVCs.
• A proof of correctness and completeness of the algorithm.
• An evaluation of the algorithm for performance and

diversity of result sets against a benchmark suite.
Several commercial tools produce proof-cores [6], [23],

which we believe to be similar to IVCs/MIVCs, but are
not presented at a level of formality to perform a precise
comparison. However, to the best of our knowledge, none of
these tools offer to calculate all proof-cores. Our work can
also be useful towards the support of this capability in future
editions of these tools.

The rest of the paper is organized as follows. Section
II introduces a running example used to illustrate concepts
and our method. Section III covers the formal preliminaries
for the approach. In Section IV, we present our method for
enumerating all minimal IVCs, which is illustrated in Section
V. In Sections VI and VII we talk about implementation
and evaluation of our method. Finally, Section VIII mentions
conclusions and future work.

II. RUNNING EXAMPLE

We will use a very simple system from the avionics domain
to illustrate our approach. An Altitude Switch (ASW) is a
hypothetical device that turns power on to another subsystem,
the Device of Interest (DOI), when the aircraft descends below
a threshold altitude, and turns the power off again after the
aircraft ascends over the threshold plus some hysteresis factor.
An implementation of an ASW containing two altimeters writ-
ten in the Lustre language (simplified and adapted from [24])
is shown in Fig. 1. If either altimeter is below the constant
THRESHOLD, then it turns on the DOI; else, if the system is
inhibited or both altimeters are above the threshold plus the
hysteresis factor T_HYST, then the DOI is turned off, and if

neither condition holds, then in the initial computation it is
false and thereafter retains its previous value. The notation
(false -> pre(doi_on)) in equation (7) describes an ini-
tialized register in Lustre: in the first step, the expression is
false, and thereafter it is the previous value of doi_on. A
simple property on_p states that if both altimeters are under
the threshold, then the DOI is turned on. This property can
easily be proved over the model using a k-induction based
verifier such as JKind [25].

III. PRELIMINARIES

Given a state space U , a transition system (I, T) consists
of an initial state predicate I : U → bool and a transition
step predicate T : U × U → bool . We define the notion of
reachability for (I, T) as the smallest predicate R : U → bool
which satisfies the following formulas:

∀u. I(u)⇒ R(u)

∀u, u′. R(u) ∧ T (u, u′)⇒ R(u′)

A safety property P : U → bool is a state predicate. A safety
property P holds on a transition system (I, T) if it holds on all
reachable states, i.e., ∀u. R(u)⇒ P (u), written as R ⇒ P for
short. When this is the case, we write (I, T) ` P . We assume
the transition relation has the structure of a top-level conjunc-
tion. Given T (u, u′) = T1(u, u

′)∧· · ·∧Tn(u, u
′) we will write

T =
∧

i=1..n Ti for short. By further abuse of notation, T is
identified with the set of its top-level conjuncts. Thus, Ti ∈ T
means that Ti is a top-level conjunct of T , and S ⊆ T means
all top-level conjuncts of S are top-level conjuncts of T . When
a top-level conjunct Ti is removed from T , we write T \{Ti}.
Such a transition system can easily encode our example
model in Section II, where each equation defines a conjunct
within T that we will denote by the variable assigned; so,
T = { a1_below, a2_below, a1_above, a2_above,

one_below, both_above, doi_on, on_p }.
The idea behind finding an IVC for a given property

P [7] is based on inductive proof methods used in SMT-
based model checking, such as K-induction and IC3/PDR
[1], [26], [27]. Generally, an IVC computation technique aims
to determine, for any subset S ⊆ T , whether P is provable
by S. Then, a minimal subset that satisfies P is seen as a
minimal proof explanation called a minimal Inductive Validity
Core. Theorem 1 demonstrates that the minimization process
is as hard as model checking, so finding a minimal inductive
validity core may not be possible for some model checking
problems.

Definition 1. Inductive Validity Core (IVC) [7]: S ⊆ T
for (I, T) ` P is an Inductive Validity Core, denoted by
IVC(P, S), iff (I, S) ` P .

Definition 2. Minimal Inductive Validity Core (MIVC) [7]:
S ⊆ T is a minimal Inductive Validity Core, denoted by
MIVC(P, S), iff IVC(P, S) ∧ ∀Ti ∈ S. (I, S \ {Ti}) 0 P .

Theorem 1. Determining if an IVC is minimal is as hard as
model checking.
Proof: see [7].

Fig. 2. Graphical representation of MIVCs for the model in Fig. 1 with
P = (on_p)

Note that, given (I, T) ` P , P always has at least one
MIVC, and it may also have many distinct MIVCs correspond-
ing to different proof paths. To capture the latter, the all MIVCs
(AIV C) relation has been introduced in [9].

Definition 3. All MIVCs (AIV C): Given (I, T) ` P ,
AIV C(P) is an association to all MIVCs for P :

AIV C(P) ≡ { S | S ⊆ T ∧MIV C(P, S)}

Fig. 2 illustrates these notions by a graphical representation
of IVCs for property P = (on_p) in the example presented
in Section II. As shown in the picture, this property has
two distinct MIVCs, which means the model satisfies P
in two different ways: {{a1_below, one_below, doi_on,

on_p}, {a2_below, one_below, doi_on, on_p}}, This
is because in the implementation, the DOI is turned
on when either of the altimeters is below the thresh-
old, while our property states that they both must be
below. Note that there is a subset of model elements,
{a1_above, a2_above, both_above}, that does not show
up in AIV C(P). Elements in such a subset do not affect the
satisfaction of P . In the complete ASW model in [24] there
are additional properties that use these elements, but they are
not necessary for the discussion in this paper.

IV. METHOD

Considering the definition of a MIVC, a brute-force tech-
nique for enumerating all MIVCs would be the same as
exploring the power set of T (denoted by P(T)). Basically,
the algorithm needs to explore the provability of a given
property by any subset of T , which would be computationally
expensive. Our approach is an adaptation of the the work
of MARCO for generating all minimal unsatisfiable subsets
(MUSes) in [22], and only needs to explore a (small) portion
of P(T) in order to compute AIV C. In fact, it can be viewed
as an instantiation of the MARCO proof schema for the richer
theory of sequential model checking. We begin by introducing
several additional notions and definitions, most of which are
analogous or equivalent to those in [22].

Definition 4. Maximal Inadequate Set (MIS): S ⊂ T for
(I, T) ` P is a Maximal Inadequate Set (MIS) iff (I, S) 0 P
and ∀Ti ∈ T \ S. (I, S ∪ {Ti}) ` P .

Given (I, T) ` P , for every S ∈ P(T), we have either
(I, S) ` P or (I, S) 0 P . In the former case, we say S is
adequate for P ; in the latter, we say that S is inadequate for
the proof of P . Note that every IVC is an adequate set for P ,
and every MIS is an inadequate set.

Lemma 1. For (I, T) ` P , if S ⊆ T is adequate for property
P , then all of its supersets are adequate for P as well:

∀S1 ⊆ S2 ⊆ T. (I, S1) ` P ⇒ (I, S2) ` P

Proof: From S1 ⊆ S2 we have S2 ⇒ S1. Thus the
reachable states of (I, S2) are a subset of the reachable states
of (I, S1).

Corollary 1. For (I, T) ` P , if a given subset S is inadequate,
then all of its subsets are inadequate as well:

∀S1 ⊆ S2 ⊆ T. (I, S2) 0 P ⇒ (I, S1) 0 P

Proof: Immediate from Lemma 1.
The basic idea behind an algorithm for computing

AIV C(P) is the same as exploration of P(T), with two major
performance improvements. First, Lemma 1 and Corollary 1
are used to block large portions of P(T) from consideration.
For example, if a set S ∈ P(T) is found to be inadequate,
then all subsets of S are also inadequate and do not need to
be explicitly considered. Second, if a set S ∈ P(T) is found
to be adequate, then a fast algorithm (such as IVC_UC from
[7]) is used to find a smaller S′ ⊆ S which is still adequate.
This feeds into the first optimization since now all supersets
of S′ rather than S are blocked from future consideration.

To guide our algorithm, we now introduce a way of ex-
ploring P(T) which allows us to eliminate all subsets or
supersets of any given set. We use a Boolean expression called
map, which is in conjunctive normal form (CNF) and built
gradually as the algorithm proceeds. Satisfying assignments
for map correspond to elements of P(T). For each S ∈ P(T)
that the algorithm determines to be adequate or inadequate, a
corresponding clause is added to map which blocks S and all
supersets or subsets, respectively, from consideration. When
a clause is added to map, the corresponding S ∈ P(T)
is called explored. The supersets or subsets of S which are
blocked from consideration are called excluded. The remaining
elements of P(T) are unexplored.

More precisely, given T with n top-level conjuncts, we
define an ordered set of activation literals A = {a1, . . . , an},
where each ai has type Boolean. We assume the function
ACTLIT : T → A is a bijection assigning every Ti ∈ T
to an ai ∈ A and vice versa. Then, a map for AIV C(P) is
a CNF formula built over the elements of A such that:
• Initially map is > since all of P(T) is unexplored.
• When map is satisfiable, a model of it is a set M ∈ P(A)

consisting of those a ∈ A which are assigned true.
• Every model M of map corresponds to a set S ∈
P(T) such that S =

⋃
ai∈M ACTLIT−1(ai) and M =⋃

Ti∈S ACTLIT(Ti).

• For every explored set S ∈ P(T):

– if S is adequate for P , then map contains a clause∨
Ti∈S ¬ACTLIT(Ti). This clause blocks all super-

sets of S from future consideration which is consis-
tent with Lemma 1.

– if S is inadequate for P , then map contains a
clause

∨
Ti∈(T\S) ACTLIT(Ti). This clause blocks

all subsets of S from future consideration which is
consistent with Corollary 1.

Lemma 2. When map is satisfiable with model M , set
S =

⋃
ai∈M ACTLIT−1(ai) is not equal to any adequate

or inadequate explored set, nor a subset (superset) of any
inadequate (adequate) explored set in P(T).

Proof: Proof by contradiction. Case 1: Suppose there is
an adequate set Ex ⊆ S that has been already explored.
Therefore, according to the definition, map contains a clause
C =

∨
Ti∈Ex ¬ACTLIT(Ti), and since Ex ⊆ S, it is

impossible for the model M =
⋃

Ti∈Ex ACTLIT(Ti) to satisfy
C; hence, the assumption is false.

Case 2: Suppose there is an inadequate set Ex such that
S ⊆ Ex and Ex has been already explored. Therefore,
according to the definition, map contains a clause C =∨

Ti∈(T\S) ACTLIT(Ti), and since S ⊆ Ex, it is impossible
for the model M =

⋃
Ti∈S ACTLIT(Ti) to satisfy C; so, the

assumption is false.
From Case 1 and Case 2, there is no model of map whose

corresponding set in P(T) is a non-strict subset (superset) of
any inadequate (adequate) explored set.

Lemma 3. For (I, T) ` P , map is satisfiable iff at least one
S ∈ AIV C(P) or one MIS of T is unexplored.

Proof: Let map is satisfiable with a model M , and let
S =

⋃
ai∈M ACTLIT−1(ai) be the corresponding set of P(T).

If S is adequate, then it contains a MIVC. That MIVC must
not be explored since otherwise S would have been blocked
from consideration. The MIVC must not be excluded since it
is not a strict superset of any adequate set (by minimality)
nor a subset of any inadequate set (by Corollary 1). Thus the
MIVC must be unexplored. The case where S is inadequate is
symmetric.

In the other direction, let S ⊆ T be an unexplored MIVC.
Then consider the model M =

⋃
Ti∈S ACTLIT(Ti). We will

show that each clause of map is satisfied by M . There are two
types of clauses to consider. A clause

∨
Ti∈S′ ¬ACTLIT(Ti) is

in map only if S′ is adequate. M would falsify this clause only
if S′ ⊆ S which is impossible by minimality of S. A clause∨

Ti∈(T\S′) ACTLIT(Ti) is in map only if S′ is inadequate. M
would falsify this clause only if S ⊆ S′ which is imposssible
by Corollary 1. Thus M is a model for map. The case for an
unexplored MIS is symmetric.

Corollary 2. For (I, T) ` P , map is unsatisfiable iff every
S ∈ P(T) has been explored or excluded.

Proof: Immediate from the definition of map and Lemma
3.

Algorithm 1 shows the process of capturing all MIVCs,

which are kept in set A, along with a warning flag, explained
below. In line 2, we create the set of activation literals used
by function ACTLIT. Line 3 initializes map with > over the
set of literals we have. The main loop of state exploration
starts at line 4 and continues until map becomes UNSAT
which means all the MIVCs have been found. We assume we
have a function CHECKSAT that determines if an existentially
quantified formula is satisfiable or not.2 As long as map is
satisfiable, the algorithm computes a maximal SAT model for
it (line 5). In this context, a maximal SAT model is a model
with as many true assignment as possible without violating
a clause; this problem, is equivalent to the MaxSAT problem,
which has been well studied in the literature [29], [30].3 So,
we assume there is a method by which we are able to have
a maximal model of map. Line 6 extracts a set M ∈ P(A)
of literals assigned to true in the model. Then, we need to
obtain the corresponding set of S in P(T), which is done with
function ACTLIT−1 in line 7.

We also assume there is a function CHECKADQ that checks
whether or not P is provable by a given subset of T . Note
that from Theorem 1, finding a minimal is undecidable if the
original checking problem is undecidable. Thus, for undecid-
able model checking problems, CHECKADQ can return UN-
KNOWN (after a user-defined timeout) as well as ADEQUATE
or INADEQUATE. For a given set S, if our implementation is
unable to prove the property, we conservatively assume that
the property is falsifiable and set a warning flag w to the
user that the results may be approximate. if S is adequate,
a MIVC is computed by GETIVC and added to set A (lines
10-11).4 In this case map is constrained by a new clause in a
way described before and shown in line 12. However, in the
case that S is inadequate or unknown, map is constrained by
the corresponding literals from T \ S in line 14. Finally, if S
is unknown, the warning flag w is set to true, as the results
may be approximate (lines 15-16).

Theorem 2. Algorithm 1 will terminate.

Proof: We assume that CHECKADQ has a finite timeout,
so all operations within the loop require finite time. Each
iteration of the while loop in Algorithm 1 blocks at least one
element of P(T) which was not previously blocked. Since
P(T) is finite, the algorithm terminates.

Theorem 3. If no approximation warning is returned (w is
FALSE), Algorithm 1 enumerates all MISes and MIVCs.

2We assume readers are familiar with the Boolean satisfiability problem,
which is the problem of determining whether there exists an assignment that
satisfies a given propositional formula. For more information, refer to [28].

3MaxSAT is defined as the problem of satisfying as many (weighted)
clauses as possible in a SAT instance. For N variables, similar to the MaxSAT
problem, each clauses is weighted at N +1 and extra unit-weight clauses are
added forcing each variable to 1.

4Note that CHECKADQ can be any method that verifies a safety property,
such as K-induction, and the GETIVC function can be any function that re-
turns an (approximately) minimal IVC, such as the IVC_UC or IVC_UCBF
algorithms from [7]. The only requirement is that it follows the definition of
an inductive validity core, that is: S′ ← GETIVC(P, S) implies that S′ ⊆ S
and (I, S′) ` P .

Algorithm 1: Algorithm All_IVCs for computing AIV C

input : (I, T) ` P
output: AIV C(P), Approximation warning flag w

1 A← ∅; w ← FALSE
2 Create activation literals {a1, . . . , an}
3 map← >
4 while CHECKSAT(map) do
5 model← build a maximal model of map
6 M ← extract the set of variables assigned true in

model
7 S ←

⋃
ai∈M ACTLIT−1(ai)

8 res← CHECKADQ(P, S)
9 if res = ADEQUATE then

10 S′ ← GETIVC(P, S)
11 A← A ∪ {S′}
12 map← map ∧ (

∨
Ti∈S′ ¬ACTLIT(Ti))

13 else
14 map← map ∧ (

∨
Ti∈(T\S) ACTLIT(Ti))

15 if res = UNKNOWN then
16 w ← TRUE

17 return A,w

Proof: By Theorem 2 the algorithm terminates. This
means map is eventually unsatisfiable. If w = FALSE then
all model checking problems are solved definitively (no UN-
KNOWN results), so by Lemma 3, all MISes and MIVCs are
either explored or excluded. However, by maximality and
Lemma 1, an MIS can never be excluded. Similarily, by
minimality and Corollary 1, a MIVC can never be excluded.
Thus all MISes and MIVCs are explored and are elements of
A by the end of the algorithm.

Note that none of the proofs above require that GETIVC
returns a minimal IVC. From [7], it is computationally cheap
to find an approximately minimal IVC using the algorithm
IVC_UC; however, using the better, usually minimal IVC using
the IVC_UCBF algorithm is computationally expensive. For
efficiency reasons, it is much better to use the approximate
IVC_UC algorithm to compute the set of all MIVCs. The
IVC_UCBF algorithm attempts to repeatedly prove the property
by brute-force removing elements (BF = “brute force”), so
does much of the work of Algorithm 1 in a way that is not
effective towards finding other IVCs. The overhead of the
IVC_UC algorithm is on average 10% over the baseline proof,
as opposed to 882% for the IVC_UCBF algorithm. In addition,
the average increase in size of IVCs returned by IVC_UC is
approximately 10% of the IVC_UCBF algorithm.

On the other hand, if GETIVC does not return minimal
adequate sets, at the end of the process, set A may contain
both MIVCs and some supersets of MIVCs. To make sure that
the algorithm only returns the minimal adequate sets (MIVCs),
all we need is to remove any supersets of other sets in A. We

can do this “on the fly” by changing line 11 to the following:
A← A∪{S′} \ {S | S ∈ A∧S′ ⊂ S}. Obviously, the closer
to minimal the results of GETIVC are, the fewer iterations
are required for Algorithm 1 to terminate. Each non-minimal
adequate set returned by GETIVC will induce an additional
iteration for Algorithm 1.

V. ILLUSTRATION

To illustrate the All_IVCs algorithm we use the example
presented in Section II with P = (on_p) . For better descrip-
tion, we view T as an ordered set of its top-level conjuncts; i.e.
T = { a1_below, a2_below, a1_above, a2_above,

one_below, both_above, doi_on, on_p }. The algo-
rithm starts with creating activation literals for each Ti ∈
T . Let the ordered set of Boolean variables {a1, . . . , a8}
be the corresponding literals to the elements of T (e.g.
ACTLIT(a1_below) = a1 and ACTLIT(on_p) = a8). Then,
line 3 initializes map with >.

In the first iteration of the while loop, since map is empty,
it is satisfiable, and a model for it can be any subset of literals.
So obviously, the first maximal model of map contains all the
literals, which means, in line 6, M = {a1, . . . , a8}, and in
line 7, S = T . Since S is adequate for P , the GETIVC module
is called in line 10. Suppose the returned MIVC by this
function is S′ = {a1_below, one_below, doi_on, on_p};
this set is added to A in line 11, and thus it comes to
adding a new clause to map (line 12), which makes map =
(¬a1 ∨¬a5 ∨¬a7 ∨¬a8). As discussed, this constraint marks
all the supersets of S′ as blocked and prunes them off the
search space.

For the second iteration, map is still satisfiable, so the
algorithm gets to find a maximal model of it in line 5. Suppose
this time, the maximal model makes M = {a1, . . . , a7},
which leads to S = T \ {on_p} in line 7. Since S is
inadequate for P , the algorithm jumps to line 12 updating
map as map ← map ∧ a8. Adding this new clause removes
all the subsets of T \{on_p} from the search space. Similarly,
in the third iteration, if the maximal model of map yields
M = {a1, . . . , a4, a6, . . . , a8}, then S = T \ {one_below}
will be another inadequate set that makes map become
map← map ∧ a5 in line 14.

Suppose, in the fourth iteration, the maximal model leads
to M = {a2, . . . , a8} and S = T \ {a1_below} in lines 6
and 7. Since this S is adequate for P , GETIVC computes
a new MIVC in line 10. Let the new MIVC be S′ =
{a2_below, one_below, doi_on, on_p}; after adding this
set to A, it is time to constrain map by a new clause in line 11,
which results in map← map ∧ (¬a2 ∨ ¬a5 ∨ ¬a7 ∨ ¬a8).

After these iterations, map is still satisfiable, and the
maximal model is S = T \ {a1_below, a2_below} in
line 7. In this case, S is inadequate, so we update map as
map ← map ∧ (a1 ∨ a2) (line 14). After adding this new
clause to map, all the subsets of T \ {a1_below, a2_below}
will be blocked. The algorithm continues similar to the forth
iteration leading to S (in line 7) and map (in line 14) to be
as S = T \ {doi_on} and map← map ∧ a7.

Finally, after the sixth iteration, map becomes UNSAT and
the algorithm terminates. Note that MISes and IV Cs may
be discovered in different orders from what explained here.
The order by which sets are explored is quite dependent on
the maximal model returned in line 5 as well as the MIVCs
returned in line 10 because there could be several distinct
maximal models (MISes) and MIVCs. For this example with
a |T | = 8 and |P(T)| = 28, a brute force approach of power
set exploration needs to look into 256 cases. However, the
All_IVCs algorithm only explored 6 cases to cover the entire
power set.

VI. IMPLEMENTATION

We have implemented the All_IVCs algorithm in an indus-
trial model checker called JKind [25], which verifies safety
properties of infinite-state synchronous systems. It accepts
Lustre programs [31] as input. The translation of Lustre into a
symbolic transition system in JKind is straightforward and is
similar to what is described in [32]. Verification is supported
by multiple “proof engines” that execute in parallel, including
K-induction, property directed reachability (PDR), and lemma
generation engines that attempt to prove multiple properties in
parallel. To implement the engines, JKind emits SMT prob-
lems using the theories of linear integer and real arithmetic.
JKind supports the Z3, Yices, MathSAT, SMTInterpol,
and CVC4 SMT solvers as back-ends. When a property is
proved and IVC generation is enabled, an additional parallel
engine executes the IVC_UC algorithm [7] to generate an
(approximately) minimal IVC. To implement our method, we
have extended JKind with a new engine that implements
Algorithm 1 on top of Z3. We use the JKind IVC generation
engine to implement the GETIVC procedure in Algorithm 1.

As mentioned in Section IV the CHECKADQ procedure may
not terminate. In our implementation, we measure the time
required to prove the property and the initial given the full
model (proof-time), and the time required to calculate the first
(approximate) IVC using IVC_UC (IVC_UC-time). We then set
a timeout for each iteration of the All_IVCs algorithm to (30
sec + 5 × (proof-time + IVC_UC-time)). In almost all cases
in our experiment and our use of the tools, this timeout is
sufficient to ensure exact results. In the experiment, only 15
of 475 models (3%) had potentially approximate results. It is
important to note that by increasing the timeout, it is possible
that in some cases smaller IVCs can be generated, but the
general problem will remain due to the undecidability of the
model checking problem.

VII. EXPERIMENT

We are interested in examining the efficacy and efficiency of
generating all minimal IVCs, as compared to algorithms for
computing a single approximately minimal IVC, and a minimal
IVC as implemented in [7] using the IVC_UC and IVC_UCBF

algorithms, respectively. We would also like to know how
performance is affected by the size of models and number of
minimal IVCs. Finally, we are also interested in determining
whether the All_IVCs algorithm generates smaller cores than

Fig. 3. Runtime of All_IVCs, IVC_UCBF, and IVC_UC algorithms

are generated by the IVC_UCBF algorithm that generates a
single MIVC. Therefore, we investigate the following research
questions:
• RQ1: How expensive is it to compute the All_IVCs al-

gorithm for determining all minimal IVCs when com-
pared to the IVC_UC and IVC_UCBF algorithms, which
find a single approximately minimal and guaranteed min-
imal IVC?

• RQ2: How is the verification time of the All_IVCs algo-
rithm affected by the baseline proof time and the number
of IVCs that can be found for a property?

• RQ3: How large are the IVCs produced by the All_IVCs
algorithm compared to those of IVC_UC and IVC_UCBF?

A. Experimental Setup

The benchmark contains 475 Lustre models, 395 from [32]
and 80 industrial models derived from [33] and other sources.
Most of the benchmark models from [32] are small (10kB
or less, with 6-40 equations) and include a range of hardware
benchmarks and software problems involving counters that are
difficult to solve inductively. The 80 industrial models each
contain over 600 equations and are each ≥80kB in size.

We selected only benchmark problems consisting of a
Lustre model with properties that JKind could prove with an
hour timeout. For each test model, we computed All_IVCs,
IVC_UC, and IVC_UCBF algorithms in a configuration with the
Z3 solver and the “fastest” mode of JKind (which involves
running the k-induction and PDR engines in parallel and
terminating when a solution is found). The experiments were
run on an Intel(R) i5-4690, 3.50GHz, 16 GB memory machine
running Linux, and are available at [34].

B. Experimental Results

In this section, we examine our experimental results to
address the research questions defined in the experiment.

1) RQ1: To address RQ1, we measured the performance
overhead of the various IVC algorithms against the base-
line time necessary to find a proof using inductive model
checking. Fig. 3 provides an overview of the overhead of
the All_IVCs algorithm in comparison with the IVC_UC and

TABLE I
RUNTIME AND OVERHEAD OF DIFFERENT COMPUTATIONS

runtime (sec) min max mean stdev

proof-time 0.016 25.489 1.250 2.381
All_IVCs 0.009 792.01 16.457 64.491
IVC_UCBF 0.163 996.734 11.987 68.525
IVC_UC 0.003 1.126 0.078 0.158

IVC_UCBF algorithms. In the figure, each curve is ranked along
the x-axis according to the time required for the algorithm
to terminate for each analysis problem. Table I provides a
summary of the computation time and the overhead of different
algorithms. The IVC_UC algorithm imposes a 1.25x overhead
to the baseline proof time, whereas both the IVC_UCBF

and All_IVCs algorithms add a substantial time penalty:
IVC_UCBF and All_IVCs add a (mean) 18.8x and 31.3x
overhead, respectively, to the proof time. For small models,
much of this penalty is due to starting many instances of
the SMT solver; if we examine models that require ≥ 1s
of analysis time, the mean overhead of All_IVCs over the
baseline analysis drops from 31.3x to 9.7x.

2) RQ2: For this question, we examine how the proof time
of the original model and the number of MIVCs associated
with the property affects the analysis time of the All_IVCs

algorithm. Fig. 4 provides an overview of this data. The data
in Fig. 4 is sorted twice along the x-axis: the major axis is the
number of MIVCs that exist for the model, and the minor axis
is the analysis time of the baseline model. In this graph, the
graph shows how both factors effect the performance of the
All_IVCs algorithm. Note that there are two scales for the y-
axis: the scale on the left is a logarithmic scale of performance
in terms of the run time; the scale on the right is a linear scale
based on the number of minimal IVCs discovered.

Fig. 4 shows two distinct trends. First, for models whose
baseline proofs are inexpensive and that only have a single
MIVC, the All_IVCs is roughly equivalent in performance
to the IVC_UCBF. However, as proofs become more expensive
for a single MIVC, the All_IVCs begins to underperform the
IVC_UCBF, this is the case for the properties with one MIVC.
In the cases where several MIVCs are found, the performance
of the All_IVCs is driven to a large degree by the number
of MIVCs that exist: the more MIVCs associated with a
property, the higher the expense of All_IVCs as compared
to the IVC_UCBF algorithm.

3) RQ3: For this research question, we analyzed the min-
imality of the discovered IVC by each algorithm (Figure 5).
Since 394 of the models had only one MIVC, for these models,
the size of the minimum model produced by the All_IVCs

algorithm should be the same as the IVC_UCBF algorithm. For
the remainder, even when multiple MIVCs were produced, in
only 12 cases did the All_IVCs produce smaller minimal
IVCs. For these 12 models, the smallest MIVC was 16% the
size of the MIVC produced by IVC_UCBF, and in the most
dramatic case, the number of elements shrank from 30 to 5.

Fig. 4. Runtime of different computations along with the number of MIVCs

Fig. 5. Size of the IVC sets produced by different algorithms

VIII. CONCLUSIONS & FUTURE WORK

The idea of extracting a minimal IVC for a given property
and its applications was recently introduced in [7]. However,
a single IVC often does not provide a complete picture of the
traceability from a property to a model. In this paper, we have
addressed the problem of extracting all minimal IVCs. We
have shown the correctness and completeness of our method
and algorithm. In addition, we have a substantial evaluation
that shows that the practicality and efficiency of our technique.

Our method is inspired by a recent work in the domain of
satisfiability analysis [22]. One interesting future direction is to
devise similar MIVC enumeration algorithms based on other
studies on MUSes extraction such as [21]. We are also looking
into improving our implementation by using more efficient
methods for the CHECKADQ and GETIVC modules used by
our algorithm. Another interesting direction is to parallelize
the enumeration process: it is certainly possible to ask for
multiple distinct maximal models to be solved in parallel.

We also plan to investigate additional applications of the
idea. When performing compositional verification, the All-
IVCs technique may be able to determine minimal component
sets within an architecture that can satisfy a given set of
requirements, which may be helpful for design-space explo-
ration and synthesis. Finally, we are interested in adapting
the notion of (all) validity cores for bounded model checking
for quantifying how much of models have been explored by
bounded analysis.

ACKNOWLEDGMENTS This work was carried out
within the HACMS and SOSITE Phase II grants (DARPA
FA8750-12-9-0179 and FA8650-16-C-7656).

REFERENCES

[1] N. Een et al., “Efficient implementation of property directed reachabil-
ity,” in FMCAD’11.

[2] M. Sheeran et al., “Checking safety properties using induction and a
SAT-solver,” in FMCAD’02, 2000.

[3] O. Kupferman and M. Y. Vardi, “Vacuity detection in temporal model
checking,” STTT, 2003.

[4] M. Whalen et al., “Integration of formal analysis into a model-based
software development process,” in FMICS, 2007.

[5] L. Pike, “A note on inconsistent axioms in rushby’s ”systematic formal
verification for fault-tolerant time-triggered algorithms”,” TSE, 2006.

[6] “Cadence JasperGold Formal Verification Platform,” https://www.
cadence.com/.

[7] E. Ghassabani et al., “Efficient generation of inductive validity cores for
safety properties,” in FSE’16, 2016.

[8] L. Zhang and S. Malik, “Extracting small unsatisfiable cores from
unsatisfiable boolean formula,” in SAT’03.

[9] A. Murugesan et al., “Complete traceability for requirements in satis-
faction arguments,” in RE’16 (RE@Next! Track), 2016.

[10] E. Ghassabani et al., “Proof-based coverage metrics for formal verifica-
tion,” in ASE’17, 2017.

[11] A. Mebsout and C. Tinelli, “Proof certificates for smt-based model
checkers for infinite-state systems,” in FMCAD’16, 2016.

[12] A. Ivrii et al., “Small inductive safe invariants,” in FMCAD’14, 2014.
[13] “Center of Excellence for Software Traceability,” http://www.coest.org,

2016.
[14] J. H. Hayes et al., “Improving requirements tracing via information

retrieval,” in RE’03, 2003.
[15] J. Cleland-Huang et al., “Best practices for automated traceability,”

Computer, 2007.
[16] M. H. Liffiton et al., “From MaxSAT to MinUNSAT: Insights and

applications,” Ann Arbor, 2005.
[17] F. Bacchus and G. Katsirelos, “Using minimal correction sets to more

efficiently compute minimal unsatisfiable sets,” in CAV’15, 2015.
[18] A. Belov and J. Marques-Silva, “Muser2: An efficient mus extractor,”

JSAT journal, 2012.
[19] A. Belov et al., “Core minimization in sat-based abstraction,” in

DATE’13, 2013.
[20] A. Belov et al., “Towards efficient MUS extraction,” AI Communica-

tions, 2012.
[21] A. Nadel et al., “Accelerated deletion-based extraction of minimal

unsatisfiable cores,” JSAT journal, 2014.
[22] M. Liffiton et al., “Fast, flexible MUS enumeration,” Constraints, 2016.
[23] Z. Hanna et al., “Formal verification coverage metrics for circuit design

properties,” 2015. [Online]. Available: https://www.google.com/patents/
US20150135150

[24] M. Heimdahl et al., “Deviation analysis via model checking,” in ASE’02,
2002.

[25] “JKind,” http://loonwerks.com/tools/jkind.html.
[26] T. Kahsai et al., “Incremental verification with mode variable invariants

in state machines,” in NFM’12, 2012.
[27] N. Amla et al., “An analysis of sat-based model checking techniques in

an industrial environment,” in CHARME’05, 2005.
[28] S. A. Cook, “The complexity of theorem-proving procedures,” in STOC,

1971.
[29] J. Davies and F. Bacchus, “Solving MAXSAT by solving a sequence of

simpler sat instances,” in CP’11, 2011.
[30] A. Morgado et al., “Iterative and core-guided MaxSAT solving: A survey

and assessment,” Constraints, 2013.
[31] N. Halbwachs et al., “The synchronous dataflow programming language

Lustre,” Proceedings of the IEEE, 1991.
[32] G. Hagen and C. Tinelli, “Scaling up the formal verification of lustre

programs with smt-based techniques,” in FMCAD’08, 2008.
[33] A. Murugesan et al., “Compositional verification of a medical device

system,” in HILT’13, 2013.
[34] “All IVCs repository,” https://github.com/elaghs/Working/tree/master/

all ivcs/experiments.

