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Abstract—We present a new string SMT solver, Z3str3, that
is faster than its competitors Z3str2, Norn, CVC4, S3, and
S3P over a majority of three industrial-strength benchmarks,
namely, Kaluza, PISA, and IBM AppScan. Z3str3 supports string
equations, linear arithmetic over length function, and regular
language membership predicate. The key algorithmic innovation
behind the efficiency of Z3str3 is a technique we call theory-aware
branching, wherein we modify Z3’s branching heuristic to take
into account the structure of theory literals to compute branching
activities. In the traditional DPLL(T) architecture, the structure
of theory literals is hidden from the DPLL(T) SAT solver because
of the Boolean abstraction constructed over the input theory
formula. By contrast, the theory-aware technique presented in
this paper exposes the structure of theory literals to the DPLL(T)
SAT solver’s branching heuristic, thus enabling it to make
much smarter decisions during its search than otherwise. As a
consequence, Z3str3 has better performance than its competitors.

I. INTRODUCTION

String SMT solvers are increasingly becoming important
for security applications and in the context of analysis of
string-intensive programs [6], [9], [11], [15], [16], [18], [22].
Many string SMT solvers, such as Z3str2 [23], [24] (and
its predecessor Z3str [25]), CVC4 [12], Norn [2], S3 [20]
(and its successor S3P [21]), and Stranger (and its successor
ABC [4]) have been developed to address these challenges
and applications. We have developed the Z3str3 string solver
as a native first-class theory solver directly integrated into the
73 SMT solver [7]. Z3str3 is the primary string solver in the
official Z3 codebase. Our tool is competitive with respect to
its predecessor Z3str2 and the CVC4 solver, and much faster
than Norn, S3, and S3P. Having direct access to the core solver
of Z3 has allowed us to develop and implement novel theory-
aware DPLL(T) techniques, described below. We follow the
latest string SMT language standard supported by all major
string solvers, and published on the CVC4 website [12].

A. Contributions

1) Theory-aware branching: We leverage the integration
between the Z3 SMT solver’s DPLL(T) SAT layer
(henceforth referred to as the “core solver””) and the string
solver to guide the search and prioritize certain branches
of the search tree over others. In particular, we modify
the activity computations of the branching heuristic of
the Z3 core solver, making it aware of the structure
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of the theory literals underlying the Boolean abstraction
of the input formula such that “simpler” theory literals
are prioritized over more complex ones. The question of
whether branching can be made theory-aware was first
posed in a paper by Roberto Sebastiani [17]. However,
to the best of our knowledge we are the first to propose
a theory-aware branching technique which prioritizes
certain branches over others in a DPLL(T) setting.

2) Theory-aware case-split: We add an optimization to
Z3’s core solver that enables efficient representation of
mutually exclusive Boolean variables in the Boolean
abstraction of the input theory formula.

3) Experimental evaluation: To validate the effectiveness
of our techniques, we present a comprehensive and thor-
ough evaluation of Z3str3, and compare against Z3str2,
CV(C4, S3, and Norn on several large industrial-strength
benchmarks. We could not directly compare against S3P
since its source is not available, but summarize the results
from their CAV 2016 paper and compare against Z3str3.
We also could not compare against Stranger/ABC because
they do not produce models, do not support dis-equations
over arbitrary string terms, and have correctness issues as
noted in their paper [4].

II. THEORY-AWARE BRANCHING

Several of the key enhancements we make in Z3str3 over
Z3str2 involve changes to the Z3 core solver, which handles
the Boolean structure of the formula and performs propagation
and branching. The first of these enhancements is referred to
as theory-aware branching. We modify the Z3 core solver
to allow theory solvers to give certain literals increased or
decreased priority during the search. Consider the case where
the solver learns the equality X - Y = A . B for non-
constant terms X, Y, A, B. Z3str3, in line with Z3str2, handles
this equality by considering a disjunction of three possible
arrangements [23], [24]:

Arrangement 1: X = Aand Y =B

Arrangement 2: X = A-s; and s; - Y = B for a fresh non-
empty string variable s;

Arrangement 3: X -so = A and Y = s9 - B for a fresh non-
empty string variable s

Of the three possible arrangements, the first is the simplest
to check because it does not introduce any new variables and



only asserts equalities between existing terms. Therefore, we
would like Z3’s core solver to prioritize checking this arrange-
ment before the others. The advantage gained by theory-aware
branching is the ability to give the core solver information
regarding the relative importance of each branch, allowing the
theory solver to exert additional control over the search. We
always prioritize simpler branches over more complex ones.

We implement theory-aware branching as a modification of
the branching heuristic in Z3. The default branching heuristic
in Z3 is activity-based, similar to VSIDS [13]. The core
solver will branch on the literal with the highest activity that
has not yet been assigned. Activity is increased additively
when a literal appears in a conflict clause, and decayed
multiplicatively at regular intervals. Although we are not aware
of any other work on theory-aware branching, there has been
some work in taking domain-specific knowledge into account
in the context of branching heuristics and custom decision
strategies [10], [14], [8].

The theory-aware branching technique computes the activity
of a literal A as the sum of two terms A, and A;, wherein the
term Ay is the “base activity”, which is the standard activity of
the literal as computed and handled by Z3’s core solver. The
term A; is the “theory-aware activity”. The value of this term is
provided for individual literals by theory solvers, and is taken
to be O if no theory-aware branching information has been
provided. This modification causes the core solver to branch
on the literal with the highest activity A, taking into account
both the standard activity value and the theory-aware activity.
Therefore, assigning a (small) positive theory-aware activity to
a literal will cause it to have higher activity than usual, making
it more likely for the core solver to choose it to branch on.
Conversely, assigning a (small) negative theory-aware activity
will deter the core solver from choosing that literal. Theory-
aware branching in Z3str3 modifies the activities of theory
literals as follows:

1) Literals corresponding to arrangements that do not create
new variables (as in Arrangement 1 above) are given a
large (0.5) A;. Other arrangements in the same case are
given a small (0.1) A,.

2) Arrangements that allow a variable to become equal to a
constant string are given a small (0.2) A;.

3) When searching for length of strings, literals correspond-
ing to longer length values have small negative (-0.1) A;.

The values of A; were chosen to be similar in scale to
the initial activity values assigned to literals by the default
branching heuristic. Although this technique is currently used
by the string solver component, theory-aware branching is also
useful in many other contexts where new search paths may
have unequal importance, such as non-linear arithmetic.

III. THEORY-AWARE CASE-SPLIT

During the search, a theory solver can create terms which
encode a disjunction of Boolean literals that are pairwise
mutually exclusive, i.e., exactly one of the literals must be
assigned true and the others must be assigned false. We refer
to this as a theory-aware case-split. As an example, consider

the case where the string solver learns that a concatenation
of two string variables X and Y is equal to a string constant
¢ = c1Cy...cy of length n, where each c¢; is a character in
c. There are n + 1 possible ways in which we can split the
constant ¢ over X and Y resulting in different arrangements:

e X =¢Y =cica...cp
e X =c1,Y =coc3...0p
o ...

e X =cica...cp,Y =€

Note that each of these arrangements represents a case that
can be explored by the solver, and also that all of these
cases are mutually exclusive (as clearly X cannot be equal
to both € and ¢; simultaneously, etc.). Thus, this represents
a theory-aware case-split. However, the Boolean abstraction
constructed over theory literals hides the fact that these are
mutually exclusive cases. A naive solution is to encode O(n?)
extra mutual exclusion Boolean clauses over these variables.
Unfortunately, this would result in very poor performance
because of the quadratic blowup in formula size. Another
option is to let the congruence closure solver in the Z3 core
discover the mutual exclusivity of these Boolean variables.
This can result in unnecessary backtracking, unnecessary calls
to congruence closure, and, in the worst case, reduces to the
same set of mutual exclusion clauses being learned in the form
of conflict clauses.

The means of handling such cardinality constraints effi-
ciently has been well-studied; previous work has investigated
the possibility of alternate encodings, e.g. totalizers [5] and
lazy cardinality [3]. Our implementation, by contrast, shows
a way to handle these constraints in the inner loop of the
SAT solver in a theory-aware manner. This means that theory
solvers do not have to perform rewriting or assert extra clauses
to enforce mutual exclusivity of choices. Instead, they can
provide this information directly to the core solver, which can
use these facts during the search. This saves on the propagation
effort of the DPLL(T) framework. Our implementation of this
technique is as follows:

1) The theory solver provides the core solver with a set S
of mutually exclusive literals that correspond to a theory
case-split. This set is maintained by the core solver in a
list of all such sets.

2) During branching, the core solver checks if the current
branching literal belongs to some such set S. If yes,
the current branching literal is assigned true and all
other theory case-split literals in S are assigned false.
Otherwise, the default branching behaviour is used.

3) During propagation, the core solver may assign a truth
value to a literal [ in some set S of theory case-split
literals. If so, the theory case-split check is invoked, i.e.,
the core solver checks whether two literals [{,ls in the
same set .S have been assigned the value true. If this is the
case, the core solver immediately generates the conflict
clause (—l; V —la).
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outperforms all other solvers. On UNSAT cases, Z3str3 is
the fastest solver over all cases it can complete. As binaries
for S3P are not publicly available, we report the aggregate
results presented for this benchmark in the most recent S3P
paper [21]. From Table I and Figures 1 and 2 it is clear that
Z3str3 is highly competitive with respect to CVC4, and is
much faster than other tools. Z3str3 solves more SAT instances
than any other tool we benchmarked except S3P, and has the
lowest total solving time on non-timeout cases. Notably, over
all instances where both solvers finish, Z3str3 solves more
cases in total than Z3str2 and completes 30% faster. The
unknowns in Z3str3 are because it lacks the feature to handle
string equations with overlapping variables, similar to Z3str2.
However, Z3str3 has far fewer unknowns than Z3str2.

o [ [Z3str3 [ Z3su2 [ CVC4 | Nom [ S3 [ S3P |

Humber of SAT cases sat 35147 | 34868 | 35128 | 33527 | 35016 |35270

i ) unsat 11799 | 11799 | 11957 | 11568 12049 |12014
Fig. 1. Cactus plot of string solvers over the Kaluza benchmark (SAT cases). inknown 3 3K 3 1913 0 0
Kaluza (UNSAT cases) timeout 115 0 0 276 219 0
10 error 0 0 193 0 0 0

L3str3 ——— Time (s) 4939.5213997.63|4851.66(109280.76(10544.06| 6972

an\?gi Time w/o timeouts (s)|2971.02{3997.63|4851.66| 97784.00 | 6164.06 | 6972
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Fig. 2. Cactus plot of string solvers over the Kaluza benchmark (UNSAT cases).

IV. EXPERIMENTAL RESULTS

In this section, we describe the experimental evaluation of
the Z3str3 solver to validate the effectiveness of the techniques
presented in this paper. We compare Z3str3 against four
other state-of-the-art string solvers, namely, Z3str2 [24], [23],
CVC4 [12], S3 [20], and Norn [2], across industrial bench-
marks obtained from Kaluza [16], PISA [19], and AppScan
Source [1]. Each of these benchmark suites draw from real-
world applications with diverse characteristics. All experi-
ments were performed on a workstation running Ubuntu 15.10
with an Intel i7-3770k CPU and 16GB of memory. Also, we
cross-verified the models generated by Z3str3 against Z3str2
and CVC4, and vice-versa.

Table I shows the summary of results for the Kaluza
benchmark. As can be seen from the cactus plots over SAT
and UNSAT cases from the Kaluza benchmark, in Figures 1
and 2, Z3str3 (red series) outperforms competing solvers. On
SAT cases, Z3str3 is competitive with CVC4 and significantly

KALUZA BENCHMARK RESULTS. TIMEOUT=20 S. TOTAL TIME INCLUDES
ALL SOLVED, TIMEOUT, UNKNOWN, AND ERROR INSTANCES.

Table II shows the results on the PISA benchmark, a set
of industrial program analysis instances from IBM. Norn was
not able to solve any of the cases as it crashed upon seeing
unrecognized string operators (e.g. indexof). From Table II
we make the following observations. The tools Z3str3, Z3str2,
and CVC4 are in agreement on all cases they are able to solve,
with CVC4 and Z3str2 timing out on one SAT case which
Z3str3 can solve in 0.43 seconds. The results for S3 are sig-
nificantly worse; it is unable to solve pisa-009. smt2 while
the other three solvers all answer SAT very quickly; and in ad-
dition S3 incorrectly answers UNSAT for pisa-008.smt2,
pisa-010.smt2, and pisa—-011.smt2, on which Z3str3
and (for two of these cases) Z3str2 and CVC4 all return SAT
and produce a valid model. The performance of Z3str3 on this
benchmark is highly competitive with other solvers, improving
on the result from Z3str2.

Table III shows the results on the AppScan benchmark, a
second set of industrial instances from IBM. Norn crashed on
these cases as well upon seeing unrecognized string operators.
From Table III we make the following observations. Z3str3,
Z3str2, and CVC4 all agree on all cases they are able to
solve. CVC4 performs slightly better than Z3str3 on 3 cases,
equally well on 1, and worse on 4, timing out on one case
that Z3str3 can solve in 0.73 seconds. In total, on non-timeout
cases, CVC4 takes twice as long as Z3str3 (7.89 seconds vs.
4.15 seconds). Z3str2 performs better than Z3str3 on 1 case
and worse on 7, taking almost ten times as long on all cases
(33.17 seconds vs. 4.15 seconds). S3 returns UNKNOWN on
two cases that are solved by the other three tools and produces
invalid models which fail cross-validation for four other cases.



input Z3§tr3 Z3st'r2 CV(;4 S3.
result|time (s)| result [time (s)| result [time (s)| result [time (s)
pisa-000.smt2| sat | 0.03 sat 0.25 sat 0.08 sat 0.07
pisa-001.smt2| sat | 0.05 sat 0.19 sat 0.00 sat 0.07
pisa-002.smt2| sat | 0.03 sat 0.10 sat 0.00 sat 0.05
pisa-003.smt2|unsat| 0.02 | unsat | 0.02 | unsat | 0.01 | unsat | 0.02
pisa-004.smt2|unsat| 0.02 | unsat | 0.05 | unsat | 0.39 | unsat | 0.05
pisa-005.smt2| sat | 0.02 sat 0.14 sat 0.02 sat 0.04
pisa-006.smt2|unsat| 0.03 | unsat | 0.05 | unsat | 0.32 | unsat | 0.05
pisa-007.smt2|unsat| 0.02 | unsat | 0.05 | unsat | 0.37 | unsat | 0.05
pisa-008.smt2| sat | 0.43 [timeout| 20.00 |timeout| 20.00 |unsat X| 4.73
pisa-009.smt2| sat | 0.60 sat 0.62 sat 0.00 [timeout| 20.00
pisa-010.smt2| sat | 0.02 sat 0.09 sat 0.00 |unsat X| 0.02
pisa-011.smt2| sat | 0.03 sat 0.06 sat 0.00 |unsat X| 0.02
TABLE I

PISA BENCHMARK RESULTS. TIMEOUT=20 S. X = INCORRECT RESPONSE.

input Z3s_tr3 Z3§tr2 CVC4 S3 _
result|time (s)|result|time (s)| result [time (s)| result |[time (s)
tOl.smt2| sat | 0.18 | sat | 1.31 sat 0.01 sat 0.23
t02.smt2| sat | 0.17 | sat | 0.38 sat 0.01 |unknown| 0.04
t03.smt2| sat | 0.27 | sat | 9.54 sat 3.82 sat X 0.14
t04.smt2| sat | 0.73 | sat | 4.45 |timeout| 20.00 | sat X 0.10
t0S.smt2| sat | 0.57 | sat | 16.84 sat 3.87 sat X 0.55
t06.smt2| sat | 0.02 | sat | 0.15 sat 0.01 sat 0.13
t07.smt2| sat | 2.18 | sat | 0.25 sat 0.00 |unknown| 0.02
t08.smt2| sat | 0.03 | sat | 0.25 sat 0.17 sat X 0.03
TABLE III

APPSCAN BENCHMARK RESULTS. TIMEOUT=20 S. X = INCORRECT

RESPONSE.

Heuristic | Neither | Theory-aware Theory-aware Both
branching case split

sat 35079 35147 35092 35147

unsat 11799 11799 11799 11799
unknown 221 230 223 223
timeout 185 108 170 115

[ Time (s) [ 625226 | 6055.04 [ 5027.35 [ 4939.52 ]
TABLE IV

PERFORMANCE COMPARISON WITH THEORY-AWARE BRANCHING AND
THEORY-AWARE CASE SPLIT ENABLED AND DISABLED IN ALL
COMBINATIONS. TIMES TAKEN OVER KALUZA BENCHMARK WITH 20 S
TIMEOUT. TOTAL TIME INCLUDES ALL SOLVED, TIMEOUT, AND UNKNOWN
INSTANCES.

Table IV presents the results of a comparison in which
each of the new heuristics in Z3str3, namely theory-aware
branching and theory case split, was enabled and disabled in
all combinations, in order to measure the change in behaviour
of the solver when run over the same benchmark (Kaluza).
The experiment clearly shows that both techniques improve the
performance of the solver both in isolation and in combination.
One intuition for the disparity in performance with respect to
each heuristic is that the theory case-split heuristic applies in
every instance, due to the frequency of generation of mutually-
exclusive options during the search, while the theory-aware
branching heuristic is only effective in cases with a large
amount of backtracking and search activity, and as such the
solver may not benefit from it if the solution is easy to find.

V. DISCUSSION ON EXPERIMENTAL RESULTS, AND
CONCLUSIONS

The experimental results discussed here make clear the
efficacy of theory-aware branching and case-split. The crucial
insight behind these techniques is that biasing the search
towards easier branches of the search tree (e.g., an arrangement
that doesn’t require splitting variables, as opposed to one
with overlapping variables) is often very effective since most
string constraints obtained from practical applications have the
“small model” property. The slogan of theory-aware branching
is “bias search towards easy cases first”. We also note that
Z3str3 and CVC4 do not give any incorrect results, and are
more robust than Norn and S3 which sometimes give wrong
answers or crash on the benchmarks we used.
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