
1

Verification of a lazy cache coherence protocol
against a weak memory model

Christopher J. Banks1, Marco Elver1∗, Ruth Hoffmann2, Susmit Sarkar2, Paul Jackson1, Vijay Nagarajan1
1University of Edinburgh, 2University of St Andrews

Abstract—In this paper, we verify a modern lazy cache
coherence protocol, TSO-CC, against the memory consistency
model it was designed for, TSO. We achieve this by first
showing a weak simulation relation between TSO-CC (with a
fixed number of processors) and a novel finite-state operational
model which exhibits the laziness of TSO-CC and satisfies TSO.
We then extend this by an existing parameterisation technique,
allowing verification for an unbounded number of processors.
The approach is executed entirely within a model checker, no
external tool is required and very little in-depth knowledge of
formal verification methods is required of the verifier.

I. INTRODUCTION

In parallel architectures with local caches, cached values
can become stale. Therefore, it is imperative that the system
guarantees shared memory correctness by ensuring that it
correctly implements a memory consistency model (MCM)—
the formal model that determines what value a read should
return [1]. An integral component of enforcing an MCM is
the cache coherence protocol (CCP), which is responsible
for making writes visible to other caches in an order that is
consistent with the MCM.

Traditionally, CCPs have been designed for the strictest
of MCMs—sequential consistency (SC). Previously, this has
been beneficial as a way to decouple the design of a CCP
from the MCM; indeed, a CCP designed for the strongest of
MCMs could bolt-on to other weaker MCMs. Unfortunately,
this simplicity comes at a cost.

The strict program order requirements of SC mandates
that writes are made globally visible before any subsequent
memory operation from the same processor. To guarantee this,
CCPs eagerly invalidate other non-local shared copies upon a
write. In effect, such eager CCPs enforce the Single-Writer–
Multiple-Reader (SWMR) invariant [2]—a cache line may
only have either a single writer or multiple readers. To this
end, eager CCPs must maintain a vector of processors sharing
a cache line, but this vector scales linearly with the number
of processors [3], [4]. Thus these protocols do not scale well
to large-scale many-core processors.

Luckily, modern architectures tend to have more relaxed
MCMs like Total Store Order (TSO)—used in prevalent archi-
tectures such as x86 and SPARC. Consequently, it is possible
for CCP designers to take advantage of these relaxations.
Indeed, there has been significant recent research on lazy
coherence protocols [5], [3], [6], [4], that exploit the fact

*Now at Google.
†This work is supported by EPSRC grant EP/M027317/1

that relaxed models only require memory to be consistent at
synchronisation boundaries. In these protocols, shared lines are
self-invalidated on synchronisation boundaries and therefore
no longer require a (poorly scaling) sharing vector.

This poses a problem for the verification of such protocols.
Traditionally, formal verification approaches for CCPs [7],
[8] have focused on model checking protocol-specific safety
properties such as the SWMR invariant [2]. However, these
new lazy CCPs that are designed to take advantage of weak
MCMs violate SWMR by design and hence cannot be verified
in the usual way. They need to be verified in a stronger manner:
for adherence to the MCM. This is especially appropriate for
the protocol we study, TSO-CC [6], because it was designed
specifically with the TSO memory model in mind.

Challenges: If these new scalable lazy CCPs are to
see the light of day, we believe they need to be formally
verified against the MCM. A testing approach does not cover
all corner cases and does not give the confidence that for-
mal verification brings. Equally, the subtlety of behaviours
exhibited by both lazy CCPs and weak MCMs warrants a
rigorous approach. Only formal verification will suffice to
allay skepticism surrounding the behaviour of lazy CCPs.
Furthermore, the verification technique should be generally
applicable, should not assume the verifier to have sophisticated
knowledge beyond the protocol, and it should scale to many-
core processors.

Our result: In this paper, for the first time, we formally
and exhaustively verify a modern lazy CCP against the MCM
which it is supposed to implement. Our protocol of interest is
TSO-CC (Section II), a scalable lazy CCP which was designed
to target TSO. We establish our result for fixed cache sizes,
but for any number of processors. Our verification focuses on
safety; we do not tackle liveness. This enables our verification
approach to use a slightly abstract version of CCP where, for
example, access counters are not modelled explicitly.

Our approach to verification proceeds as follows. First, we
propose a novel finite-state operational model TSO-LB, based
on load buffers, that abstracts our lazy CCP TSO-CC. Second,
we use a model checker to establish that TSO-CC is a refine-
ment of the TSO-LB operational model. Initially we show
refinement for a fixed number of processors; subsequently we
deploy the parameterised verification technique of Chou et
al. [9] to extend our refinement result to an arbitrary number
of processors. Finally, we show that the TSO-LB operational
model is stricter than an axiomatic specification of TSO.

Contributions: Our approach is inspired by Chatterjee et
al. [10], who showed how CCPs can be verified against their

2

MCMs using a model checker. Beyond this work, we make a
number of specific advances.

First, we support, for the first time, a lazy CCP through
the use of a novel abstract operational model. A lazy CCP
like TSO-CC pulls new values via self-invalidates upon a
read, in contrast to conventionally eager CCPs which push
invalidates upon a write. The nature and timing of invalidations
in eager and lazy CCPs are different. Current operational
models abstract the push-based invalidates, which makes it
difficult to show that lazy CCPs refine them. We therefore
needed to introduce this novel operational model we call TSO-
LB which abstracts pull-based self-invalidates.

Second, we provide a proof that our TSO-LB model satisfies
an axiomatic characterisation of TSO, however in Chatterjee
et al. the task of showing the abstract operational models are
consistent with axiomatic descriptions of the MCMs is not
completed (and, as far as we can tell, was never subsequently
completed). In our case, the proof is particularly important
given how TSO-LB differs from conventional operational
models for TSO.

Third, we employ the parameterisation technique of Chou
et al. [9] to verify for an arbitrary number of processors
(whereas Chatterjee et al. only verified for a fixed number
of processors). In doing so, we demonstrate that the technique
is not only useful when model checking CCP properties, but
also is useful when using model checking to verify refinement
and show a CCP satisfies the relevant MCM.

Other related work: Another alternative approach by
Manerkar et al. [11] uses CCICheck, which explores ordering
relations between CCP and MCM; however, protocols must
be described in an axiomatic style—orthogonal to typical
operational descriptions of protocols—and verification is with
respect to specific litmus tests—which may not capture every
MCM behaviour and hence not exhaustive. It is notable that
these approaches only verify for a fixed number of processors;
an approach to solving this problem is found in compositional
model checking approaches pioneered by McMillan [12]. This
method was further refined by Chou et al. [13], [9] and
made practical; however, they, once again, only deal with
protocol-specific properties. Likewise, Pong and Dubois [14],
[15] verify compositionally, using Symbolic State Models, but
again only against protocol-specific properties.

Abdulla et al. [16] recently propose the Dual-TSO opera-
tional model for TSO for program verification, in which they
replace the store buffer in the traditional operational model
with a load buffer. However, their notion of a load buffer
has unbounded queues with potentially multiple values for an
address, and thus does not help us with the infinite state-space
problem. Our model also works very differently (but similar
to CCP’s like TSO-CC) by propagating multiple addresses to
a load buffer atomically. So our model is not obviously a
refinement of some finite restriction of the Dual-TSO model.
It is also worth noting that we first defined our TSO-LB
model [17] concurrently with Abdulla et al.

II. TSO-CC
TSO-CC [6] is a lazy CCP, designed to address the scala-

bility issues surrounding CCPs for large numbers of cores.

Lazy CCPs, like TSO-CC, take account of the fact that
the relaxed memory models employed in modern multi-core
processors only require memory to be consistent at synchroni-
sation boundaries. Consequently, instead of eagerly enforcing
coherence at every write, coherence is enforced lazily only
at synchronisation boundaries. Thus, upon a write, data is
merely written to a processor-local write-buffer, the contents of
which are flushed to the shared cache upon a release. Upon an
acquire, shared lines in the local caches are self-invalidated—
thereby ensuring that reads to shared lines fetch the up-to-date
data from the shared cache. In effect, the CCP may be much
simpler and does not require a sharing vector.

However, the design of TSO-CC is specifically directed
by the TSO memory model which has no explicit release
or acquire instructions. It follows that, as reads have acquire
semantics and writes have release semantics, a TSO com-
pliant CCP would only need to consider each read/write an
acquire/release; this, of course is not efficient because all reads
and writes would need to be propagated, effectively negating
the provision of local caches.

The approach in TSO-CC is that for each cache line in the
shared cache, it keeps track of whether the line is exclusive,
shared, or read-only. Shared lines do not require tracking
of sharers (making TSO-CC more scalable than standard
directory-based protocols). Additionally, for exclusive cache
lines, it only maintains a pointer to the owner.

Since it does not track sharers, writes do not eagerly
invalidate shared copies in other processors. On the contrary,
writes are merely propagated to the shared cache in program
order (thus ensuring write-write order). To save bandwidth,
instead of writing the full data block to the shared cache, it
merely propagates the coherence states. Intuitively, the most
recent value of any data is maintained in the shared cache.

Reads to shared cache lines are allowed to read from the
local cache, up to a predefined number of accesses (potentially
causing a stale value to be read), but are forced to re-request
the cache line from the shared cache after exceeding an access
threshold (the implementation maintains an access counter per
line). This ensures that any write (used as a release) will
eventually be made visible to the matching acquire, ensuring
eventual write propagation. When a read misses in the local
cache, it is forced to obtain the most recent value from the
shared cache. In order to ensure the read-read order, future
reads will also need to read the most recent values. To
guarantee this, whenever a read misses in the local cache,
it self-invalidates all shared cache lines. Finer details of the
protocol may be found in the original paper by Elver and
Nagarajan [6]. It should be noted that our model implements
the basic protocol, without timestamps.

Prior TSO-CC verification work: In order to check that
the protocol implementation adheres to TSO, the original
authors of TSO-CC used the diy [18] tool to generate litmus
tests for TSO (according to the method detailed in Owens et
al. [19]) and ran it in a full-system simulator. An independent
approach to verification was made by CCICheck [11], using
TSO-CC as a case study. CCICheck uses abstract axiomatic
models of pipeline and memory system, and verifies that a set
of litmus tests is not violated. However, whilst a litmus test

3

based approach provides some confidence that the protocol is
correct, it is by no means an exhaustive means of verification
and corner cases may be missed. In order to minimise the
potential for missed corner cases in a detailed cycle-accurate
full-system implementation, Elver and Nagarajan developed
McVerSi [20], a test generation framework for fast memory
consistency verification in simulation. This approach, whilst
it further increased confidence and testing of corner cases,
is still not exhaustive. The remainder of this paper solves
this problem with an entirely exhaustive approach to verifying
TSO-CC against the TSO memory model.

III. TSO-CC SATISFIES TSO

In this section, we show that the lazy cache coherence
protocol TSO-CC does indeed satisfy the constraints of the
TSO memory consistency model. This solves the problems
associated with the previous verification approaches: corner
cases which could be missed by insufficient testing would now
be revealed by exhaustive exploration of the state space. For
now, we only show that this is true for the simpler case of a
fixed number of processors. We go on to show, in Section IV,
that this is true for a parameterised model of TSO-CC with
any number of processors.

We took a number of discrete steps in the process of
verifying the protocol. The first step was to translate the
protocol into a suitable model for verification. For this purpose
we chose the Murϕ language and model checker [21]. Murϕ
is a well-established model checker and extensively used
in both previous academic studies [21], [10], [22] and in
industry [12], [7], [9], [23], [3]. We then went on to show that
this model satisfied some basic properties, such as freedom
from deadlock, using the model checker. Our approach to this
is detailed in Section III-A.

The next step in the process was to show that the TSO-CC
model satisfied the constraints of TSO. One way to achieve this
was to show there exists a weak simulation relation between
TSO-CC and an operational model of TSO. A weak simulation
relation exists if the observable actions (reads/writes to a
memory location) in the CCP model can be matched by actions
in the model of TSO. This concept is defined more formally
in Section III-D, in which we also explain our approach to
showing weak simulation using the model checker.

However, in order for our approach to work, we needed
an operational model of TSO. Such models exist in the
literature but tend to be store buffer based [19], [24]. These
models, while abstracting push-based eager CCPs well, make
it difficult to show that lazy CCPs (which pull new values
via self-invalidates) refine them. Furthermore, whereas such
models require unbounded store buffers, we needed a finitely
enumerable model for use with a model checking approach.
Hence, in Section III-B we define TSO-LB, a load buffer
based operational model with bounded buffers that abstracts
lazy CCPs. After establishing that TSO-LB exhibits only TSO
behaviour, we were able to use the operational model as part
of our verification strategy.

Cache 1 a..
..
..

S1 Sa
V1 Va1

Cache
n

...

Dir

Net 1 M1 Mm.. Net n M1 Mm.....

Net d M1 Mm..

1 a..
..
..

S1 Sa
V1 Va

1 a..
..
..

S1 Sa
V1 Va

Fig. 1. Concrete model structure.

A. Model checking in Murϕ

We began by defining a Murϕ model of the TSO-CC
protocol. The model implements the basic TSO-CC protocol
as described in the original paper [6], with each rule in the
protocol description relating to a rule in the Murϕ model;
it has parameters for the number of processors, number of
addresses, and number of values; the model was checked using
three address locations and two values. The model is a faithful
implementation of the protocol with the only abstraction being
the abstract interpretation of the access counter—as described
below. The model is constructed as a set of caches and
a directory, each having a state and a set of addresses or
memory locations, each with a set of possible values. The
interconnection network is represented as a set of sets of
messages; each node (cache or directory) can write or read
to or from the network (Figure 1).

A set of rules, each a guard =⇒ action pair, then defines
the behaviour of the model. As an example, the following is
a pair of sample rules taken from the full ruleset1:

c[a].state = I =⇒ SendGetS(c,Dir, a);

c[a].state := WS (Read I)

c[a].state = E =⇒ c[a].val := v

c[a].state := M ; (Write E)

where c is a cache, a is an address (memory location), v is
a value, and c[a].state (or c[a].val) is the state (or value)
for the given cache and address. The first rule (Read I) is
the Read rule for the Invalid cache state and the second is
the Write rule for the Exclusive cache state. When a cache is
in state I and does a Read, it sends a GetS message to the
directory and switches to state WS. When a cache is in state E
it may do a Write, store the written value, and switch to state
M (Modified). The function SendGetS handles the passing of
a GetS message to the network.

We then define a rule that handles the receipt of messages
from the network at each node (cache or directory). Within
this rule are some functions which handle actions performed
when a message is received; the following is an extract from
the DirectoryReceive function for handling the messages
in the previous example:

1The full ruleset can be found at https://github.com/icsa-caps/tso-cc

4

DirectoryReceive(msg, a) =

if Dir[a].state = I ∧msg.type = GetS

then SendDataS(msg.src, a, . . .);

ReplaceOwner(msg.src, a);

Dir[a].state := WE1

else . . .

There is a function CacheReceive which has similar
conditions for receiving messages at a cache.

Another pair of rules which are of interest are the Read
rules for the Shared cache state. Part of the lazy invalidation
scheme for TSO-CC is that a cache must self-invalidate after
a certain number of reads, specifically once an access counter
reaches a predefined limit. In our model, we abstract the access
counter by just having two rules corresponding to a Read in
the Shared state: one where the access count is within its limit
and another for when the limit has been reached. There is thus
a non-deterministic choice between the two options:

c[a].state = S =⇒ SendGetS(c,Dir, a);

c[a].state := WS

(Read S[MAX])

c[a].state = S =⇒ //do nothing
(Read S[<MAX])

In the first rule, the access count has been reached, causing
self-invalidation followed by re-requesting a fresh value from
the directory; in the second rule, the access count has not
been reached, and the cache is free to read hit on its own
value with no further action. The model checker accounts for
the non-deterministic choice between these rules.

Once the full ruleset in the model checker is defined,
the rules are then exhaustively applied using an appropriate
strategy (e.g. breadth first, depth first) until every possible
state of the model has been enumerated; during this process
of state enumeration the model checker checks that it can
always proceed to another state (deadlock freedom) and that
any defined invariants hold for each state. For efficiency, Murϕ
also reduces the set of states which need to be enumerated by
using various techniques, such as symmetry reduction [25].

The next problem was to decide what property to check the
model against. The derived properties which usually hold for
CCPs, like SWMR do not hold for TSO-CC, by design, so a
new strategy has to be applied. Our verification strategy is to
establish that TSO-CC satisfies TSO by: (a) devising TSO-LB,
a finite operational model for abstracting TSO-CC, (b) proving
that TSO-LB shows only TSO behaviour, and (c) showing that
TSO-CC is a refinement of TSO-LB within a model checker.

B. TSO-LB operational model

This section introduces the abstract TSO load-buffering
model (TSO-LB). For our approach, existing operational mod-
els of TSO [19], [24] are not ideal for two reasons. The first
being that they require unbounded buffers, making algorithmic
verification difficult. Second, a refinement between a lazy CCP

and an existing store-buffering model would be difficult, as
a lazy CCP effectively follows a load-buffering rather than
a store-buffering approach: loads, viz. reads, hitting on a
locally “buffered” (potentially) stale value, until the current
value is pulled in (i.e. propagates) from global memory via
a self-invalidate. The load-buffering based operational model
formalised below abstracts a lazy CCP better and hence
simplifies verification.

Definition 1 (Labelled Transition System): A labelled tran-
sition system (LTS) is a tuple (L,Q, I, T) where, L is a set
of labels, Q is a set of states, I ⊆ Q is a set of initial states
and T ⊆ Q× L×Q is the transition relation.
If (q, l, q′) ∈ T then we say there is a transition labelled l ∈ L
from state q ∈ Q to state q′ ∈ Q and we may abbreviate this
as q l−→ q′.

Definition 2 (TSO-LB): We define an LTS for TSO-LB as
follows. The transition relation is given by the rules:

localq(p)(a) = v

q
Read(p,a,v)−−−−−−−→ q

READ

q
Write(p,a,v)−−−−−−−→ 〈localq[(p)(a) 7→ v], globalq[(a) 7→ v]〉

WRITE

q
τ−→ 〈localq[(p) 7→ globalq], globalq〉

PROPAGATE

where P is a finite set of processors, with p ∈ P ; A is a
finite set of addresses (memory locations), with a ∈ A; V is a
finite set of data values, with v ∈ V ; localq : P → A → V
is a function where localq(p)(a) is the value at address a in
the local buffer of p in state q and globalq : A → V is a
function where globalq(a) is the value at address a in the
global buffer in state q.

The set of states Q consists of all pairs 〈localq, globalq〉
and the set of labels L = {τ,Read(p, a, v),Write(p, a, v)}
where p ∈ P , a ∈ A, v ∈ V and τ is the silent action. We
define the set of initial states I to be I , {q : ∀p ∈ P. ∀a ∈
A. localq(p)(a) = globalq(a)}.

C. TSO-LB satisfies TSO

In the following, we outline a proof sketch that the TSO-LB
operational model defined in Definition 2 permits only TSO
behaviour. Since TSO-LB is defined as a LTS, its behaviour
is defined with respect to an arbitrary trace of this LTS. We
show (Theorem 1), by means of an interpretation of logical
and physical time over these traces, that the behaviour satisfies
the herd axiomatic characterisation of TSO [26]. We also
show via a counterexample that TSO-LB does not permit all
allowable behaviours of TSO, i.e. TSO-LB is in fact stricter
than TSO.

Theorem 1 (TSO-LB satisfies TSO): The read and write
events of traces of the TSO-LB LTS satisfy the TSO axiomatic
MCM (as formalised in Alglave et al. [26].

Our proof strategy starts with defining a trace P of TSO-LB
(Definition 3). The trace order might be seen as the physical-
time representation of events, which contains writes, reads,
and propagates. We will then construct a strict linear order L
from P which contains the same writes and reads (with the
same values). We then show how to instantiate the required

5

ordering relations from the herd framework of Alglave et
al. [26] from L, and show all those orders are contained in
L. This will then allow us to show that the herd axiomatic
constraints of TSO hold over the write and read events. Note
that we assume a simplified TSO model excluding fences, as
TSO-LB does not model fences by definition.

Definition 3 (Trace): A trace of an LTS is a sequence (finite
or infinite) of labels that results from a path of transitions
starting at the initial state. Let us call this trace order P .

Definition 4 (Logical-time L): We define L to be an order
on the read and write events in the trace P . All writes
Write(p, a, v) appear in L in the same order as in the physical-
time trace P . A read Read(p, a, v) is pulled backwards in the
trace to just after the event in P which made the processor
p get the value v for a. Such an event is either a write from
the same processor p, or a propagate to the processor p (if
Read(p, a, v) reads from a write on another processor).

Note that several reads from the same processor can be
pulled back to the same point in this scheme, if the same
address is read by multiple reads, or if the propagated values
for different addresses for the same propagate event are read
from by different reads. In such a case, we order these multiple
reads in L (which have to be from the same processor)
according to program order.

Definition 5 (co in TSO-LB): The order co is defined in
TSO-LB as Write(p, a, v) co→ Write(q, b, w) if and only if
Write(p, a, v) occurs before Write(q, b, w) in the physical-
time trace P , and the addresses a and b are the same.
Note that p and q may be the same or different processors,
and v and w the same or different values.

Definition 6 (rf in TSO-LB): The order rf is defined as
Write(p, a, v) rf→ Read(q, a, v) where p and q may be the
same or different processors, and the read gets its value from
the write.

We can now show that co , rf , and all the derived relations
of the herd TSO formalisation are sub-orders of L. Then
all axioms state the acyclicity and irreflexivities of various
order relations, which are satisfied by any sub-orders of a strict
linear order L. For the complete proof we refer to the online
appendix.2

D. Weak simulation by model checking

Our core goal here is to check that a value read from a
memory location by a processor at any point in time adheres to
the TSO-LB specification, if all memory accesses are governed
by the TSO-CC protocol.

We model both the TSO-LB specification and the TSO-
CC protocol as labelled transition systems. In both cases,
the labels are either observable actions concerning reads and
writes or they are silent actions. For convenience below, we
use the single label τ for all silent actions, though in our
implementation it is useful to consider each system having a
number of silent actions.

Our formal notion of correctness is that every observable
trace of the TSO-CC protocol LTS is also an observable trace

2https://github.com/icsa-caps/tso-cc/blob/master/TSO-LB-proof.pdf

of the TSO-LB specification LTS. An observable trace is a
trace with all the silent actions removed. We establish this
inclusion property of observable traces by exhibiting a weak
simulation relation between the TSO-CC LTS and the TSO-
LB LTS such that the pair of initial states of the two LTSs is
included in the relation.

A weak simulation relation shows step-by-step that for
every observable action in TSO-CC there is a corresponding
observable action in TSO-LB; it makes no attempt to match
the silent actions in the two LTSs. This notion of weak
simulation may be defined more formally as follows (following
Milner [27]).

Definition 7 (Weak transition): Let A = (L,Q, I, T) be an
LTS. A weak transition q l

=⇒ q′ is defined as q τ−→∗ x l−→
y

τ−→∗ q′ for some x,y, where τ−→∗ is the reflexive transitive
closure of τ−→ and q, q′, x, y ∈ Q, l ∈ L and l 6= τ .

Later we use the notation q =⇒ q′ for q τ−→∗ q′ or, if
we allow multiple silent-action labels, to say that q′ can be
reached from q by zero or more transitions labelled by silent
actions.

Definition 8 (Weak simulation): Let C = (L,QC , IC , TC)
and A = (L,QA, IA, TA) be two LTSs with the same label
set. Let l ∈ L be an observable action. A weak simulation
W ⊆ QC × QA is a binary relation such that if (p, q) ∈ W ,
written pWq, then

1) if p l−→ p′ then there exists q′ ∈ QA such that q l
=⇒ q′

and p′Wq′, and
2) if p τ−→ p′ then there exists q′ ∈ QA such that q =⇒ q′

and p′Wq′.
In our setting, QC are the states of the CCP and QA are the
states of the MCM.

To prove that there exists a weak simulation relation using
a model checker, we construct an unlabelled transition system
M = (Q, T) from the two LTSs with Q = QC × QA and
a specially crafted transition relation T . If a certain property
holds for every reachable state ofM, then the set of reachable
states is a weak simulation relation between C and A. As
the initial state of M is a pair of the initial states of C
and A, we have that the initial state pair are related by the
weak simulation, and hence every observable trace of C is
also an observable trace of A. We can describe the transi-
tion relation and checked property as follows. The transition
relation 〈p, q〉 −→ 〈p′, q′〉 is defined as ∃l ∈ L. p

l−→
p′∧q′ = last(AbsWitness(p, q, l)) where AbsWitness(p, q, l)
computes an alternating sequence of abstract states and labels
〈q0, l0, q1, l1, . . . , qn〉 for some n ≥ 0, q = q0 and the last()
function picks out the last state qn of such a sequence.

The checked property Match(〈p, q〉) is defined as
∀l ∈ L, p′ ∈ QC . p

l−→ p′ ⇒ AbsWitness(p, q, l) is a witness
for:

1) q
l

=⇒ last(AbsWitness(p, q, l)) if l is observable. and
2) q =⇒ last(AbsWitness(p, q, l)) if l = τ .

Here, an alternating sequence of abstract states and labels
〈q0, l0, q1, l1, . . . , qn〉 is a witness for q0 =⇒ qn if all the
li are silent and qi

li−→ qi+1 for all i ∈ {0, . . . , n − 1}, and
is a witness for q0

l
=⇒ qn if there exists a unique li = l in

6

the sequence such that ∀j 6= i lj is silent and qi
li−→ qi+1 for

all i ∈ {0, . . . , n−1}. Witnesses for weak transition instances
enable the straightforward checking of the truth of instances.

A conceptual sketch of the witness function AbsWitness
we use is as follows:

• If TSO-CC does a write action, then TSO-LB is made to
take a single corresponding write action step.

• For silent transitions of TSO-CC, the witness is a single
state—i.e. TSO-LB takes no steps.

• If TSO-CC does a read action, then in TSO-LB we either
do a read action, or a propagate action followed by a read.
We settle for the single read step if it is allowed by TSO-
LB. If not, we go for the 2 step witness. As propagate
is the only silent action in TSO-LB and it is idempotent,
there are no other options to consider.

In general the abstract LTS might permit several silent tran-
sitions and the AbsWitness function has to embody some
strategy for testing possible silent actions; however, it is
worthy of note that the trivial strategy, as described here, is
generally applicable to checking any CCP against TSO-LB.

E. Weak simulation in Murϕ

To realise the above in Murϕ we started with the TSO-
CC Murϕ model introduced in Section III-A and augmented
the state with components for the TSO-LB specification. At
the rules in the TSO-CC model where observable actions
(reads/writes) are performed, we also step forward the TSO-
LB model with the same actions, as explained above.

Coding the Match predicate is much simpler than the
conceptual presentation above suggests. For the step forward
of the TSO-LB system on write actions, the step is guaranteed
by construction to satisfy the TSO-LB labelled transition
relation, there is nothing to check. Only for the read action
do we need to check that the value read in the TSO-LB
specification actually matches that from the TSO-CC system.
We simply use an invariant in Murϕ to check the read value
at each read step.

In the following, we detail how we implemented the tran-
sition system model and Match check in Murϕ. The imple-
mentation of TSO-LB involves a pair of arrays to represent
the global and local buffers for each cache and address, Murϕ
procedures TSOStore and TSOUpdate, and the Murϕ func-
tion TSOVerify. These functions compute the next TSO-
LB state for the Write, Propagate, and Read TSO-LB rules
respectively. In addition TSOVerify returns a Boolean value
indicating whether TSO-LB can indeed make one or two steps
forward that result in a correct read. Calling TSOVerify
returns true if the expected value is in the local buffer, or it
tries a TSOUpdate and returns true if the expected value is
now in the local buffer, else it returns false. A Murϕ invariant
ensures that TSOVerify always returns true.

The rules of TSO-CC incorporate these TSO-LB procedures
and function. Taking our previous example rules, we amend
them as follows:

Cache
1

Cache
n

...

Dir

Net 1 M1 Mm.. Net n M1 Mm.....

Net d M1 Mm..

Abstract Caches

1 a..
..
..

S1 Sa
V1 Va

1 a..
..
..

S1 Sa
V1 Va

1 a..
..
..

S1 Sa
V1 Va

Fig. 2. Parameterised model structure with abstract caches.

c[a].state = E =⇒ c[a].val := v

c[a].state := M ;

TSOStore(c, a, v)

(Write E)

c[a].state = S =⇒ //do nothing;

Assert(TSOVerify(c, a, c[a].val))

(Read S[<MAX])

and likewise wherever a Read or Write action occurs in the
CCP model. In this way our model shows that the values at
the CCP level are consistent with the values at the MCM level.

Thus, for a fixed number of processors, we show that the
simulation relation between TSO-CC and TSO-LB holds. The
next problem was to show that the simulation relation holds
for any number of processors. The next section shows how we
solved this problem.

IV. TSO-CC WITH n PROCESSORS SATISFIES TSO

After showing that TSO-CC indeed satisfies TSO for a finite
number of processors, we now show that this is also the case
irrespective of the number of processors. In this section we
present a parameterised model, parameterised in the number
of processors, showing the same weak simulation relation
between TSO-CC and TSO still applies with n processors.

In order to define a parameterised model we follow the
method of Chou et al. [9], who in turn refined the ideas of
McMillan [28]; the method is proven mathematically correct
by Krstić [29]. The essence of the method is that one takes
the original concrete model, but adds a new abstract cache.
The abstract cache represents any number of caches connected
to the concrete model (Figure 2). Initially the abstract cache
can send any possible message to the concrete caches. This
over-approximated set of messages is then reduced to only the
set of legal messages by a process of counterexample guided
abstraction refinement [30].

The initial over-approximated set of messages coming from
the abstract cache will generate a counterexample when a
spurious message is sent. One can then introduce a restriction
to the abstract cache which disallows the spurious message.
However it is then necessary to show that the restriction is
valid and does not lead to an under-approximation of legal

7

messages. In order to achieve this, one can write a non-
interference lemma which shows the restricted message cannot
occur in the concrete model. The key to the method is that
the process is manual, but simply mechanical: the restriction
is guided by the counterexample, the lemma is guided by the
restriction, then the model checker checks both simultaneously
and automatically. The apparent circular reasoning in proving
the lemma on the amended system is dealt with by example
by Chou et al. [9] and proved correct by Krstić [29].

A. Parameterised model in Murϕ

The implementation of the parameterised model begins with
the definition of a set of rules which generate all the possible
messages which could be received at each node from the
abstract caches. For example, one of the rules which handles
the receipt of a DataX message at a cache is:

c[a].state = WX

=⇒ SendAck(c,Dir, a);

c[a].state := M;

InvalidateAllOtherLines(c, a)

(Cache Recv DataX Abs)

and similar rules are defined for each combination of node,
state, and message received.

To extend the MCM to the parameterised model, we must
consider what happens when our observable actions are per-
formed by the abstract part of the parameterised model. As we
do not track the state of abstract processors a Read action is
not explicitly defined in the abstract part of the model, however
a Write action by an abstract processor would have an effect
(eventually) on the state of the concrete caches. We do not
keep track of values at the abstract caches, so local buffers for
abstract caches are not needed in the memory model. However,
a Write at an abstract cache will go to the global buffer,
because it may at some point be read by a concrete cache.

Thus, we implement a new function, TSOStoreAbs,
which writes only to the global buffer. Now, in our abstract
cache rules, we add a call to TSOStoreAbs wherever we
see a Write action. For example, when the directory receives
a Data message from an abstract cache a Write has occurred
and we record this in the global buffer:

c[a].state = WS =⇒ dir[a].val := v;

TSOStoreAbs(a, v)

dir[a].state := S

(Dir Recv Data Abs)

Once these rules are defined the model checker will generate
all possible messages coming from the abstract cache. At
this stage we have an over-approximation of the system. Of
course, some of these messages will not be valid in the current
state. When this occurs a counterexample will be generated
by the model checker. The modeller must then inspect the
counterexample and work out why the message was spurious.

It is then possible to add a restriction to the rule that generated
it such that the spurious message is eliminated.

For example, in the above rule (Cache Recv DataX Abs),
we allow the cache to receive a DataX even when it is not
the owner of the cache line. This produces a counterexample,
because to receive a DataX from another cache (here an
abstract cache) the other cache must have received a FwdX
message first telling it to forward data to the new owner.
Therefore the receiving cache must be the owner. To eradicate
the counterexample we must add a restriction to check the
receiving cache is the owner:

c[a].state = WX ∧ IsOwner(c, a)

=⇒ SendAck(c,Dir, a);

c[a].state := M;

InvalidateAllOtherLines(c, a)

(Cache Recv DataX Abs)

However, we must now show that the restriction is not too
strict, i.e. we have not inadvertently caused the system to be
under-approximated and, in essence, we are not changing the
protocol. To do this, we introduce a non-interference lemma;
this is a lemma which states the restriction as an invariant
in the context of the concrete model, thus ensuring that the
spurious messages eliminated are indeed not possible in the
fully concrete model. For example, the lemma for the above
restriction is:

∀n∀a∀i. net[n][a][i].msgType = DataX =⇒ IsOwner(n, a)

where n is a node, a is an address, and i is a position in
the message buffer. This is implemented in the model checker
as an invariant3 and if it does not fail then we know that we
have not over-constrained the abstract cache.

Now, the model checker may catch a new counterexam-
ple. If this is the case then we repeat the process until all
counterexamples are eliminated. Once all counterexamples are
eliminated, we are done.

V. RESULTS

In summary, the result of applying the method described
in this paper to the TSO-CC protocol was that we showed
that the protocol does, in fact, conform to the TSO memory
model with any number of processors. Execution times for
checking the full model are in the order of 14–15 hours on
a single core of an Intel Xeon 1.8GHz machine with 64GB
of RAM. The process of manually refining the model for
parameterisation required 30 passes around the refinement
loop, generating 30 non-interference lemmas. The time needed
to define each lemma varied, depending on the complexity of
the counterexample—at this stage, detailed knowledge of the
protocol was a boon. Of note, however, is that for each pass
around the refinement loop does not require 14 hours of model
checking; generally, the model checker needed only to run

3Details of the restrictions and non-interference lemmas can be found in
the model source at https://github.com/icsa-caps/tso-cc

8

for a few minutes to find the next counterexample—this time
gradually increased as more counterexamples were eliminated.

It is also worth noting that one needs to consider vacuity
in model checking and we must consider whether or not
the specification holds trivially. We believe that our model
is not vacuous, given that during the development of the
model we observed and analysed a number of counter-example
traces, both when we intentionally introduced bugs, during
development, and when we iterated through the CEGAR loop,
generating and refining the non-interference lemmas.

VI. CONCLUSION

We have shown that it is possible to verify a modern, lazy
CCP against its counterpart TSO MCM. Our main contribu-
tions have been three fold:

1) the extension of a previous method [10] in order to
formally verify a lazy CCP against the TSO weak
MCM that it implements: the key novelty that enables
this extension is the introduction of the new abstract
operational model, TSO-LB;

2) a proof that our TSO-LB model satisfies a well-regarded
axiomatic model of TSO;

3) extending the result of 1) to an arbitrary number of
processors, using the parameterisation method of Chou
et al. [9]: in establishing this result, we demonstrate that
Chou et al.’s method for parameterised verification can
be used to prove that a CCP refines an abstract oper-
ational model, not just for verifying protocol-specific
properties such as SWMR.

We believe it would be straightforward to use our approach
to verify other lazy CCPs that implement TSO. As such, one
direction of future work is to improve the degree of automation
in the method. Whilst the process of parameterisation of the
model is simple, requiring more knowledge of the protocol
than of formal methods, of note is the time and effort required
to write restrictions, write lemmas, model check, and repeat.
It is our belief that more of this process may be automated,
as was the goal of both Chou et al. [9] and Krstić [29].
Some research on this topic already exists in the literature,
for example O’Leary et al. [23] and Bingham et al. [31].
Another direction for future work is to check how we might
use results similar to those of Henzinger et al. [32] to justify
the verification for arbitrary numbers of addresses and data
values.

REFERENCES

[1] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” Computer, vol. 29, no. 12, pp. 66–76, 1996.

[2] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory
consistency and cache coherence,” Synthesis Lectures on Computer
Architecture, vol. 6, no. 3, pp. 1–212, 2011.

[3] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C. T. Chou, “DeNovo: Rethinking
the memory hierarchy for disciplined parallelism,” PACT, pp. 155–166,
2011.

[4] A. Ros, “Complexity-Effective Multicore Coherence,” ACM PACT, pp.
241–251, 2012.

[5] T. J. Ashby, P. Dı́az, and M. Cintra, “Software-based cache coherence
with hardware-assisted selective self-invalidations using bloom filters,”
IEEE Transactions on Computers, vol. 60, no. 4, pp. 472–483, 2011.

[6] M. Elver and V. Nagarajan, “TSO-CC: Consistency directed cache
coherence for TSO,” in Proceedings - International Symposium on High-
Performance Computer Architecture, 2014, pp. 165–176.

[7] D. Abts, S. Scott, and D. J. Lilja, “So many states, so little time: Verify-
ing memory coherence in the Cray X1,” in Proceedings - International
Parallel and Distributed Processing Symposium, IPDPS 2003, 2003.

[8] R. Komuravelli, S. V. Adve, and C.-T. Chou, “Revisiting the Complexity
of Hardware Cache Coherence and Some Implications,” ACM TACO,
vol. 11, no. 4, pp. 1–22, 2014.

[9] C. Chou, P. Mannava, and S. Park, “A simple method for parameterized
verification of cache coherence protocols,” FMCAD, pp. 382–398, 2004.

[10] P. Chatterjee, H. Sivaraj, and G. Gopalakrishnan, “Shared Memory
Consistency Protocol Verification Against Weak Memory Models: Re-
finement via Model-Checking,” CAV, pp. 121–138—-, 2002.

[11] Y. A. Manerkar, D. Lustig, M. Pellauer, and M. Martonosi, “CCICheck:
using hb graphs to verify the coherence-consistency interface,” in
MICRO’15, 2015, pp. 26–37.

[12] K. L. McMillan, “Parameterized Verification of the FLASH Cache
Coherence Protocol by Compositional Model Checking,” Proceedings
of the 11th IFIP WG 10.5 Advanced Research Working Conference on
Correct Hardware Design and Verification Methods, pp. 179–195, 2001.

[13] X. Chen, Y. Yang, G. Gopalakrishnan, and C. T. Chou, “Reducing
verification complexity of a multicore coherence protocol using as-
sume/guarantee,” FMCAD 2006, vol. 3, pp. 81–88, 2006.

[14] F. Pong and M. Dubois, “Formal Verification Of Complex Coherence
Protocols Using Symbolic State Models,” Journal of the ACM, vol. 45,
no. 4, pp. 557–587, 1998.

[15] ——, “Formal automatic verification of cache coherence in multipro-
cessors with relaxed memory models,” IEEE TPDS, vol. 11, no. 9, pp.
989–1006, 2000.

[16] P. A. Abdulla, M. F. Atig, A. Bouajjani, and T. P. Ngo, “The Benefits
of Duality in Verifying Concurrent Programs under TSO,” 27th Inter-
national Conference on Concurrency Theory (CONCUR 2016), vol. 59,
no. 5, pp. 1–5, 2016.

[17] M. Elver, “Memory Consistency Directed Cache Coherence Protocols
for Scalable Multiprocessors,” Ph.D. dissertation, University of Edin-
burgh, 2016.

[18] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Litmus: Running
tests against hardware,” Lecture Notes in Computer Science, vol. 6605
LNCS, pp. 41–44, 2011.

[19] S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model: X86-
TSO,” in Lecture Notes in Computer Science, vol. 5674 LNCS, 2009,
pp. 391–407.

[20] M. Elver and V. Nagarajan, “McVerSi: A test generation framework
for fast memory consistency verification in simulation,” in HPCA, vol.
2016-April, 2016, pp. 618–630.

[21] D. L. Dill, “The Murphi Verification System,” in CAV 96: Computer-
Aided Verification, vol. 1102, 1996, pp. 390–393.

[22] S. Burckhardt, R. Alur, and M. M. Martin, “Verifying safety of a token
coherence implementation by parametric compositional refinement,” in
International Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, 2005, pp. 130–145.

[23] J. O’Leary, M. Talupur, and M. R. Tuttle, “Protocol verification using
flows: An industrial experience,” in 9th International Conference Formal
Methods in Computer Aided Design, FMCAD 2009, 2009, pp. 172–179.

[24] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-
TSO,” Communications of the ACM, vol. 53, no. 7, p. 89, 2010.

[25] C. Norris IP and D. L. Dill, “Better verification through symmetry,”
Formal Methods in System Design, vol. 9, no. 1-2, pp. 41–75, 1996.

[26] J. Alglave, L. Maranget, and M. Tautschnig, “Herding Cats,” ACM
TOPLAS, vol. 36, no. 2, pp. 1–74, jul 2014.

[27] R. Milner, Communicating and mobile systems: the pi-calculus. Cam-
bridge University Press, 1999.

[28] K. L. McMillan, “Verification of infinite state systems by compositional
model checking,” Lecture Notes in Computer Science, vol. 1703, pp.
219–237, 1999.

[29] S. Krstić, “Parametrized System Verification with Guard Strengthening
and Parameter Abstraction,” Electronic Notes in Theoretical Computer
Science, pp. 1–13, 2005.

[30] E. Clarke, “Counterexample-guided abstraction refinement,” Proceed-
ings of the International Workshop on Temporal Representation and
Reasoning, pp. 7–8, 2003.

[31] J. Bingham, “Automatic non-interference lemmas for parameterized
model checking,” FMCAD, pp. 1–8, 2008.

[32] T. A. Henzinger, S. Qadeer, and S. K. Rajamani, “Verifying sequential
consistency on shared-memory multiprocessor systems,” in CAV, vol.
1633, 1999, pp. 301–315.

