
Learning to Prove Safety over Parameterised
Concurrent Systems

Yu-Fang Chen
Academia Sinica

Chih-Duo Hong
Oxford University

Anthony W. Lin
Oxford University

Philipp Rümmer
Uppsala University

Abstract—We revisit the classic problem of proving safety
over parameterised concurrent systems, i.e., an infinite family
of finite-state concurrent systems that are represented by some
finite (symbolic) means. An example of such an infinite family is
a dining philosopher protocol with any number n of processes
(n being the parameter that defines the infinite family). Regular
model checking is a well-known generic framework for modelling
parameterised concurrent systems, where an infinite set of
configurations (resp. transitions) is represented by a regular set
(resp. regular transducer). Although verifying safety properties in
the regular model checking framework is undecidable in general,
many sophisticated semi-algorithms have been developed in the
past fifteen years that can successfully prove safety in many
practical instances. In this paper, we propose a simple solution
to synthesise regular inductive invariants that makes use of
Angluin’s classic L∗ algorithm (and its variants). We provide a
termination guarantee when the set of configurations reachable
from a given set of initial configurations is regular. We have tested
L∗ algorithm on standard (as well as new) examples in regular
model checking including the dining philosopher protocol, the
dining cryptographer protocol, and several mutual exclusion
protocols (e.g. Bakery, Burns, Szymanski, and German). Our
experiments show that, despite the simplicity of our solution, it
can perform at least as well as existing semi-algorithms.

I. INTRODUCTION

Parameterised concurrent systems are infinite families of
finite-state concurrent systems, parameterised by the number n
of processes. There are numerous examples of parameterised
concurrent systems, including models of distributed algorithms
which are typically designed to handle an arbitrary number n
of processes [32], [53]. Verification of such systems, then,
amounts to proving that a desired property holds for all
permitted values of n. For example, proving that the safety
property holds for a dining philosopher protocol entails prov-
ing that the protocol with any given number n of philosophers
(n ≥ 3) can never reach a state when two neighbouring
philosophers eat simultaneously. For each given value of n,
verifying safety/liveness is decidable, albeit the exponential
state-space explosion in the parameter n. However, when the
property has to hold for each value of n, the number of
system configurations a verification algorithm has to explore
is potentially infinite. Indeed, even safety checking is already
undecidable for parameterised concurrent systems [9], [12],
[30]; see [13] for a comprehensive survey on the decidability
aspect of the parameterised verification problem.

Various sophisticated semi-algorithms for verifying pa-
rameterised concurrent systems are available. These semi-
algorithms typically rely on a symbolic framework for repre-

senting infinite sets of system configurations and transitions.
Regular model checking [42], [7], [14], [15], [6], [1], [22],
[45], [65] is one well-known symbolic framework for mod-
elling and verifying parameterised concurrent systems. In reg-
ular model checking, configurations are modelled using words
over a finite alphabet, sets of configurations are represented as
regular languages, and the transition relation is defined by a
regular transducer. From the research programme of regular
model checking, not only are regular languages/transducers
known to be highly expressive symbolic representations for
modelling parameterised concurrent systems, they are also
amenable to an automata-theoretic approach (due to many nice
closure properties of regular languages/transducers), which
have often proven effective in verification.

In this paper, we revisit the classic problem of verify-
ing safety in the regular model checking framework. Many
sophisticated semi-algorithms for dealing with this problem
have been developed in the literature using methods such as
abstraction [4], [5], [21], [20], widening [15], [23], accelera-
tion [57], [42], [11], and learning [54], [55], [38], [63], [62].
One standard technique for proving safety for an infinite-state
systems is by exhibiting an inductive invariant Inv (i.e. a set
of configurations that is closed under an application of the
transition relation) such that (i) Inv subsumes the set Init of
all initial configurations, but (ii) Inv does not intersect with the
set Bad of unsafe configurations. In regular model checking,
the sets Init and Bad are given as regular sets. For this reason,
a natural method for proving safety in regular model checking
is to exhibit a regular inductive invariant satisfying (i) and
(ii). The regular set Inv can be constructed as a “regular
proof” for safety since checking that a candidate regular set
Inv is a proof for safety is decidable. A few semi-algorithms
inspired by automata learning — some based on the passive
learning algorithms [38], [55], [2] and some others based on
active learning algorithms [55], [62]— have been proposed
to synthesise a regular inductive invariant in regular model
checking. Despite these semi-algorithms, not much attention
has been paid to applications of automata learning in regular
model checking.

In this paper, we are interested in one basic research
question in regular model checking: can we effectively apply
the classic Angluin’s L∗ automata learning [8] (or variants
[58], [44]) to learn a regular inductive invariant? Hitherto
this question, perhaps surprisingly, has no satisfactory answer
in the literature. A more careful consideration reveals at least

two problems. Firstly, membership queries (i.e. is a word w
reachable from Init?) may be asked by the L∗ algorithm,
which amounts to checking reachability in an infinite-state
system, which is undecidable in general. This problem was
already noted in [54], [55], [62], [63]. Secondly, a regular
inductive invariant satisfying (i) and (ii) might not be unique,
and so strictly speaking we are not dealing with a well-defined
learning problem. More precisely, consider the question of
what the teacher should answer when the learner asks whether
v is in the desired invariant, but v turns out not to be reachable
from Init? Discarding v might not be a good idea, since this
could force the learning algorithm to look for a minimal (in
the sense of set inclusion) inductive invariant, which might
not be regular. Similarly, let us consider what the teacher
should answer in the case when we found a pair (v, w) of
configurations such that (1) v is in the candidate Inv , (2)
w /∈ Inv , and (3) there is a transition from v to w. In the ICE-
learning framework [35], [34], [54], the pair (v, w) is called an
implication counterexample. To satisfy the inductive invariant
constraint, the teacher may respond that w should be added to
Inv , or that v should be removed from Inv . Some works in the
literature have proposed using a three-valued logic/automaton
(with “don’t know” as an answer) because of the teacher’s
incomplete information [37], [26].

a) Contribution: In this paper, we propose a simple and
practical solution to the problem of applying the classic L∗

automata learning algorithm and its variants to synthesise a
regular inductive invariant in regular model checking. To deal
with the first problem mentioned in the previous paragraph,
we propose to restrict to length-preserving regular transducers.
In theory, length-preservation is not a restriction for safety
analysis, since it just implies that each instance of the consid-
ered parameterised system is operating on bounded memory of
size n (but the parameter n is unbounded). Experience shows
that many practical examples in parameterised concurrent sys-
tems can be captured naturally in terms of length-preserving
systems, e.g., see [52], [7], [6], [42], [22], [57], [1]. The benefit
of the restriction is that the problem of membership queries is
now decidable, since the set of configurations that may reach
(be reachable from) any given configuration w is finite and
can be solved by a standard finite-state model checker. For
the second problem mentioned in the previous paragraph, we
propose that a strict teacher be employed in L∗ learning for
regular inductive invariants in regular model checking. A strict
teacher attempts to teach the learner the minimal inductive in-
variant (be it regular or not), but is satisfied when the candidate
answer posed by the learner is an inductive invariant satisfying
(i) and (ii) without being minimal. [In this sense, perhaps a
more appropriate term is a strict but generous teacher, who
tries to let a student pass a final exam whenever possible.]
For this reason, when the learner asks whether w is in the
desired inductive invariant, the teacher will reply NO if w is
not reachable from Init . The same goes with an implication
counterexample (v, w) such that the teacher will say that an
unreachable v is not in the desired inductive invariant.

We have implemented the learning-based approach in a

prototype tool with an interface to the libalf library, which
includes the L∗ algorithm and its variants. Despite the simplic-
ity of our solution, it (perhaps surprisingly) works extremely
well in practice, as our experiments suggest. We have taken
numerous standard examples from regular model checking,
including cache coherence protocols (German’s Protocol), self-
stabilising protocols (Israeli-Jalfon’s Protocol and Herman’s
Protocol), synchronisation protocols (Lehmann-Rabin’s Din-
ing Philosopher Protocol), secure multi-party computation pro-
tocols (Dining Cryptographers Protocol [25]), and mutual ex-
clusion protocols (Szymanski’s Protocol, Burn’s Protocol, Di-
jkstra’s Protocol, Lamport’s bakery algorithm, and Resource-
Allocator Protocol). We show that L∗ algorithm can perform at
least as well as (and, in fact, often outperform) existing semi-
algorithms. We compared the performance of our algorithm
with well-known and established techniques such as SAT-
based learning [55], [54], [51], [52], abstract regular model
checking (ARMC), which is based on abstraction-refinement
using predicate abstractions and finite-length abstractions [20],
[21], and T(O)RMC, which is based on extrapolation (a
widening technique) [16]. Our experiments show that, despite
the simplicity of our solution, it can perform at least as well
as existing semi-algorithms.

b) Related Work: The work of Vardhan et al. [63], [62]
applies L∗ learning to infinite-state systems and, amongst
other, regular model checking. The learning algorithm attempts
to learn an inductive invariant enriched with “distance” in-
formation, which is one way to make membership queries
(i.e. reachability for general infinite-state systems) decidable.
This often makes the resulting set not regular, even if the
set of reachable configurations is regular, in which case our
algorithm is guaranteed to terminate (recall our algorithm is
only learning a regular invariant without distance information).
Conversely, when an inductive invariant enriched with distance
information is regular, so is the projection that omits the dis-
tance information. Unfortunately, neither their tool Lever [63],
nor the models used in their experiments are available, so
that we cannot make a direct comparison to our approach.
A learning algorithm allowing incomplete information [37]
has been applied in [55] for inferring inductive invariants
of regular model checking. Although the learning algorithm
in [37] uses the same data structure as the standard L∗

algorithm, it is essentially a SAT-based learning algorithm (its
termination is not guaranteed by the Myhill-Nerode theorem).

Despite our results that SAT-based learning seems to be less
efficient than L∗ learning for synthesising regular inductive
invariants in regular model checking, SAT-based learning
is more general and more easily applicable when verifying
other properties, e.g., liveness [52], fair termination [48], and
safety games [56]. View abstraction [5] is a novel technique
for parameterised verification. Comparing to parameterised
verification based on view abstraction, our framework (i.e.
general regular model checking framework with transducers)
provides a more expressive modelling language that is required
in specifying protocols with near-neighbour communication
(e.g. Dining Cryptographers and Dining Philosophers).

2

When preparing the final version, we found that a very
similar algorithm had already appeared in Vardhan’s thesis [61,
Section 6] from 2006; in particular, including the trick to
make a membership query (i.e. point-to-point reachability)
decidable by bounding the space of the transducers. The
research presented here was conducted independently, and
considers several aspects that were not yet present in [61],
including experimental results on systems that are not counter
systems (parameterised concurrent systems with topologies),
and heuristics like the use of shortest counterexamples and
caching. We cannot compare our implementation in detail with
the one from [61], since the latter tool is not publicly available.

c) Organisation: The notations are defined in Section II.
A brief introduction to regular model checking and automata
learning is given in Section III and Section IV, respectively.
The learning-based algorithm is provided in Section V. The
result of the experiments is in Section VI.

II. PRELIMINARIES

a) General Notations: Let Σ be a finite set of symbols
called alphabet. A word over Σ is a finite sequence of symbols
of Σ. We use λ to represent an empty word. For a set I ⊆ Σ∗

and a relation T ⊆ Σ∗ × Σ∗, we define T (I) to be the post-
image of I under T , i.e., T (I) = {y | ∃x. x ∈ I∧(x, y) ∈ T}.
Let id = {(x, x) | x ∈ Σ∗} be the identity relation. We
define Tn for all n ∈ N in the standard way by induction:
T 0 = id, and T k = T ◦T k−1, where ◦ denotes the composition
of relations. Let T ∗ denote the transitive closure of T , i.e.,
T ∗ =

⋃∞
i=1 T

i. For any two sets A and B, we use A	B to
denote their symmetric difference, i.e., the set A \B ∪B \A.

b) Finite Automata and Transducer: In this paper, au-
tomata/transducers are denoted in calligraphic fonts A,B, I, T
to represent automata/transducers, while the corresponding
languages/relations are denoted in roman fonts A,B, I, T .

A finite automaton (FA) is a tuple A = (Q,Σ, δ, q0, F)
where Q is a finite set of states, Σ is an alphabet, δ ⊆ Q ×
Σ × Q is a transition relation, q0 ∈ Q is the initial state,
and F ⊆ Q is the set of final states. A run of A on a word
w = a1a2a3 · · · an is a sequence of states q0, q1, · · · , qn such
that (qi, ai+1, qi+1) ∈ δ. A run is accepting if the last state
qn ∈ F . A word is accepted by A if it has an accepting
run. The language of A, denoted by A, is the set of word
accepted by A. A language is regular if it can be recognised
by a finite automaton. A is a deterministic finite automaton
(DFA) if |{q′ | (q, a, q′) ∈ δ}| ≤ 1 for each q ∈ Q and a ∈ Σ.

Let Σλ = Σ ∪ {λ}. A (finite) transducer is a tuple T =
(Q,Σλ, δ, q0, F) where Q is a finite set of states, δ ⊆ Q ×
Σλ × Σλ × Q is a transition relation, q0 ∈ Q is the initial
state, and F ⊆ Q is the set of final states. We say that T is
length-preserving if δ ⊆ Q × Σ × Σ ×Q. We define relation
δ∗ ⊆ Q × Σ∗ × Σ∗ × Q as the smallest relation satisfying
(1) (q, λ, λ, q) ∈ δ∗ for any q ∈ Q and (2) (q1, x, y, q2) ∈
δ∗ ∧ (q2, a, b, q3) ∈ δ =⇒ (q1, xa, yb, q3) ∈ δ∗. The relation
represented by T is the set {(x, y) | (q0, x, y, q) ∈ δ∗ ∧ q ∈
F}. A relation is regular and length-preserving if it can be
represented by a length-preserving transducer.

III. REGULAR MODEL CHECKING

Regular model checking (RMC) is a uniform framework for
modelling and automatically analysing parameterised concur-
rent systems. In the paper, we focus on the regular model
checking framework for safety properties. Under the frame-
work, each system configuration is represented as a word in
Σ∗. The sets of initial configurations and of bad configurations
are captured by regular languages over Σ. The transition
relation is captured by a regular and length-preserving relation
on Σ∗. We use a triple (I, T ,B) to denote a regular model
checking problem, where I is an FA recognizing the set
of initial configurations, T is a transducer representing the
transition relation, and B is an FA recognizing the set of
bad configurations. Then the regular model checking problem
(I, T ,B) asks if T ∗(I) ∩ B = ∅. A standard way to prove
T ∗(I) ∩B = ∅ is to find a proof based on a set V satisfying
the following three conditions: (1)I ⊆ V (i.e. all initial
configurations are contained in V), (2) V ∩ B = ∅ (i.e. V
does not contain bad configurations), (3) T (V) ⊆ V (i.e.
V is inductive: applying T to any configuration in V does
not take it outside V). We call the set V an inductive
invariant for the regular model checking problem (I, T ,B). In
the framework of regular model checking, a standard method
for proving safety (e.g. see [55], [7]) is to find a regular
proof, i.e., an inductive invariant that can be captured by finite
automaton. Because regular languages are effectively closed
under Boolean operations and taking pre-/post-images w.r.t.
finite transducers, an algorithm for verifying whether a given
regular language is an inductive invariant can be obtained by
using language inclusion algorithms for FA [3], [19].

Example 1 (Herman’s Protocol). Herman’s Protocol is a self-
stabilising protocol for n processes (say with ids 0, . . . , n−1)
organised as a ring structure. A configuration in the Herman’s
Protocol is correct iff only one process has a token. The
protocol ensures that any system configuration where the
processes collectively holding any odd number of tokens will
almost surely be recovered to a correct configuration. More
concretely, the protocol works iteratively. In each iteration,
the scheduler randomly chooses a process. If the process with
the number i is chosen by the scheduler, it will toss a coin
to decide whether to keep the token or pass the token to the
next process, i.e. the one with the number (i + 1)%n. If a
process holds two tokens in the same iteration, it will discard
both tokens. One safety property the protocol guarantees is
that every system configuration has at least one token.

The protocol and the corresponding safety property can be
modelled as a regular model checking problem (I, T ,B). Each
process has two states; the symbol T denotes the state that the
process has a token and N denotes the state that the process
does not have a token. The word NNTTNN denotes a system
configuration with six processes, where only the processes with
numbers 2 and 3 are in the state with tokens. The set of
initial configurations is I = N∗T(N∗TN∗TN∗)∗, i.e., an odd
number of processes has tokens. The set of bad configuration is
B = N∗, i.e., all tokens have disappeared. We use the regular

3

language E = ((T,T) + (N,N)) to denote the relation that a
process is idle. The transition relation T can be specified as a
union of the following regular expressions: (1) E∗ [Idle], (2)
E∗(T,N)(T,N)E∗ + (T,N)E∗(T,N) [Discard both tokens],
and (3) E∗(T,N)(N,T)E∗+ (N,T)E∗(T,N) [Pass the token].

IV. AUTOMATA LEARNING

Suppose R is a regular target language whose definition
is not directly accessible. Automata learning algorithms [8],
[58], [44], [17] automatically infer a FA A recognising R. The
setting of an online learning algorithm assumes a teacher who
has access to R and can answer the following two queries:
(1) Membership query Mem(w): is the word w a member
of R, i.e., w ∈ R? (2) Equivalence query Equ(A): is the
language of FA A equal to R, i.e., A = R? If not, it returns a
counterexample w ∈ A 	 R. The learning algorithm will
then construct a FA A such that A = R by interacting
with the teacher. Such an algorithm works iteratively: In each
iteration, it performs membership queries to get from the
teacher information about R. Using the results of the queries, it
proceeds by constructing a candidate automatonAh and makes
an equivalence query Equ(Ah). If Ah = R, the algorithm
terminates with Ah as the resulting FA. Otherwise, the teacher
returns a word w distinguishing Ah from R. The learning
algorithm uses w to refine the candidate automaton of the
next iteration. In the last decade, automata learning algorithms
have been frequently applied to solve formal verification and
synthesis problems, c.f., [27], [24], [38], [37], [26], [31].

More concretely, below we explain the details of
the automata learning algorithm proposed by Rivest and
Schapire [58] (RS), which is an improved version of the classic
L∗ learning algorithm by Angluin [8]. The foundation of the
learning algorithm is the Myhill-Nerode theorem, from which
one can infer that the states of the minimal DFA recognizing R
are isomorphic to the set of equivalence classes defined by the
following relations: x ≡R y iff ∀z ∈ Σ∗ : xz ∈ R↔ yz ∈ R.
Informally, two strings x and y belong to the same state of the
minimal DFA recognising R iff they cannot be distinguished
by any suffix z. In other words, if one can find a suffix z′

such that xz′ ∈ R and yz′ /∈ R or vice versa, then x and y
belong to different states of the minimal DFA.

The algorithm uses a data structure called observation table
(S,E, T) to find the equivalence classes correspond to ≡R,
where S is a set of strings denoting the set of identified
states, E is the set of suffixes to distinguish if two strings
belong to the same state of the minimal DFA, and T is a
mapping from (S ∪ (S · Σ)) · E to {>,⊥}. The value of
T (w) = > iff w ∈ R. We use rowE(x) = rowE(y) as a
shorthand for ∀z ∈ E : T (xz) = T (yz). That is, the strings x
and y cannot be identified as two different states using only
strings in the set E as the suffixes. Observe that x ≡R y
implies rowE(x) = rowE(y) for all E ⊆ Σ∗. We say that
an observation table is closed iff ∀x ∈ S, a ∈ Σ : ∃y ∈ S :
rowE(xa) = rowE(y). Informally, with a closed table, every
state can find its successors wrt. all symbols in Σ. Initially,
S = E = {λ}, and T (w) = Mem(w) for all w ∈ {λ} ∪ Σ.

Algorithm 1: The improved L∗ algorithm by Rivest and
Schapire
Input: A teacher answers Mem(w) and Equ(A) about a

target regular language R and the initial
observation table (S,E, T).

1 repeat
2 while (S,E, T) is not closed do
3 Find a pair (x, a) ∈ S × Σ such that

∀y ∈ S : rowE(xa) 6= rowE(y). Extend S to
S ∪ {xa} and update T using membership
queries accordingly;

4 Build a candidate DFA Ah = (S,Σ, δ, λ, F), where
δ = {(s, a, s′) | s, s′ ∈ S ∧ rowE(sa) = rowE(s)},
the empty string λ is the initial state, and
F = {s | T (s) = > ∧ s ∈ S};

5 if Equ(Ah) = (false, w), where w ∈ A	R then
Analyse w and add a suffix of w to E;

6 until Equ(Ah) = true;
7 return Ah is the minimal DFA for R;

The details of of the improved L∗ algorithm by Rivest
and Schapire can be found in Algorithm 1. Observe that, in
the algorithm, two strings x, y with x ≡R y will never be
simultaneously contained in the set S. When the equivalence
query Equ(A) returns false together with a counterexample
w ∈ A 	 R, the algorithm will perform a binary search over
w using membership queries to find a suffix e of w and extend
E to E∪{e}. The suffix e has the property that ∃x, y ∈ S, a ∈
Σ : rowE(xa) = rowE(y) ∧ rowE∪{e}(xa) 6= rowE∪{e}(y),
that is, add e to E will identify at least one more state. The
existence of such a suffix is guaranteed. We refer the readers
to [58] for the proof.

Proposition 1. [58] Algorithm 1 will find the minimal DFA R
for R using at most n equivalence queries and n(n+n|Σ|) +
n logm membership queries, where n is the number of state of
R and m is the length of the longest counterexample returned
from the teacher.

Because each equivalence query with a false answer will
increase the size (number of states) of the candidate DFA by
at least one and the size of the candidate DFA is bounded
by n according to the Myhill-Nerode theorem, the learning
algorithm uses at most n equivalence queries. The number of
membership queries required to fill in the entire observation
table is bounded by n(n + n|Σ|). Since a binary search
is used to analyse the counterexample and the number of
counterexample from the teacher is bounded by n, the number
of membership queries required is bounded by n logm.

We would like to introduce the other two important variants
of the L∗ learning algorithm. The algorithm proposed by
Kearns and Vazirani [44] (KV) uses a classification tree data
structure to replace the observation table data structure of the
classic L∗ algorithm. The algorithm of Kearns and Vazirani
has a similar query complexity to the one of Rivest and
Schapire [58]; it uses at most n equivalence queries and
n2(n|Σ| + m) membership queries. However, the worst case

4

Learner

Teacher
(I, T ,B) = true and

an inductive
invariant A

or
(I, T ,B) = false and

a word w ∈ T ∗(I) ∩B

w ∈ T ∗(I)?

(1)I ⊆ Ah?
(2)Ah ∩B = ∅?
(3)T (Ah) ⊆ Ah?

Mem(w)

yes or no

Equ(Ah)

false, w

Fig. 1. Overview: using automata learning to solve the regular model checking
problem (I, T ,B). Recall that we use calligraphy font for automata/transduc-
ers and roman font for the corresponding languages/relations.

bound of the number of membership queries is very loose. It
assumes the structure of the classification tree is linear, i.e.,
each node has at most one child, which happens very rarely
in practice. In our experience, the algorithm of Kearns and
Vazirani usually requires a few more equivalence queries, with
a significant lower number of membership queries comparing
to Rivest and Schapire when applied to verification problems.

The NL∗ algorithm [17] learns a non-deterministic finite
automaton instead of a deterministic one. More concretely,
it makes use of a canonical form of nondeterministic finite
automaton, named residual finite-state automaton (RFSA) to
express the target regular language. In some examples, RFSA
can be exponentially more succinct than DFA recognising
the same languages. In the worst case, the NL∗ algorithm
uses O(n2) equivalence queries and O(m|Σ|n3) membership
queries to infer a canonical RFSA of the target language.

V. ALGORITHM

We apply automata learning algorithms, including Angluin’s
L∗ and its variants, to solve the regular model checking
problem (I, T ,B). Those learning algorithms require a teacher
answering both equivalence and membership queries. Our
strategy is to design a “strict teacher” targeting the minimal
inductive invariant T ∗(I). For a membership query on a word
w, the teacher checks if w ∈ T ∗(I), which is decidable under
the assumption that T is length-preserving. For an equivalence
query on a candidate FA Ah, the teacher analyses if Ah can
be used as an inductive invariant in a proof of the problem
(I, T ,B). It performs one of the following actions depending
on the result of the analysis (Fig. 1):

• Determine that Ah does not represent an inductive invari-
ant, and return false together with an explanation w ∈ Σ∗

to the learner.
• Conclude that (I, T ,B) = true, and terminate the learn-

ing process with an inductive invariant Ah as the proof.
• Conclude that (I, T ,B) = false, and terminate the

learning with a word w ∈ T ∗(I) ∩B as an evidence.

Similar to the typical regular model checking approach, our
learning-based technique tries to find a “regular proof”, which
amounts to finding an inductive invariant in the form of a
regular language. Our approach is incomplete in general since
it could happen that there only non-regular inductive invariants
exist. Pathological cases where only non-regular inductive
invariant exist do not, however, seem to occur frequently in
practice, c.f., [21], [38], [20], [22], [60], [57], [50].

Answering a membership query on a word w, i.e., checking
whether w ∈ T ∗(I), is the easy part: since T is length-
preserving, we can construct an FA recognising Post |w| =
{w′ | |w′| = |w| ∧ w′ ∈ T ∗(I)} and then check if
w ∈ Post |w|. In practice, Post |w| can be efficiently computed
and represented using BDDs and symbolic model checking.

For an equivalence query on a candidate FA Ah, we need
to check if Ah can be used as an inductive invariant for the
regular model checking problem (I, T ,B). More concretely,
we check the three conditions (1) I ⊆ Ah, (2) Ah ∩ B = ∅,
and (3) T (Ah) ⊆ Ah using Algorithm 2.

Algorithm 2: Answer equivalence query on candidate FA
Input: An FA Ah and an RMC problem (I, T ,B)

1 if I 6⊆ Ah then
2 Find a word w ∈ I \Ah;
3 return (false, w) to the learner;
4 else if Ah ∩B 6= ∅ then
5 Find a word w ∈ Ah ∩B;
6 if w ∈ T ∗(I) then Output {cex = w,

(I, T ,B) = false} and halt;
7 else return (false, w) to the learner;
8 else if T (Ah) 6⊆ Ah then
9 Find a pair of words (w,w′) ∈ T such that w ∈ Ah

but w′ /∈ Ah;
10 if w ∈ T ∗(I) then return (false, w′) to the learner;
11 else return (false, w) to the learner;
12 else Output {inv = Ah, (I, T ,B) = true} and halt;

If the condition (1) is violated, i.e., I 6⊆ Ah, there is a word
w ∈ I \ Ah. Since I ⊆ T ∗(I), the teacher can infer that w ∈
T ∗(I) \Ah and return w as a positive counterexample to the
learner. A counterexample is positive if it represents a word in
the target language that was missing in the candidate language.
The definition negative counterexamples is symmetric.

If the condition (2) is violated, i.e., Ah ∩ B 6= ∅, there
is a word w ∈ Ah ∩ B. The teacher checks if w ∈ T ∗(I)
by constructing Post |w| and checking if w ∈ Post |w|. If
w 6∈ T ∗(I), the teacher obtains that w ∈ Ah \ T ∗(I) and
returns false together with w as a negative counterexample to
the learner. Otherwise, the teacher infers that w ∈ T ∗(I) ∩B
and outputs (I, T ,B) = false with the word w as an evidence.

The case that the condition (3) is violated, i.e., T (Ah) 6⊆
Ah, is more involved. There exists a pair of words (w,w′) ∈ T
such that w ∈ Ah ∧ w′ /∈ Ah. The teacher will check if
w ∈ T ∗(I). If it is, then the teacher knows that w′ ∈ T ∗(I)∧
w′ /∈ Ah and hence returns false together with w′ as a positive
counterexample to the learner. If w /∈ T ∗(I), then the teacher
knows that w /∈ T ∗(I) ∧ w ∈ Ah and hence returns false
together with w as a negative counterexample to the learner.

If all conditions hold, the “strict teacher” shows its generos-
ity (Ah might not equal to T ∗(I), but it will still pass) and
concludes that (I, T ,B) = true with a proof using Ah as the
inductive invariant.

Theorem 1 (Correctness). If the algorithm from Fig. 1 termi-
nates, it gives correct answer to the RMC problem (I, T ,B).

5

To see this, observe that the algorithm provides an inductive
invariant when it concludes (I, T ,B) = true and a word in
T ∗(I)∩B when it concludes (I, T ,B) = false. In addition, if
one of the L∗ learning algorithms1 from Section IV is used,
we can obtain an additional result about termination:

Theorem 2 (Termination). When T ∗(I) is regular, the algo-
rithm from Fig. 1 is guaranteed to terminate in at most k
iterations, where k is the size of the minimal DFA of T ∗(I).

Proof. Observe that in the algorithm, the counterexample ob-
tained by the learner in each iteration locates in the symmetric
difference of the candidate language and T ∗(I). Hence, when
T ∗(I) can be recognized by a DFA of k states, the algorithm
will not execute more than k iterations by Proposition 1.

Two remarks are in order. Firstly, the set T ∗(I) tends to
be regular in practice, e.g., see [21], [38], [20], [22], [60],
[57], [10], [11], [50], [49]. In fact, it is known that T ∗(I) is
regular for many subclasses of infinite-state systems that can
be modelled in regular model checking [60], [50], [40], [11],
[49] including pushdown systems, reversal-bounded counter
systems, two-dimensional VASS (Vector Addition Systems
with States), and other subclasses of counter systems. Sec-
ondly, even in the case when T ∗(I) is not regular, termination
may still happen due to the “generosity” of the teacher, which
will accept any inductive invariant as an answer.

Considerations on Implementation: The implementation
of the learning-based algorithm is very simple. Since it is
based on standard automata learning algorithms and uses only
basic automata/transducer operations, one can find existing
libraries for them. The implementation only need to take care
of how to answer queries. The core of our implementation
has only around 150 lines of code (excluding the parser of
the input models). We provide a few suggestions to make the
implementation more efficient. First, each time when an FA
recognising Postk is produced, we store the pair (k,Postk) in
a cache. It can be reused when a query on any word of length
k is posed. We can also check if Postk∩B = ∅. The algorithm
can immediately terminate and return (I, T ,B) = false if
Postk ∩ B 6= ∅. Second, for each language inclusion test, if
the inclusion does not hold, we suggest to return the shortest
counterexample. This heuristic helped to shorten the average
length of strings sent for membership queries and hence
reduced the cost of answering them. Recall that the algorithm
needs to build the FA of Postk to answer membership queries.
The shorter the average length of query strings is, the fewer
instances of Postk have to be built.

VI. EVALUATION

To evaluate our techniques, we have developed a prototype2

in Java and used the libalf library [18] as the default inference
engine. We used our prototype to check safety properties
for a range of parameterised systems, including cache coher-
ence protocols (German’s Protocol), self-stabilising protocols

1If NL∗ is used, the bound in Theorem 2 will increase to O(k2).
2Available at https://github.com/ericpony/safety-prover.

(Israeli-Jalfon’s Protocol and Herman’s Protocol), synchroni-
sation protocols (Lehmann-Rabin’s Dining Philosopher Proto-
col), secure multi-party computation protocol (David Chaums’
Dining Cryptographers Protocol), and mutual exclusion pro-
tocols (Szymanski’s Protocol, Burn’s Protocol, Dijkstra’s Pro-
tocol, Lamport’s Bakery Algorithm, and Resource-Allocator
Protocol). Most of the examples we consider are standard
benchmarks in the literature of regular model checking (c.f.
[4], [5], [20], [22], [57]). Among them, German’s Protocol
and Kanban are more difficult than the other examples for
fully automatic verification (c.f. [4], [5], [43]).

Based on these examples, we compare our learning method
with existing techniques such as SAT-based learning [54],
[55], [51], [52], extrapolating [16], [46], and abstract regular
model checking (ARMC) [20], [21]. The SAT-based learning
approach encodes automata as Boolean formulae and exploits
a SAT-solver to search for candidate automata representing
inductive invariants. It uses automata-based algorithms to
either verify the correctness of the candidate or obtain a
counterexample that can be further encoded as a Boolean
constraint. T(O)RMC [16], [46] extrapolates the limit of the
reachable configurations represented by an infinite sequence of
automata. The extrapolation is computed by first identifying
the increment between successive automata, and then over-
approximating the repetition of the increment by adding loops
to the automata. ARMC is an efficient technique that integrates
abstraction refinement into the fixed-point computation. It
begins with an existential abstraction obtained by merging
states in the automata/transducers. Each time a spurious coun-
terexample is found, the abstraction can be refined by splitting
some of the merged states. ARMC is among the most efficient
algorithms for regular model checking [38].

The comparison of those algorithms are reported in Table I,
running on a MinGW64 system with 3GHz Intel i7 processor,
2GB memory limit, and 60-second timeout. The experiments
show that the learning method is quite efficient: the results
of our prototype are comparable with those of the ARMC
algorithm3 on all examples but Kanban, for which the minimal
inductive invariant, if it is regular, has at least 400 states.
On the other hand, our algorithm is significantly faster than
ARMC in two cases, namely German’s Protocol and Dining
Cryptographers. ARMC comes with a bundle of options and
heuristics, but not all of them work for our benchmarks.
We have tested all the heuristics available from the tool and
adopted the ones4 that had the best performance in our experi-
ments. The performance of SAT-based learning is comparable
to the previous two approaches whenever inductive invariants
representable by automata with few states exist. However, as
its runtime grows exponentially with the sizes of candidate
automata, the SAT-based algorithm fails to solve four examples
that do not have small regular inductive invariants. T(O)RMC
seems to suffer from similar problems as it timeouts on all

3Available at http://www.fit.vutbr.cz/research/groups/verifit/tools/hades.
4The heuristics are structure preserving, backward computation, and back-

ward collapsing with all states being predicates. See [21] for explanations.

6

https://github.com/ericpony/safety-prover
http://www.fit.vutbr.cz/research/groups/verifit/tools/hades

The RMC problems RS SAT T(O)RMC ARMC
Name #label Sinit Tinit Strans Ttrans Sbad Tbad Time Sinv Tinv Time Sinv Tinv Time Sinv Tinv Time
Bakery [32] 3 3 3 5 19 3 9 0.0s 6 18 0.5s 2 5 0.0s 6 11 0.0s
Burns [4] 12 3 3 10 125 3 36 0.2s 8 96 1.1s 2 10 0.1s 7 38 0.0s
Szymanski [59] 11 9 9 118 412 13 40 0.3s 43 473 1.6s 2 21 2.0s 51 102 0.1s
German [36] 581 3 3 17 9.5k 4 2112 4.8s 14 8134 t.o. – – t.o. – – 10s
Dijkstra [4] 42 1 1 13 827 3 126 0.1s 9 378 1.7s 2 24 6.1s 8 83 0.3s
Dijkstra, ring [28], [33] 12 3 3 13 199 3 36 1.4s 22 264 0.9s 2 14 t.o. – – 0.1s
Dining Crypto. [25] 14 10 30 17 70 12 70 0.1s 32 448 t.o. – – t.o. – – 7.2s
Coffee Can [52] 6 8 18 13 34 5 8 0.0s 3 18 0.2s 2 7 0.1s 6 13 0.0s
Herman, linear [39] 2 2 4 4 10 1 1 0.0s 2 4 0.2s 2 4 0.0s 2 4 0.0s
Herman, ring [39] 2 2 4 9 22 1 1 0.0s 2 4 0.4s 2 4 0.0s 2 4 0.0s
Israeli-Jalfon [41] 2 3 6 24 62 1 1 0.0s 4 8 0.1s 2 4 0.0s 4 8 0.0s
Lehmann-Rabin [47] 6 4 4 14 96 3 13 0.1s 8 48 0.5s 2 11 0.8s 19 105 0.0s
LR Dining Philo. [52] 4 4 4 3 10 3 4 0.0s 4 16 0.2s 2 6 0.1s 7 18 0.0s
Mux Array [33] 6 3 3 4 31 3 18 0.0s 5 30 0.4s 2 7 0.2s 4 14 0.0s
Res. Allocator [29] 3 3 3 7 25 4 9 0.0s 5 15 0.0s 1 3 0.0s 4 9 0.0s
Kanban [5], [43] 3 25 48 98 250 37 68 t.o. – – t.o. – – t.o. – – 3.5s
Water Jugs [64] 11 5 6 23 132 5 12 0.1s 24 264 t.o. – – t.o. – – 0.0s

TABLE I
COMPARING THE PERFORMANCE OF DIFFERENT RMC TECHNIQUES. #LABEL STANDS FOR THE SIZE OF ALPHABET; SX AND TX STAND FOR THE NUMBERS

OF STATES AND TRANSITIONS, RESPECTIVELY, IN THE AUTOMATA/TRANSDUCERS. RS IS THE RESULT OF OUR PROTOTYPE USING RIVEST AND
SCHAPIRE’S VERSION OF L∗ ; SAT, T(O)RMC, AND ARMC ARE THE RESULTS OF THE OTHER THREE TECHNIQUES.

examples that cannot be proved by the SAT-based approach.
Table II reports the results of the learning-based algorithm

geared with different automata learning algorithms imple-
mented in libalf. As the table shows, these algorithms have sim-
ilar performance on small examples; however, the algorithm
of Rivest and Schapire [58] and the algorithm of Kearns and
Varzirani [44] are significantly more efficient than the other
algorithms on some large examples such as Szymanski and
German. Table II shows that Kearns and Varzirani’s algorithm
can often find smaller inductive invariants (fewer states) than
the other L∗ variants, which explains the performance differ-
ence. For NL∗, our implementation pays an additional cost to
determinise the learned FA in order to answer the equivalence
queries; this cost is significant when a large invariant is needed.

Recall that our approach uses a “strict but generous teacher”.
Namely, the target language of the teacher is T ∗(I) for an
RMC problem (I, T ,B). We have tried the version where
a “flexible and generous teacher” is used, that is, the target
language of the teacher is the complement of (T−1)∗(B).
The performance, however, is worse than that of our current
version. This result may reflect the fact that the set T ∗(I) is
“more regular” (i.e., can be expressed by a DFA with fewer
states) than the set (T−1)∗(B) in practical cases.

VII. CONCLUSION

The encouraging experimental results suggest that the per-
formance of the L∗ algorithm for synthesising regular in-
ductive invariants is comparable to the most sophisticated
algorithm for regular model checking for proving safety. From
a theoretical viewpoint, learning-based approaches (including
ours and [54], [55], [38]) have a termination guarantee when
the set T ∗(I) is regular, which is not guaranteed by approaches
based on a fixed-point computation (e.g., the ARMC [21]). An
interesting research question is whether L∗ algorithm can be
effectively used for verifying other properties, e.g., liveness.

Acknowledgements: We thank anonymous referees for
their useful comments. Rümmer was supported by the Swedish
Research Council under grant 2014-5484.

REFERENCES

[1] P. A. Abdulla. Regular model checking. STTT, 14(2):109–118, 2012.
[2] P. A. Abdulla, M. F. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer,

and J. Stenman. String constraints for verification. In CAV’14, pages
150–166.

[3] P. A. Abdulla, Y. Chen, L. Holík, R. Mayr, and T. Vojnar. When
simulation meets antichains. In TACAS’10, pages 158–174.

[4] P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Regular model
checking without transducers (on efficient verification of parameterized
systems). In TACAS’07, pages 721–736.

[5] P. A. Abdulla, F. Haziza, and L. Holík. All for the price of few. In
VMCAI’13, pages 476–495.

[6] P. A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and M. Saksena.
Regular model checking for LTL(MSO). STTT, 14(2):223–241, 2012.

[7] P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of
regular model checking. In CONCUR’04, pages 35–48.

[8] D. Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87–106, 1987.

[9] K. R. Apt and D. Kozen. Limits for automatic verification of finite-state
concurrent systems. IPL, 22(6):307–309, 1986.

[10] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: acceleration
from theory to practice. STTT, 10(5):401–424, 2008.

[11] S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration
in symbolic model checking. In ATVA’05, pages 474–488.

[12] N. Bertrand and P. Fournier. Parameterized verification of many identical
probabilistic timed processes. In FSTTCS’13, volume 24 of LIPIcs,
pages 501–513. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

[13] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and
J. Widder. Decidability of Parameterized Verification. Synthesis Lectures
on Distributed Computing Theory. Morgan & Claypool Publishers, 2015.

[14] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD
thesis, Université de Liège, 1999.

[15] B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large
(extended abstract). In CAV’03, pages 223–235.

[16] B. Boigelot, A. Legay, and P. Wolper. Omega-regular model checking.
In TACAS’04, pages 561–575.

[17] B. Bollig, P. Habermehl, C. Kern, and M. Leucker. Angluin-style
learning of NFA. In IJCAI’09, pages 1004–1009.

[18] B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, D. Neider, and D. R.
Piegdon. libalf: The automata learning framework. In CAV’10, pages
360–364.

[19] F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations
up to congruence. In POPL’13, pages 457–468.

[20] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract
regular tree model checking. ENTCS, 149(1):37–48, 2006.

[21] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model
checking. In CAV’04, pages 372–386.

[22] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model
checking. In CAV’00, pages 403–418.

7

RS L∗ L∗c KV NL∗

Time Sinv Tinv Time Sinv Tinv Time Sinv Tinv Time Sinv Tinv Time Sinv Tinv

Bakery 0.0s 6 18 0.0s 6 18 0.1s 6 18 0.0s 6 18 0.1s 6 18
Burns 0.2s 8 96 0.5s 8 96 0.2s 8 96 0.2s 8 96 0.4s 6 72
Szymanski 0.3s 43 473 2.4s 51 561 1.2s 41 451 0.3s 41 451 1.4s 59 649
German 4.8s 14 8134 13s 15 8715 26s 15 8715 4.2s 14 8134 40s 15 8715
Dijkstra 0.1s 9 378 0.4s 9 378 0.1s 9 378 0.2s 9 378 0.2s 10 420
Dijkstra, ring 1.4s 22 264 2.7s 20 240 8.9s 22 264 1.5s 14 168 1.8s 20 240
Dining Crypto. 0.1s 32 448 0.2s 34 476 0.2s 38 532 0.1s 19 266 0.3s 36 504
Coffee Can 0.0s 3 18 0.0s 3 18 0.0s 4 24 0.0s 3 18 0.0s 4 24
Herman, linear 0.0s 2 4 0.0s 2 4 0.0s 2 4 0.0s 2 4 0.0s 2 4
Herman, ring 0.0s 2 4 0.0s 2 4 0.0s 2 4 0.0s 2 4 0.0s 2 4
Israeli-Jalfon 0.0s 4 8 0.0s 4 8 0.0s 4 8 0.0s 4 8 0.0s 4 8
Lehmann-Rabin 0.1s 8 48 0.2s 8 48 0.1s 8 48 0.1s 8 48 0.2s 8 48
LR D. Philo. 0.0s 4 16 0.2s 4 16 0.0s 5 20 0.0s 4 16 0.0s 8 32
Mux Array 0.0s 5 30 0.0s 5 30 0.0s 5 30 0.0s 5 30 0.0s 5 30
Res. Allocator 0.0s 5 15 0.0s 4 12 0.0s 5 15 0.0s 5 15 0.0s 5 15
Kanban >60s – – >60s – – >60s – – >60s – – >60s – –
Water Jugs 0.1s 24 264 0.5s 25 275 0.5s 25 275 0.1s 24 264 0.5s 25 275

TABLE II
COMPARING THE PERFORMANCE BASED ON DIFFERENT AUTOMATA LEARNING ALGORITHMS. THE COLUMNS L∗ , L∗c, RS, KV, AND NL∗ ARE THE
RESULTS OF THE ORIGINAL L∗ ALGORITHM BY ANGLUIN [8], A VARIANT OF L∗ THAT ADDS ALL SUFFIXES OF THE COUNTEREXAMPLE TO COLUMNS,

THE VERSION BY RIVEST AND SHAPIRE [58], THE VERSION BY KEARNS AND VAZIRANI [44], AND THE NL∗ ALGORITHM [17], RESPECTIVELY.

[23] A. Bouajjani and T. Touili. Widening techniques for regular tree model
checking. STTT, 14(2):145–165, 2012.

[24] M. Chapman, H. Chockler, P. Kesseli, D. Kroening, O. Strichman, and
M. Tautschnig. Learning the language of error. In ATVA’15, pages
114–130.

[25] D. Chaum. The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[26] Y. Chen, A. Farzan, E. M. Clarke, Y. Tsay, and B. Wang. Learning
minimal separating DFA’s for compositional verification. In TACAS’09,
pages 31–45.

[27] Y. Chen, C. Hsieh, O. Lengál, T. Lii, M. Tsai, B. Wang, and F. Wang.
PAC learning-based verification and model synthesis. In ICSE’16, pages
714–724.

[28] E. W. Dijkstra, R. Bird, M. Rogers, and O.-J. Dahl. Invariance and non-
determinacy [and discussion]. Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences,
312(1522):491–499, 1984.

[29] A. F. Donaldson. Automatic techniques for detecting and exploiting
symmetry in model checking. PhD thesis, University of Glasgow, 2007.

[30] J. Esparza. Parameterized verification of crowds of anonymous pro-
cesses. Dependable Software Systems Engineering, 45:59–71, 2016.

[31] A. Farzan, Y. Chen, E. M. Clarke, Y. Tsay, and B. Wang. Extending
automated compositional verification to the full class of omega-regular
languages. In TACAS’08, pages 2–17.

[32] W. Fokkink. Distributed Algorithms. MIT Press, 2013.
[33] L. Fribourg and H. Olsén. Reachability sets of parameterized rings as

regular languages. ENTCS, 9:40, 1997.
[34] P. Garg, C. Löding, P. Madhusudan, and D. Neider. ICE: A robust

framework for learning invariants. In CAV’14, pages 69–87.
[35] P. Garg, C. Löding, P. Madhusudan, and D. Neider. Learning universally

quantified invariants of linear data structures. In CAV’13, pages 813–
829.

[36] S. M. German and A. P. Sistla. Reasoning about systems with many
processes. JACM, 39(3):675–735, 1992.

[37] O. Grinchtein, M. Leucker, and N. Piterman. Inferring network invariants
automatically. In IJCAR’06, pages 483–497.

[38] P. Habermehl and T. Vojnar. Regular model checking using inference
of regular languages. ENTCS, 138(3):21–36, 2005.

[39] T. Herman. Probabilistic self-stabilization. IPL, 35(2):63–67, 1990.
[40] O. H. Ibarra. Reversal-bounded multicounter machines and their decision

problems. J. ACM, 25(1):116–133, 1978.
[41] A. Israeli and M. Jalfon. Token management schemes and random walks

yield self-stabilizing mutual exclusion. In PODC’90, pages 119–131.
[42] B. Jonsson and M. Nilsson. Transitive closures of regular relations for

verifying infinite-state systems. In TACAS’00, pages 220–234.
[43] A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in

parameterized concurrent programs. In CAV’10, pages 645–659.

[44] M. J. Kearns and U. V. Vazirani. An Introduction to Computational
Learning Theory. MIT press, 1994.

[45] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic
model checking with rich assertional languages. TCS, 256(1-2):93–112,
2001.

[46] A. Legay. T(O)RMC: A tool for (ω)-regular model checking. In CAV’08,
pages 548–551.

[47] D. Lehmann and M. O. Rabin. On the advantages of free choice:
a symmetric and fully distributed solution to the dining philosophers
problem. In POPL’81, pages 133–138.

[48] O. Lengál, A. W. Lin, R. Majumdar, and P. Rümmer. Fair termination
for parameterized probabilistic concurrent systems. In TACAS’17.

[49] J. Leroux and G. Sutre. Flat counter automata almost everywhere! In
ATVA’05, pages 489–503.

[50] A. W. Lin. Accelerating tree-automatic relations. In FSTTCS’12, pages
313–324.

[51] A. W. Lin, T. K. Nguyen, P. Rümmer, and J. Sun. Regular symmetry
patterns. In VMCAI’16, pages 455–475.

[52] A. W. Lin and P. Rümmer. Liveness of randomised parameterised
systems under arbitrary schedulers. In CAV’16, pages 112–133.

[53] N. A. Lynch, I. Saias, and R. Segala. Proving time bounds for
randomized distributed algorithms. In PODC’94, pages 314–323.

[54] D. Neider. Applications of Automata Learning in Verification and
Synthesis. PhD thesis, RWTH Aachen, 2014.

[55] D. Neider and N. Jansen. Regular model checking using solver
technologies and automata learning. In NFM, pages 16–31, 2013.

[56] D. Neider and U. Topcu. An automaton learning approach to solving
safety games over infinite graphs. In TACAS’16, pages 204–221.

[57] M. Nilsson. Regular Model Checking. PhD thesis, Uppsala Univ., 2005.
[58] R. L. Rivest and R. E. Schapire. Inference of finite automata using

homing sequences. Inf. Comput., 103(2):299–347, 1993.
[59] B. K. Szymanski. A simple solution to Lamport’s concurrent program-

ming problem with linear wait. In ICS’88, pages 621–626.
[60] A. W. To and L. Libkin. Algorithmic metatheorems for decidable LTL

model checking over infinite systems. In FoSSaCS’10, pages 221–236.
[61] A. Vardhan. Learning To Verify Systems. PhD thesis, Department of

Computer Science, University of Illinois at Urbana-Champaign, 2006.
[62] A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Learning to verify

safety properties. In ICFME’04, pages 274–289.
[63] A. Vardhan and M. Viswanathan. LEVER: A tool for learning based

verification. In CAV’06, pages 471–474.
[64] Wikipedia. Liquid water pouring puzzles. https://en.wikipedia.org/

w/index.php?title=Liquid_water_pouring_puzzles&oldid=764748113,
2017. [Accessed: 24-February-2017].

[65] P. Wolper and B. Boigelot. Verifying systems with infinite but regular
state spaces. In CAV’98, pages 88–97.

8

https://en.wikipedia.org/w/index.php?title=Liquid_water_pouring_puzzles&oldid=764748113
https://en.wikipedia.org/w/index.php?title=Liquid_water_pouring_puzzles&oldid=764748113

	Introduction
	Preliminaries
	Regular model checking
	Automata Learning
	Algorithm
	Evaluation
	Conclusion
	References

