
Exact Quantitative Probabilistic Model Checking
Through Rational Search

Matthew S. Bauer∗, Umang Mathur∗, Rohit Chadha†, A. Prasad Sistla‡ and Mahesh Viswanathan∗
∗University of Illinois at Urbana-Champaign, †University of Missouri,‡University of Illinois at Chicago

Abstract—Model checking of systems formalized using prob-
abilistic models such as discrete time Markov chains (DTMCs)
and Markov decision processes (MDPs) can be reduced to com-
puting constrained reachability properties. Linear programming
methods to compute reachability probabilities for DTMCs and
MDPs do not scale to large models. Thus, model checking
tools often employ iterative methods to approximate reachability
probabilities. These approximations can be far from the actual
probabilities, leading to inaccurate model checking results. In this
article, we present a new algorithm and its implementation that
improves approximate results obtained by scalable techniques
like value iteration to compute exact reachability probabilities.

I. INTRODUCTION

Probabilistic models such as discrete time Markov chains
(DTMCs) and Markov decision processes (MDPs) are often
used to describe systems in many application areas such
as distributed systems [16], [35], hardware communication
protocols [17], reliability engineering in circuits [11], [22],
[32], [33], dynamic power management [10], [34], network-
ing [28], [29] and security [13]. Probabilistic transitions in
these models are used to capture random faults, uncertainty of
environment and explicit randomization used in algorithms.
The key verification tasks for such systems are often ac-
complished through Probabilistic Computation Tree Logic
(PCTL) model checking [36]. The logic PCTL extends the
temporal logic CTL with operators that provide the ability to
reason quantitatively. For example, given on∈ {≤, <,≥, >},
the formula Ponp[ψ] expresses the property that the measure of
computation paths satisfying ψ is onp. PCTL model checking
proceeds by recursively computing the set of states that
satisfy subformulas of a given formula. Each recursive step, in
turn, reduces to constrained quantitative reachability, wherein,
given a DTMC/MDP, a set of good states G and a target set of
states T , the goal is to compute the measure of the paths that
reach T while remaining in G. If the model is decorated with
costs or rewards, one may also be interested in computing the
expected cost/reward of reaching T . It is well known that the
constrained quantitative reachability problem for DTMCs and
MDPs can be solved in polynomial time by reducing to linear
programming [8], [36].

Despite its low asymptotic complexity, linear programming,
unfortunately, doesn’t scale well to large models and is rarely

We gratefully acknowledge the support of the following grants— Matthew
S. Bauer was partially supported by NSF CNS-1314485; Umang Mathur
was partially supported by NSF CCF-1422798; Rohit Chadha was partially
supported by NSF CNS-1314338 and NSF CNS-1553548; A. Prasad Sistla
was partially supported by CNS-1314485, CCF-1319754 and CCF-1564296;
and Mahesh Viswanathan was partially supported by NSF CNS-1329991.

used in practice to solve the quantitative reachability problem.
Instead, probabilistic model checkers [14], [15], [21], [24],
[25], [30], typically compute approximations to the exact
reachability probabilities through an iterative process. The
results computed by these tools can be incorrect, primarily
due to two sources of imprecision. The first is the use of finite
precision arithmetic and floating point numbers to carry out
calculations. The second is the use of approximate techniques
like value iteration, where the exact reachability probabilities
may only be approached in the limit. It is common practice
for model checking tools to terminate value iteration in a
finite number of steps, based on several different criteria, such
as, when the change in the computed reachability probability
between successive iterations is “small”. This approximation
step may lead to unsound results, for example, in systems
where high magnitude changes in value iteration are pre-
ceded by periods of stability that cause iteration to terminate
prematurely. Inaccuracies in model checking can get further
compounded by the presence of nested probability operators
in PCTL formulas when the sets of good states G and target
states T are not correctly computed in the recursive step (see
Example 3 on in Section III).

Contributions

In this article, we present a new algorithm and its imple-
mentation that sharpens approximate solutions computed by
value iteration, to obtain the exact constrained reachability
probability, allowing one to obtain accurate and reliable model
checking results. The starting point of our approach is the
observation that when transition probabilities in the model
are rational numbers, the exact solution is also a rational
number of polynomially many bits. The second ingredient in
our technique is an algorithm due to Kwek and Mehlhorn [26],
which, given a “close enough” approximation to a rational
number, finds the rational number efficiently. Our algorithm
works roughly as follows. We use value iteration to compute
an approximate solution and then apply the Kwek-Mehlhorn
algorithm to find a close candidate rational solution. Since
the approximate solution we start with is of unknown quality,
the candidate rational solution obtained may not be the exact
answer. Therefore, we check if the candidate is the unique
solution to the linear program that describes the system. This
allows one to confirm the correctness of the candidate rational
solution. If it is not correct, the process is repeated, starting
with an approximate solution of improved precision. Precise
details of the algorithm are given in Section IV.

We have implemented this approach as an extension of
the PRISM model checker, called RATIONALSEARCH. Our
tool computes exact constrained reachability probabilities and
exact expected rewards for model checking DTMCs and MDPs
against PCTL specifications. Evaluation of our implementation
against a large set of examples from the PRISM benchmark
suite [6] and case studies [7] shows that our technique can be
applied to a wide array of examples. In many cases, our tool
is orders of magnitude faster than the exact model checking
engines implemented in state-of-the-art tools like PRISM [30]
and STORM [15].

Related Work

The work closest in spirit to ours is [19], which presents an
approach to obtain exact solutions for reachability properties
for MDPs and discounted MDPs. The basic idea there is to
interpret the scheduler obtained for an approximate solution,
as a basis for the linear program corresponding to the verifi-
cation question. By examining the optimality of the solution
associated with this basis, the exact solution can be obtained
by improving the scheduler using the Simplex algorithm. This
is significantly different from our approach. In particular, for
DTMCs (where there is no scheduler), the approach of [19]
reduces to solving a linear program, which is known to be not
scalable. Since the implementation from [19] is not available,
we could not experimentally compare with this approach.

To overcome the convergence problems with value iteration,
techniques like interval iteration [9], [20], [38], which utilize
two simultaneous value iteration procedures converging to the
exact probabilities values from above and below, have been
proposed. This allows one to bound the error produced by ap-
proximation techniques. Additionally, several tools [15], [30]
implement exact quantitative model checking as an extension
of parametric model checking, which synthesizes symbolic al-
gebraic expressions over parameters of the model, representing
quantitative properties of a system. These expressions can be
evaluated under a concrete instantiation of the parameters to
produce exact solutions.

II. BACKGROUND

A common technique in the analysis of systems is to
model them as state transitions systems where states describe
information about the system at a point in time and transitions
describe how the system evolves from one state to another.
When this evolution is governed by random phenomena,
such state transition systems can then be enriched to capture
probabilistic behavior. The resulting model is known as a
DTMC, in which every state is mapped to a distribution over
the successor states. MDPs generalize DTMCs, in that, the
distribution over the successor states is non-deterministically
chosen. We next formalize DTMCs and MDPs.

Discrete time Markov chains (DTMCs)

A DTMC is a tuple M = (Z,∆,C, L) where Z is a set
of states, ∆ : Z → Dist(Z) is the probabilistic transition
function that maps every state to a probability distribution

over Z, C : Z × Z 7→ Q≥0 is a cost (or reward) structure
and L : Z → 2AP is a labeling function that maps states
to subsets of AP, the set of atomic propositions. We will
restrict our attention to DTMCs with a finite number of
states. For each z ∈ Z, ∆(z) defines a discrete probability
distribution over Z, that is, ∆(z)(z′) ≥ 0 for all z′ ∈ Z, and∑
z′∈Z ∆(z)(z′) = 1. We will henceforth denote ∆(z)(z′)

by ∆(z, z′). A path ρ of M is a sequence of states z0 →
z1 → · · · such that ∆(zi, zi+1) > 0. We write ρ(i) to
denote the ith state zi in ρ. We denote the set of all infinite
paths of M by Paths(M) and the set of all infinite paths
of M starting from state z by Pathsz(M). For a finite path
ρfin = z0 → · · · → zm we associate a probability measure
prob(ρfin) =

∏m−1
i=0 ∆(zi, zi+1). The cylinder set of ρfin is

Cyl(ρfin) = {ρ ∈ Paths(M) | ρfin is a prefix of ρ} and its
associated probability measure is prob(Cyl(ρfin)) = prob(ρfin),
which can be extended to a unique probability measure over
the smallest σ-algebra containing all cylinder sets. The cost
associated with ρfin is cost(ρfin) =

∑m−1
i=0 C(zi, zi+1). Let

F ⊆ Z. For a path ρ ∈ Paths(M), the cost of reaching
F , denoted cost(F)(ρ), is the cost of the shortest prefix of
ρ that reaches F , and is ∞ if no such prefix exists. The
expected cost incurred for reaching F starting from z is given
by E[costz(F)] =

∑
ρ∈Pathsz(M)

prob(ρ) · cost(F)(ρ).

Example 1: Consider an embedded control system [27]
comprised of an input processor, a main processor, an output
processor and a bus. In each cycle of the system, the input
processor collects data from a set of n sensors S1, S2, . . . , Sn.
The main processor polls the input processor and passes
instructions to the output processor controlling a set of m
actuators A1, A2, . . . Am. Communication between processors
occurs over the bus. The system is designed to tolerate failures
in a limited number of components. If the input processor
reports that the number of sensor failures exceeds some
threshold MAX FAILURES, then the main processor shuts
the system down. Otherwise, it activates the actuators, which
again, are prone to failure. When the probabilities, with which
each of these components fail, are known, one can model
the system’s reliability using a DTMC. In Figure 1, we give
a DTMC that models a single cycle of such a system with
n = 2 sensors and m = 1 actuator. For simplicity, we assume
that each sensor fails with probability Es and each actuator
fails with probability Ea. States of the model are labeled with
es1, ..., e

s
n ∈ {0, 1} and ea1 , ..., e

a
m ∈ {0, 1}, where esi = 1

denotes the failure of sensor Si and eai = 1 denotes the failure
of actuator Ai. In Figure 1, we omit labels if they are not
relevant in a particular state.

Markov decision processes (MDPs)

An MDP is a tuple M = (Z,Act,∆,C, L) where Z is a
finite set of states, Act is a set of actions, ∆ : Z × Act ↪→
Dist(Z) is the probabilistic transition function that maps pairs
of states and actions to probability distributions over Z, C :
Z × Act × Z → Q≥0 is a cost (or reward) structure and
L : Z → 2AP is a labeling function. The set enabled(z) =

Sensors

Init

es1=1

es1=0

es1=1
es2=1

es1=1
es2=0

es1=0
es2=1

es1=0
es2=0

Sensor
Failure

Sensor
Success

Processor

ea1=1

ea1=0

Actuators

Fail

Success

Result

E s

1-E
s

Es

1-E
s

Es

1-E
s

Ea

1-E
a

Fig. 1. Markov chain for a simple embedded control system with two sensors
and one actuator tolerating a single sensor fault.

{α ∈ Act |∆(z, α) is defined} of actions enabled from each
state z is assumed to be non-empty for every z ∈ Z. An MDP,
therefore, differs from a DTMC, in that, at each state z, there
is a choice among several possible distributions. The choice
of which distribution to trigger is resolved by a scheduler (or
an attacker). Informally, an MDP M evolves as follows. It
starts from some state z0 ∈ Z. After i execution steps, if M
is in state z, the scheduler chooses an action α ∈ enabled(z),
which then defines a unique probability distribution µ given
by ∆(z, α). The process then moves to state z′ in step (i +
1) with probability ∆(z, α)(z′). We will write ∆(z, α, z′) to
denote ∆(z, α)(z′) when α ∈ enabled(z). A path ρ of an MDP
M is a sequence z0

α1−→z1
α2−→· · · such that for each i ≥ 0,

αi+1 ∈ enabled(zi) and ∆(zi, αi+1, zi+1) > 0.
Formally, a scheduler is a function S : Z+ → Act such

that for every finite sequence τ=z0z1 . . . zk ∈ Z+, we have
S(τ) ∈ enabled(zk). A path z0

α1−→z1
α2−→· · · is a S-path if

S(z0z1 . . . zi) = αi+1 for all i ≥ 0. We will write Paths(M)
for the set of infinite paths, Pathsz(M) for the set of infinite
paths starting from z, PathsS(M) for the set of infinite S-
paths, and PathsSz (M) for the set of infinite S-paths starting
from z. The set of all schedulers will be denoted by S.
A scheduler S ∈ S for MDP M induces a (potentially
infinite) DTMC MS such that Paths(MS) = PathsS(M).
The definitions for the measure and cost associated with paths
can then be naturally lifted from DTMCs. Interested readers
should refer to standard texts such as [8], [37] for more details.

Probabilistic computation tree logic (PCTL)

Properties of DTMCs and MDPs can be expressed in the
logic PCTL, which extends the temporal logic CTL with the
ability to reason quantitatively. Let a ∈ AP be an atomic
proposition, on∈ {≤, <,≥, >}, p ∈ [0, 1], c ∈ Q≥0 and k ∈ N.
Below, we begin by defining PCTL for DTMCs and then give
the extension to MDPs.

Definition 1: The syntax of PCTL is
φ ::= true a ¬φ φ ∧ φ Ponp[ψ] Eonc[φ]

where
ψ ::= Xφ φUφ

In Definition 1, φ is a state formula used to describe
properties of states and ψ are path formulas used to model
properties of paths. We now formalize the semantics of PCTL.

Definition 2: Let M = (Z,∆,C, L) be a DTMC, φ, φ1, φ2
be state formulas and ψ be a path formula. The satisfaction
relation |= for PCTL state formulae is defined inductively as

z |= true for all z ∈ Z
z |= a ⇔ a ∈ L(z)
z |= ¬φ ⇔ z 6|= φ
z |= φ1 ∧ φ2 ⇔ z |= φ1 and z |= φ2
z |= Ponp[ψ] ⇔ pz(ψ) on p
z |= Eonc[φ] ⇔ ez(φ) on c

where pz(ψ) = prob({ρ ∈ Pathsz(M) | ρ |= ψ}), ez(φ) =
E[costz(Zφ)] with Zφ = {z′ ∈ Z |z′ |= φ}, and the satisfaction
relation for paths and path formulae is defined inductively as

ρ |= Xφ ⇔ ρ(1) |= φ
ρ |= φ1Uφ2 ⇔ ∃i≥0 : (ρ(i) |= φ2 & ∀j < i : ρ(j) |= φ1)

When the underlying model M is an MDP, the semantics
of PCTL formulae stay the same, except for the semantics of
Ponp[ψ] and Eonc[φ], which now require a quantification over
all schedulers. Let pSz (ψ) = prob({ρ ∈ PathsSz (M)|ρ |= ψ}).
One can analogously define eSz (φ) for a scheduler S.

Definition 3: Let M be an MDP, φ be a state formula and
ψ be a path formula. The satisfaction relation |= for PCTL
state formulae is defined identically to Definition 2, with the
exception of the following cases.

z |= Ponp[ψ] ⇔ ∀S ∈ S, pSz (ψ) on p
z |= Eonc[φ] ⇔ ∀S ∈ S, eSz (φ) on c

For a path formula ψ (resp. state formula φ), we write
P=?[ψ] (resp. E=?[φ]) to represent the solution vector V, given
by V(z) = pz(ψ) (resp. ez(φ)) for all z ∈ Z. Strictly speaking,
P=?[·] and E=?[·] are not part of PCTL syntax. However, we
henceforth extend the PCTL syntax to allow P=?[·] and E=?[·]
as the outermost operator.

Example 2: Consider the DTMC modeling an embedded
control system from Example 1. One can describe many
important properties of this model using PCTL:

1) The probability of success.
P=? [true U “Sucess”]

2) The probability that there are no sensor failures.
P=? [true U (es1 + ...+ esn = 0)]

3) The probability that actuator A1 does not fail given that
sensor S1 fails with probability on1/2.
P=? [Pon 1

2
[true U (es1=1)] U P≤0[true U (ea1=1)]]

PCTL model checking

Similar to the model checking algorithm for CTL, the
PCTL model checking algorithm recursively computes the set
of states satisfying a state sub-formula. We will begin by
restricting our attention to DTMCs.

Let φ, φ′ be state formulas. To compute P=?[φ U φ′], one
recursively computes the set of states Zφ and Zφ′ satisfying

φ and φ′ respectively. These can be used to derive, for every
z∈Z, the quantity pz(φ U φ′) representing the probability of
reaching the set Zφ′ while remaining in the set Zφ, starting
from the state z.

Now, pz(φ U φ′) is the unique solution to the following
linear program:

pz(φ U φ′)=


0 if z ∈ Prob0

1 if z ∈ Prob1∑
z′∈Z

∆(z, z′) · pz′(φ U φ′) otherwise
(1)

where Prob0,Prob1 can be determined via a pre-computation
step that analyzes the underlying graph of the DTMC. For
computing Ponp[φ U φ′], one computes P=?[φ U φ′] and
compares pz(z U z′) on p for every z ∈ Z. The computation
for ¬φ, φ ∧ φ′, E=?[φ] and Ponc[Xφ] is similar.

When the underlying model is an MDP, the computation
for Ponp[φ U φ′] reduces to solving the following linear
optimization problem when on∈ {<,≤}

min
∑
z∈Z

pz(φ U φ′) subject to

pz(φ U φ′) = 0 if z ∈ Prob0

pz(φ U φ′) = 1 if z ∈ Prob1

pz(φ U φ′) ≥
∑
z′∈Z

∆(z, α, z′) · pz′(φ U φ′)

for each α ∈ enabled(z) otherwise

(2)

When on∈ {>,≥}, the objective changes to maximization and
the direction the last inequality is reversed.

Value iteration

One can equivalently express the system of equations de-
scribed in (1) and (2) as (3) and (4) for DTMCs and MDPs
respectively (for some appropriate matrix A and vector b),

x̄ = Ax̄+ b (3)

x̄(z) = max{∆(z, α, z′) · x̄ |α∈enabled(z)} (4)

An alternate approach to solving the above set of equations is
value iteration, which iteratively computes the solution vector
as the limit of the sequence {x̄i}i≥0 given by x̄i+1 = Ax̄i+ b̄
starting with x̄0(z) = 1 if z ∈ Prob1 and x̄0(z) = 0 otherwise,
for the case of DTMCs. The iterative formulation for MDPs
is also similar. Value iteration techniques remain the popular
choice for industrial tools that analyze PCTL properties, be-
cause, when equipped with a suitable stopping criterion, value
iteration beats state-of-the-art linear programming techniques,
despite their theoretically better asymptotic complexity. State-
of-the-art quantitative model checkers further enhance the
performance of value iteration by performing arithmetic oper-
ations using Multi-terminal binary decision diagrams (MTB-
DDs) [18], [23]. MTBDDs generalize BDDs [12] by allowing
terminal values to be different from 0 or 1. Similar to the role
of BDDs in symbolic model checking [31], MTBDD based
model checkers leverage the performance benefit due to the
succinct representations of the data structures involved.

III. APPROXIMATE MODEL CHECKING

As discussed above, solving quantitative properties of
DTMCs and MDPs by a reduction to linear programming does
not scale well enough to make it a viable solution technique
in practice. As a result, techniques to approximate solutions
using floating point arithmetic, such as value iteration, have
been widely adopted. In addition to errors introduced by
overflows in floating point numbers, several other sources
of imprecision can arise in quantitative model checkers that
employ approximate solution techniques.

a) Value iteration and convergence: Value iteration, dis-
cussed above, computes a sequence of vectors {vi}i≥0 that
converge to the solution vector V for a PCTL formula. In many
cases, the sequence does not converge in a finite number of
steps, and therefore model checkers terminate the sequence
when successive vectors vk and vk+1 become “close enough”.
The choice of stopping criterion is based largely on heuristics.
The PRISM model checker, for example, implements two cri-
teria (i) absolute criterion, and (ii) relative criterion. Under the
absolute criterion, value iteration terminates if ‖vk+1 − vk‖<ε
for some ε > 0. Under the relative criterion, termination occurs
when ‖vk+1−vk‖

‖vk‖ < ε. Both of these convergence criteria can
result in solutions that are very far from the actual answers. In
[20], the authors give a DTMC and a PCTL property whose
solution is 1

2 , yet PRISM reports 9.77×10−4 for the absolute
criterion and 0.198 for the relative criterion.

b) Nested reachability and PCTL: State-of-the-art quan-
titative model checking tools employing floating point arith-
metic often fail to produce accurate solutions to properties of
the form Ponp(ψ) when the probability of satisfying ψ is very
close to p. First observed in [39], we shall also demonstrate
this phenomenon using the DTMC from Example 1. For the
sake of illustration, let Es = 1

2 . Clearly, from the initial state,
the probability of reaching a state where sensor 1 fails is
exactly 1

2 and hence the formula P< 1
2

[true U (es1=1)]
evaluates to false for the initial state. However, PRISM returns
true. Errors such as these can be compounded in PCTL
formulas containing nested operators, wherein the recursive
step of the model checking algorithm returns an incorrect set
of states. This can lead to substantial logical errors in model
analysis where the reported probabilities are very far from the
actual ones.

Example 3: Let us instantiate the DTMC from Example 1
with n = 14 sensors, m = 1 actuator, MAX FAILURES=1
and with Es = Ea = 1

2 . Recall the third PCTL property of the
embedded control system given in Example 2:

P=? [Pon 1
2
[true U (es1=1)] U P≤0[true U (ea1=1)]].

When on is ≤, the PRISM model checker returns the value
“0.7096993582589287” for the initial state. Using our tool
RATIONALSEARCH, one can verify that the probability is
actually 212895/229376, or “0.9281485421316964”. Further,
when on is <, PRISM again returns “0.7096993582589287”.
This time, the actual solution, is 0, and our tool concurs
with this. This is because, PRISM incorrectly computes the

set of states satisfying Pon 1
2
[true U (es1=1)]. This error in

the recursive step results in an incorrect formulation of the
constraints in the outermost constrained reachability problem.

IV. EXACT MODEL CHECKING

As demonstrated in the previous section, approximate solu-
tion techniques can lead to unreliable results and to incorrect
analysis of systems. To rectify this serious limitation, several
approaches that attempt to give exact (or high-precision)
solutions to the PCTL model checking problem have been
proposed. One such technique, interval iteration [9], [20]
carries out two simultaneous value iterations converging to
the solution from above and below, allowing one to bound
the error in the approximate solution. This approach is again
vulnerable to floating point errors and it doesn’t directly
give exact answers. Another approach for computing exact
answers is parametric model checking. In this approach, one
synthesizes symbolic algebraic expressions representing the
quantitative properties of the model, by treating the parameters
in the underlying model (constants, transition probabilities and
rewards) symbolically. These symbolic expressions evaluate to
the exact arithmetic values when instantiated with the concrete
values in the model. However, generating these expressions, in
general, is an expensive task. See our experiential evaluation
in Section V for a comparison with this technique.

Example 4: Again consider the DTMC modeling an embed-
ded control system with the parameters given in Example 3,
where it was demonstrated that approximate model checking
techniques can lead to incorrect logical analysis of the system.
To guarantee the correctness of one’s analysis, exact solution
techniques must be employed. Unfortunately, the exact model
checking engines of PRISM and STORM do not scale well
enough to analyze this example, which contains about 4.8
million states and about 44 million transitions. Under our test
setup (see Section V), both tools reached a 30 minute timeout
when trying to analyze the properties from Example 3. On
the other hand, our tool RATIONALSEARCH found the exact
answer to both the formulae in under 1 minute.

The Kwek-Mehlhorn algorithm

Given an ordered set of integers of bounded size, the classi-
cal binary search algorithm can be used to locate the smallest
element larger than a given value. Kwek and Mehlhorn [26]
extend this methodology to efficiently locate the rational
number with the smallest size in a given interval. Here we
present a novel application of this technique where approxi-
mate answers to quantitative model checking problems can be
used to efficiently generate exact solutions.

Consider an interval I = [αβ ,
γ
δ] with rational end-points.

It was established [26] that for any interval I = [αβ ,
γ
δ],

there exists a unique rational amin(I)/bmin(I) such that for
all rational numbers a

b ∈ I , amin(I) ≤ a and bmin(I) ≤ b.
Further, this minimal fraction amin(I)/bmin(I) can be found
using Algorithm 1 from [26].

Let QM = {p/q | p, q ∈ {1, ...,M}} ∩ [0, 1]. For µ ∈ N, if
a
b ∈ QM is contained in the interval [µ

2M2 ,
µ+1
2M2] of length 1

2M2

Algorithm 1 Compute the minimal rational in [αβ ,
γ
δ]

function FINDFRACTION(α, β, γ, δ):
if
⌊
α
β

⌋
=
⌊
γ
δ

⌋
and α

β
6∈ N then

b, a ← FINDFRACTION(δ, γ mod δ, β, α mod β)
return

⌊
α
β

⌋
b+ a, b

else
return

⌈
α
β

⌉
, 1

end if
end function

then a
b is the unique element of QM in [µ

2M2 ,
µ+1
2M2]. It turns

out that a
b must also be the minimal element of [µ

2M2 ,
µ+1
2M2],

meaning it can be found using the algorithm from Algorithm 1
in time O(logM).

Rational search

In this section, we explain our approach for exact quan-
titative model checking of PCTL formulas. The key insight
we exploit is that value iteration typically converges very fast
and produces a precise enough answer. Using this precise
approximation, we can then effectively construct a small
interval for which the Kwek-Mehlhorn algorithm can find the
exact answer. In the following, we formalize this procedure.

We begin the presentation of our exact model checking
algorithm by first describing how a given approximate solution
vector corresponding to a set of equations, like those in (1)
and (2), can be refined to get the exact vector. This process
is formalized in Algorithm 2, which takes as input the model
M, a maximum precision P and a state-indexed vector V†

that approximates V (defined after Definition 2).

Algorithm 2 Sharpen
function SHARPEN(M, P , V†):

for all p ∈ {1, ..., P} do
for all z ∈ Z do

α, β, γ, δ ← BOUNDS(p, V†(z))
V?(z) ← bV†(z)c+ FINDFRACTION(α, β, γ, δ)

end for
if FIXPOINT(M, V?) then

return V?

end if
end for
return null

end function

For a given precision p and state z, BOUNDS(p,V†(z))
returns α, β, γ, δ such that α is the first p decimal digits
of the fractional part of V†(z), β = 10p, γ = α + 1 and
δ = β. Observe that α/β is the rational representation of
the first p digits of the fractional part of V†(z). From this
approximation, we identify a sharpened solution vector V?

using the FINDFRACTION procedure from Algorithm 1. The
procedure FIXPOINT then tests if V? is the correct solution
by checking if it satisfies (3) or (4), whichever is appropriate.
The uniqueness of the solutions to the these equation systems
(which follows from those of (1) and (2)) ensures that the
fixpoint check is only satisfied by the desired solution vector.

If the input vector V† is not precise enough, then SHAPREN
returns “null”.

The guarantees of Algorithm 2 are formalized as follows.
Let Vb satisfying V(z) − Vb(z) ≤ 10−b for all z ∈ Z be an
approximate solution vector of precision b1. Then, Lemma 1
establishes that starting from a close enough approximation,
Algorithm 2 finds the actual solution vector.

Lemma 1: Let M be an MDP, ψ be a PCTL path formula
and V be the solution vector for P=?[ψ]. Let b, P ∈ N be
such that P ≥ b and Vb is an approximate solution vector
of precision b. If V(z) ∈ Qb

√
10b/2c for every z ∈ Z, then

SHARPEN(M, P,Vb) = V.

Proof (Sketch): Fix a state z and assume
V(z) ∈ QM for M=b

√
10b/2c. If P≥b then

SHARPEN(M, P,Vb) searches for V(z) in I = [α/β, γ/δ] for
α, β, γ, δ = BOUNDS(b,Vb(z)). Now, V(z) ∈ I since Vb(z)
satisfies V(z) − Vb(z) ≤ 10−b. Further, |I| = 10−b ≤ 1

2M2 .
Due to Kwek et. al. [26], we have that an interval of
size 1

2M2 contains at most 1 element of QM . Clearly,
FINDFRACTION(α, β, γ, δ) returns V(z) which is the unique
“minimal” element in I ∩QM . �

Building on the SHARPEN procedure, Algorithm 3 computes
the values in P=?[φ1Uφ2] for state formulas of the form
Ponp[φ1Uφ2] . It augments the value iteration phase from the
standard PCTL model checking algorithm.

Algorithm 3 Rational Search
function RATIONALSEARCH(M, φ, ε0):

Vinit ← INIT(M, φ)
ε ← ε0

while true do
V† ← VALUEITERATION(M, φ, V init, ε)
V? ← SHARPEN(M, dlog(1

ε
)e, V†)

if V? 6= null then
return V?

end if
Vinit ← V†

ε ← ε/10
end while

end function

Algorithm 3 begins by running value iteration up to a given
precision ε (where ε is used in the convergence criterion —
absolute or relative — described in Section III) to determine
an approximate solution vector V†. Alternatively, value
iteration could be replaced by an interval iteration algorithm
and then ε would then represent a bound on the maximum
error in the approximate solution vector. Once V† is computed,
Algorithm 2 attempts to sharpen the approximate answer to
an exact one. If it succeeds, the whole process terminates.
Otherwise, V† is further refined by re-invoking value iteration
with an increased ε precision and the sharpening process is

1Notice that we require Vb(z) to be a lower bound for V(z), instead of
|V(z) − Vb(z)| ≤ 10−b. Such an approximation can indeed be obtained
from, say, value iteration.

repeated. When successive approximations in value iteration
are computed using arbitrary precision arithmetic, Theorem 1
establishes the correctness of Algorithm 3.

Theorem 1: Let M be a MDP, ψ be a PCTL path formula
and V be the solution vector for P=?[ψ] and ε0 ∈ Q>0.
Then, RATIONALSEARCH(M,Ponp[ψ], ε0) terminates and re-
turns the exact solution vector V.

Proof (Sketch): It is easy to see that there is a b > 0
such that, for every state z, V(z) ∈ QN for N = b

√
10b/2c.

Now, since value iteration converges in the limit, we have
that the first b digits of V†(z) match that of V(z) for each
state z ∈ Z, eventually. Also, in every iteration of the loop in
Algorithm 3, SHARPEN is invoked with an incremented value
of P and eventually P ≥ b. �

While both Lemma 1 and Theorem 1 are stated for formulae
of the kind P=?[ψ], they can be easily re-factored to reason
about formulas of the form E=?[φ].

Example 5: Our experiments show that Algorithm 3 can
make non-trivial improvements to solution quality. Consider
the standard example of tossing N biased coins independently,
where each coin yields heads with probability 1/3 and tails
with probability 2/3. Analyzing the DTMC model to com-
pute the probability of the event that 11 coins land heads,
PRISM’s floating-point model checker returned the decimal
“0.000005645029269476758”. Our tool was able to correctly
determine the exact probability to be 1/177,147 by starting
with the first 12 digits of this approximate answer. This is
remarkable given that the period of this fraction (and hence its
most succinct decimal representation) is almost 20,000 digits
long. Moreover, the algorithm is able to simultaneously infer
the reachability probabilities for all of the roughly 200,000
states of the model during a single fixpoint check. This
illustrates another advantage of our technique; the algorithm
is agnostic of the number of initial states in the system. The
exact model checking engine of PRISM, on the other hand,
currently only supports systems with a single initial state.

V. RESULTS

We have implemented Algorithm 3 in our tool RATIO-
NALSEARCH as an extension of the PRISM model checker
(version 4.3.1). RATIONALSEARCH is available for download
at [5]. PRISM is comprised of four solution engines, three
of which (MTBDD, HYBRID, SPARSE) are based on sym-
bolic methods using compact data structures like MTBDDs.
The fourth engine (EXPLICIT) manipulates sparse matrices,
vectors and bit-sets directly. RATIONALSEARCH implements
Algorithm 3 on top of all four engines. It intercepts PRISM’s
routine for solving constrained reachability probabilities and
rewards, sharpening the probabilities every time it is invoked.

The EXPLICIT engine of PRISM is implemented in Java.
To support this engine, our tool uses the libraries JScience [4]
and Apfloat [1] to construct the transition matrix using rational
entries, perform matrix-vector multiplications for the fixpoint

1 2 3 4 5 6 7 8 9 10 11

Model RATIONALSEARCH PRISM STORM

EXPLICIT MTBDD HYBRID

Name Parameter States Time Overhead Time Overhead Time Overhead Time Time

(s) (%) (s) (%) (s) (%) (s) (s)

Biased Coins 11 177,147 23.1 336 0.125 179 0.178 225 1449.7 3.2

Dice 6 4,826,809 OOM N/A 1.8 2.1 6.5 12 TO 63

Din. Cryptographers 8 187,457 18.9 197 0.278 70 0.364 105 356.2 2.4

Din. Philosophers 3 956 0.41 165 1.9 4.8 0.133 98 3.128 0.65

ECS 14 4,815,782 OOM N/A 2.4 23 11.6 79 TO TO

Fair Exchange 400 321,600 14.6 423 2.0 44 2.2 51 TO 1.1

Firewire 11,000 428,364 122.2 225 15.1 0.2 19.5 21 232.3 29.5

Leader Election 4 12,302 1.8 226 5.0 30 20.4 25 80 0.042

Virus Infection 3 809 0.5 165 2.8 52 0.17 93 0.98 0.032

Fig. 2. Experimental Results:. Columns 1-3 describe the benchmark examples. Columns 4-11 report the performance metrics for the various exact solution
engines. Running times are reported in seconds, averaging over 5 measurements. For the RATIONALSEARCH engines [EXPLICIT, MTBDD, HYBRID], we
additionally report overhead percentages which are calculated by comparing the running times of PRISM’s approximate engines with the corresponding
extensions in RATIONALSEARCH. We use absolute convergence criterion (ε = 10−12) for the three engines in RATIONALSEARCH and the corresponding
approx. engines in PRISM. A TO in columns 8, 10 and 11 represents a timeout (set to be 30 minutes). OOM indicates an out of memory exception.

check in Algorithm 3, and implement the Kwek-Mehlhorn
algorithm (Algorithm 1). PRISM implements the remaining
three engines using an extension of the CUDD library [2].
The off-the-shelf version of CUDD only supports floating
point numbers at the terminals. RATIONALSEARCH enhances
CUDD by allowing terminals to hold either floating points
or arbitrary precision rational numbers provided by the GNU
MP library [3]. Our extension allows the data type at the
node to be easily interchanged and the full suite of MTBDD
operations can be performed regardless of the data type. RA-
TIONALSEARCH constructs the transition matrix as a rational
MTBDD and uses Algorithm 2 to generate candidate solution
vectors over rationals starting from approximate solution vec-
tors represented as floating point MTBDDs given by PRISM’s
value iteration procedure.

Evaluation: We evaluated our tool against all of the
examples involving quantitative reachability and rewards from
the PRISM benchmark suite and case studies [6], [7] and
compared the results with the exact parametric engines im-
plemented in PRISM and STORM. Our tests were carried
out on an Intel core i7 dual core processor @2.2GHz with
4Gb RAM running macOS 10.12.4. A summary of the perfor-
mance on quantitative PCTL properties is given in Figure 2.
The model checking times reported in the table include the
time required to build the transition matrix using rational
numbers. The reported times are an average of five runs for
each engine/tool. We observed that, among the engines based
on symbolic techniques, the SPARSE engine of PRISM was
being consistently outperformed by the MTBDD and HYBRID
engines. We, therefore, do not report its performance statistics.

Analysis of Results: The objective of our experimental
evaluation is two-fold. First, we would like to compare our
implementation against state-of-the-art tools for exact quanti-
tative model checking (see Columns 4,6,8,10,11). The second
objective is to analyze the performance overhead that our
technique adds to approximate model checking techniques (see
Columns 5,7,9). The overhead measures the additional time
incurred by RATIONALSEARCH when compared to PRISM’s
engines that perform only value iteration using inexact floating
point arithmetic.

Each implementation EXPLICIT, MTBDD and HYBRID of
RATIONALSEARCH significantly outperforms PRISM’s exact
engine; in many cases, by several orders of magnitude. We
also found at least one class of examples (Biased Coins) where
PRISM’s exact engine gave incorrect probabilities.

The comparison with STORM is more competitive. On most
examples with a large number of states (ECS, Biased Coins,
Dice), the running times achieve by RATIONALSEARCH are
much lower than those from STORM. On smaller examples,
the times were more comparable, with RATIONALSEARCH
running slightly faster on the majority of examples.

On several examples with large state spaces, the EXPLICIT
engine fails due to an out of memory exception. This can be
attributed to the fact that the implementation stores two copies
of the transition matrix in memory. On all the examples where
EXPLICIT fails, the symbolic engines (MTBDD and HYBRID)
find the solution quickly.

For the symbolic engines MTBDD and HYBRID, we found
that RATIONALSEARCH can infer exact solutions from ap-
proximate ones, while typically not adding more than dou-
ble overhead to approximate engines that are known to run

extremely fast. The EXPLICIT engine incurs a much higher
overhead. This difference is due to the fact that MTBDD’s
perform symmetry reductions, storing a single copy of each
possible terminal value. This allows our implementation to run
the Kwek-Mehlhorn algorithm a single time for all states shar-
ing the same approximate value. This luxury is not afforded
by the EXPLICIT engine, with carries out the Kwek-Mehlhorn
procedure for every state in the model. For nested PCTL prop-
erties (such as ECS), the SHARPEN procedure must compute
multiple fixpoints, adding to the overhead time. We would
note, however, that for this example RATIONALSEARCH is
the only tool that found a solution without hitting a timeout.

VI. CONCLUSION

Techniques for exact model checking allow one to avoid
logical errors in system analysis that can arise due to ap-
proximation techniques. We presented an algorithm and tool,
RATIONALSEARCH, that computes the exact probabilities de-
scribed by PCTL formulas for DTMCs and MDPs. Our tool
works by sharpening approximate results obtained through
value iteration, allowing it to benefit from the performance
enhancements gained through approximation techniques. Our
experimental evaluation concurs with this hypothesis, and
shows that our approach often performs significantly better
than existing exact quantitative model checking tools while
also scaling to large model sizes. For future work, we plan
to combine our algorithm with more precise approximation
techniques such as interval iteration. We believe there are also
performance enhancements that can be achieved by a tighter
integration with the Kwek-Mehlhorn algorithm, wherein com-
putations from previous iterations can be reused.

REFERENCES

[1] Apfloat. http://www.apfloat.org/.
[2] CUDD. http://vlsi.colorado.edu/∼fabio/CUDD/html/.
[3] GNU Multiple Precision Arithmetic Library. https://gmplib.org/.
[4] JScience. http://jscience.org/.
[5] RationalSearch. https://publish.illinois.edu/rationalmodelchecker/.
[6] (2017) PRISM Benchmark Suite. http://www.prismmodelchecker.org/

benchmarks/. [Online; accessed 1-January-2017].
[7] (2017) PRISM Case Studies. http://www.prismmodelchecker.org/

casestudies/. [Online; accessed 1-January-2017].
[8] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation

and Mind Series). The MIT Press, 2008.
[9] C. Baier, J. Klein, L. Leuschner, D. Parker, and S. Wunderlich, “Ensuring

the reliability of your model checker: Interval iteration for markov
decision processes,” in Computer Aided Verification, 2017.

[10] L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli, “Policy
optimization for dynamic power management,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 1999.

[11] D. Bhaduri, S. K. Shukla, P. S. Graham, and M. B. Gokhale, “Reliability
analysis of large circuits using scalable techniques and tools,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 54, 2007.

[12] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” Computers, IEEE Transactions on, vol. 100, no. 8, 1986.

[13] D. Chaum, “The dining cryptographers problem: Unconditional sender
and recipient untraceability,” Journal of cryptology, vol. 1, no. 1, 1988.

[14] C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes,
J.-P. Katoen, and E. Abraham, “Prophesy: A probabilistic parameter syn-
thesis tool,” in International Conference on Computer Aided Verification,
CAV, 2015.

[15] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A storm is coming:
A modern probabilistic model checker,” in Computer Aided Verification:
29th International Conference, CAV 2017.

[16] E. W. Dijkstra, “Self-stabilization in spite of distributed control,” in
Selected writings on computing: a personal perspective. Springer, 1982.

[17] M. Duflot, M. Kwiatkowska, G. Norman, and D. Parker, “A formal anal-
ysis of bluetooth device discovery,” International Journal on Software
Tools for Technology Transfer (STTT), vol. 8, no. 6, pp. 621–632, 2006.

[18] M. Fujita, P. C. McGeer, and J.-Y. Yang, “Multi-terminal binary decision
diagrams: An efficient data structure for matrix representation,” Formal
methods in system design, vol. 10, no. 2-3, pp. 149–169, 1997.

[19] S. Giro, “Efficient computation of exact solutions for quantitative
model checking,” in Proc. 10th Workshop on Quantitative Aspects of
Programming Languages (QAPL’12), 2012.

[20] S. Haddad and B. Monmege, “Reachability in mdps: Refining conver-
gence of value iteration,” in International Workshop on Reachability
Problems. Springer, 2014, pp. 125–137.

[21] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “PARAM:
A model checker for parametric Markov models,” in International
Conference on Computer Aided Verification (CAV’10), 2010.

[22] J. Han, H. Chen, E. Boykin, and J. Fortes, “Reliability evaluation of logic
circuits using probabilistic gate models,” Microelectronics Reliability,
2011.

[23] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier, “Spudd: Stochastic
planning using decision diagrams,” in Proceedings of the Fifteenth
conference on Uncertainty in artificial intelligence, 1999.

[24] B. Jeannet, P. D’Argenio, and K. Larsen, “Rapture: A tool for verifying
Markov decision processes,” in Proc. Tools Day, affiliated to 13th Int.
Conf. Concurrency Theory (CONCUR’02), 2002.

[25] J.-P. Katoen, M. Khattri, and I. Zapreevt, “A markov reward model
checker,” in Second International Conference on the Quantitative Eval-
uation of Systems (QEST’05). IEEE, 2005.

[26] S. Kwek and K. Mehlhorn, “Optimal search for rationals,” Information
Processing Letters, vol. 86, no. 1, pp. 23–26, 2003.

[27] M. Kwiatkowska, G. Norman, and D. Parker, “Controller dependability
analysis by probabilistic model checking,” in 11th IFAC Symposium on
Information Control Problems in Manufacturing (INCOM’04), 2004.

[28] M. Kwiatkowska, G. Norman, and J. Sproston, “Probabilistic model
checking of the IEEE 802.11 wireless local area network proto-
col,” in Proc. 2nd Joint International Workshop on Process Algebra
and Probabilistic Methods, Performance Modeling and Verification
(PAPM/PROBMIV’02), 2002.

[29] ——, “Probabilistic model checking of deadline properties in the IEEE
1394 FireWire root contention protocol,” Formal Aspects of Computing,
vol. 14, no. 3, pp. 295–318, 2003.

[30] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification
of probabilistic real-time systems,” in International Conference on
Computer Aided Verification. Springer, 2011, pp. 585–591.

[31] K. L. McMillan, Symbolic Model Checking. Norwell, MA, USA:
Kluwer Academic Publishers, 1993.

[32] N. Mohyuddin, E. Pakbaznia, and M. Pedram, “Probabilistic error
propagation in a logic circuit using the boolean difference calculus,”
in Advanced Techniques in Logic Synthesis, Optimizations and Applica-
tions. Springer, 2011, pp. 359–381.

[33] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla, “Evaluating
the reliability of nand multiplexing with prism,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2005.

[34] Q. Qiu, Q. Qu, and M. Pedram, “Stochastic modeling of a power-
managed system-construction and optimization,” IEEE Transactions on
computer-aided design of integrated circuits and systems, 2001.

[35] M. Rabin, “Randomized Byzantine generals,” in Proc. Symposium on
Foundations of Computer Science, 1983, pp. 403–409.

[36] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker, Mathematical
Techniques for Analyzing Concurrent and Probabilistic Systems, P.
Panangaden and F. van Breugel (eds.), ser. CRM Monograph Series.
American Mathematical Society, 2004, vol. 23.

[37] J. J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker, Mathematical
techniques for analyzing concurrent and probabilistic systems. Amer-
ican Mathematical Soc., 2004.

[38] R. St-Aubin, J. Hoey, and C. Boutilier, “Apricodd: Approximate policy
construction using decision diagrams,” in Advances in Neural Informa-
tion Processing Systems, 2001, pp. 1089–1095.

[39] R. Wimmer, A. Kortus, M. Herbstritt, and B. Becker, “Probabilistic
model checking and reliability of results,” in Design and Diagnostics
of Electronic Circuits and Systems, 2008. DDECS 2008. 11th IEEE
Workshop on. IEEE, 2008, pp. 1–6.

