
Sampling Invariants from Frequency Distributions

Grigory Fedyukovich Samuel J. Kaufman Rastislav Bod́ık
University of Washington Paul G. Allen School of Computer Science & Engineering

{grigory, kaufmans, bodik}@cs.washington.edu

Abstract—We present a new SMT-based, probabilis-
tic, syntax-guided method to discover numerical induc-
tive invariants. The core idea is to initialize frequency
distributions from the program’s source code, then
repeatedly sample lemmas from those distributions,
and terminate when the conjunction of learned lemmas
becomes a safe invariant. The sampling process gets
further optimized by priority distributions fine-tuned
after each positive and negative sample. The stochastic
nature of this approach admits simple, asynchronous
parallelization. We implemented and evaluated this
approach in a tool called FreqHorn which shows com-
petitive performance on well-known linear and some
non-linear programs.

I. Introduction

Automated formal verification of programs handling
unbounded loops is reduced to finding safe inductive
invariants that over-approximate the sets of reachable
states, but precise enough to prove unreachability of the
error state. Successful solutions to this problem include
Counterexample-Guided Abstraction Refinement [1] and
Property Directed Reachability (PDR) [2], [3], [4], but
they are not guaranteed to deliver appropriate invariants.

We aim at learning inductive invariants in an
“enumerate-and-check” manner [5], [6]. While this ap-
proach in general meets a lot of skepticism, there are
particular synthesis tasks which can be efficiently solved
using tailored heuristics. Our intuition behind applying
this synthesis paradigm to discover invariants is that an
invariant can often be caught on the surface, i.e., it to
some degree imitates the syntactical constructions which
appear in the source code.

Source code can give hints for guessing a candidate to be
checked for invariance. Any information of occurrences of
variables, constants, arithmetic and comparison operators,
and their applications can potentially guide the search
of invariants. The research question we address in this
paper is whether a probability distribution constructed by
processing the source code could help sampling successful
candidates. This reduces the number of invariance checks
and decreases the total verification time.

We contribute a framework for learning invariants using
sampling from probability distributions obtained after
collecting multiple facts about the given source code.
Before sampling, we fix a number of features which could
belong to each invariant. We then split the code in clauses,
normalize each clause, and check how many of the pre-
determined features belong to it. The statistics collected

from all normalized clauses define a number of frequency
distributions.
The main workhorse in our framework is a repetitive

process that samples different pieces of a candidate invari-
ant from the frequency distributions and then assembles
them together. Each assembled candidate has a certain
feature with a probability specified in the corresponding
distribution. So it is likely that our sampled candidates
are in some sense representative. Finally, the candidate is
checked using an off-the-shelf SMT solver. If it is proven to
be an actual invariant, our algorithm stores it and proceeds
to discovering other invariants. The search continues until
all invariants that are needed to verify safety are discov-
ered, or until the search space is exhausted.
Our second contribution is an algorithm that combines

sampling from frequency distributions and sampling from
priority distributions created on the fly and adjusted
after each positive and negative sample. That is, once a
candidate is checked, some “likely unrelated” candidates
get higher priorities for being sampled in the coming itera-
tions. We show how this strategy can be made aggressive,
i.e., the completeness of the search space exploration is
traded off for widening of candidate diversity.
The approach has been implemented in a tool called

FreqHorn which naturally admits parallelization. Freq-
Horn uses an SMT solver to check each sample for invari-
ance. The learning strategy with priority distributions is
shown to be extremely effective in practice, despite for
some pathological situations it affects the convergence. As
expected, our tool is competitive to the closely related
machine-learning-based tools for invariants learning, and
in some cases it is more effective than PDR-based tools.
The rest of the paper is structured as follows. Sect. II

briefly discusses the fundamentals of our verification prob-
lem. Then, in Sect. III, we introduce the framework to
learn numerical invariants, describe its optimizations and
drawbacks, and in Sect. IV, we describe our parallel
implementation, evaluation, and comparison with other
tools. Sect. V has an overview of the related work, and
Sect. VI concludes the paper.

II. Background

A. Programs and their inductive invariants

We use vector notation to denote sequences (e.g., of
variables or constants). We assume the first-order formulas
𝜙p𝑥⃗q P Expr in the paper. For simplicity, we write 𝜙
when the arguments are clear from the context. For an

implication between 𝜙,𝜓 P Expr , we write 𝜙 ùñ 𝜓; 𝜙 is
said to be stronger than 𝜓, and 𝜓 – weaker than 𝜙. If 𝜙 is
satisfiable, we write 𝜙 ­ùñ K (and 𝜙 ùñ K otherwise).
Formula 𝜓 is called a tautology if 𝜓 ùñ K.

Definition 1. A program P is a tuple xVar , Init ,Try,
where Var

def
“ V YV 1 is a set of input and output vari-

ables; Init P Expr encodes the initial states over V ; and
Tr P Expr encodes the transition relation over Var.

A state is a valuation to all variables in V . For every
input variable 𝑥 P V , there is a corresponding output
variable 𝑥1 P V 1 (i.e., the value of 𝑥 in the next state).

Definition 2. Let 𝑃 “ xV YV 1, Init ,Try; a formula Inv
over V is an inductive invariant if the following conditions
(respectively called initiation and consecution) hold:

InitpV q ùñ InvpV q (1)

InvpV q ^ TrpV ,V 1q ùñ InvpV 1q (2)

Example 1. Consider Fig. 1 showing program Bradley

named after its appearance in [2]. It has counter x that
gets repeatedly added to variable y. Examples of inductive
invariants include 𝑥 ě 0, 𝑥 ě 0^𝑦 ě 0, 𝑥 ě 0^𝑥`𝑦 ě 0,
and 𝑥 ě 0^ 𝑦 ´ 𝑥 ě 0.

Lemma 1. Given program 𝑃 , if Inv1 and Inv2 are induc-
tive invariants for 𝑃 , then Inv1^ Inv2 is also an inductive
invariant.

Lemma 1 does not work in the reverse direction: if a
conjunction of formulas is an inductive invariant then each
conjunct in isolation could not be an inductive invariant.
For example, 𝑥 ě 0 ^ 𝑦 ě 0 is an inductive invariant for
Bradley, but 𝑦 ě 0 is not an inductive invariant.

Lemma 2. Given program 𝑃 “ xVar , Init ,Try, let
Inv1 be an inductive invariant for 𝑃 , program 𝑃1 be
xVar , Init ,Tr ^ Inv1y, and Inv2 be an inductive invariant
for 𝑃1; then Inv1 ^ Inv2 is an inductive invariant for 𝑃 .

Lemma 2 enables incremental invariant discovery. For
example, for Bradley, one could find an inductive in-
variant 𝑥 ě 0 first and then conjoin it to the transition
relation. It remains to find an inductive invariant satisfying
the strengthened transition relation, e.g., 𝑦 ě 0. Finally,
conjunction 𝑥 ě 0^ 𝑦 ě 0 is an invariant for Bradley.

Definition 3. A verification task is a pair x𝑃,Bady, where
𝑃 “ xV YV 1, Init ,Try is a program, and Bad is a formula
encoding the error states over V .

A verification task has a solution if the set of error states
is not reachable. We call the program safe in this case.
Safety is decided by discovering a safe inductive invariant,
a formula that covers the initial state, is closed under the
transition relation, and does not cover the error state.

int x = y = 0;

while (*) {

x = x + 1;

y = y + x;

}

assert(y >= 0);

Figure 1: Possibly infinite loop over algebraic integers (cf. [2]).

Definition 4. Let 𝑃 “ xV Y V 1, Init ,Try and x𝑃,Bady
be a verification task; an inductive invariant Inv for 𝑃 is
called safe if:

InvpV q ^ BadpV q ùñ K (3)

Examples of safe inductive invariants for Bradley in-
clude 𝑥 ě 0^ 𝑦 ě 0 and 𝑥 ě 0^ 𝑦 ´ 𝑥 ě 0.

B. Sampling from probability distributions

Definition 5. A probability distribution on a set 𝐴 is a
function 𝑝 : 𝐴 Ñ R, such that @𝑎 P 𝐴 . 0 ď 𝑝p𝑎q ď 1 and
ř

𝑎P𝐴

𝑝p𝑎q “ 1.

In this paper, we consider a process which, given a
set of formulas and a probability distribution, chooses at
each iteration an element from the set with a probability
determined by the distribution.

Example 2. Given four formulas over 𝑥 and 𝑦, a proba-
bility distribution 𝑝 Bradley could be defined as follows:

𝑥 ě 0 ÞÑ 4{10

𝑦 ě 0 ÞÑ 3{10

𝑥` 𝑦 ě 0 ÞÑ 2{10

𝑦 ´ 𝑥 ě 0 ÞÑ 1{10

In order to prove program Bradley safe, it could be
sufficient to sample from distribution 𝑝 Bradley two times
and to check invariance incrementally for each sample.
Assuming that formula 𝑥 ě 0 was sampled at the first round
(with probability 0.4), it is enough to sample either 𝑦 ě 0 or
𝑦´𝑥 ě 0 (with probability 0.3` 0.1). Thus, the probability
of discovering a safe inductive invariant in two steps equals
0.4 ¨ p0.3` 0.1q “ 0.16.

Consider now a scenario that rejects all samples that
were already checked for invariance (e.g., by nudging
the distribution accordingly). It is easy to see that the
probability of discovering a safe inductive invariant (in two
steps) increases.
In the next section, we discuss a practical way of

creating both, the sets of samples, and their probability
distributions.

III. Learning Numerical Invariants

A. Grammar and probabilistic production rules

Fig. 2 shows a grammar for generating the candidate
inductive invariants (also referred to as the sampling

𝑐 ::“ 𝑐1
ˇ

ˇ 𝑐2
ˇ

ˇ . . .
ˇ

ˇ 𝑐ℓ

𝑘 ::“ 𝑘1
ˇ

ˇ 𝑘2
ˇ

ˇ . . .
ˇ

ˇ 𝑘𝑚

𝑥 ::“ 𝑥1
ˇ

ˇ 𝑥2
ˇ

ˇ . . .
ˇ

ˇ 𝑥𝑛

𝑙𝑖𝑛𝑐𝑜𝑚 ::“ 𝑘 ¨ 𝑥` 𝑘 ¨ 𝑥` . . .` 𝑘 ¨ 𝑥

𝑖𝑛𝑒𝑞 ::“ 𝑙𝑖𝑛𝑐𝑜𝑚 ą 𝑐
ˇ

ˇ 𝑙𝑖𝑛𝑐𝑜𝑚 ě 𝑐

𝑐𝑎𝑛𝑑 ::“ 𝑖𝑛𝑒𝑞 _ 𝑖𝑛𝑒𝑞 _ . . ._ 𝑖𝑛𝑒𝑞

Figure 2: Sampling grammar.

grammar). The formulas are generated using probabilistic
production rules. In contrast to standard non-deterministic
production rules, each choice is in line with a particular
probability distribution, making the samples more pre-
dictable.

The sampling works in a top-to-bottom manner. Given
a probability distribution 𝑝_ for the arities of the 𝑜𝑟-
operator, we sample a value 𝑛 from 𝑝_ and reserve 𝑛
slots for operands of _ (linear inequalities). Then, for each
1 ď 𝑖 ď 𝑛, we sample a non-empty subset 𝑥⃗ Ď V of
variables from a given probability distribution 𝑝`. Then,
given a sequence of probability distributions t𝑝𝑘𝑗u for
scalar coefficients for each variable 𝑥𝑗 P V , we sample
a value 𝑘𝑗 P 𝐾 Ď Rzt0u. Summing products of each 𝑘𝑗
with 𝑥𝑗 , we get a linear combination (denoted t𝑥𝑗 , 𝑘𝑗u).
Lastly, for each inequality, we sample a binary comparison
operator (either ą or ě) and a constant 𝑐 P 𝐶 Ď R from
given probability distributions 𝑝𝑜𝑝 and 𝑝𝑐, respectively.

Each conjunction-free sample is individually checked for
invariance. Following Lemma 2, each successful sample is
conjoined to the transition relation, and thus it will be
used while checking invariance of samples in the future.
This lets us discover conjunctive invariants without having
the conjunction operator in the sampling grammar.

Note that the sampling grammar does not contain
the comparison operators other than ą and ě. The ex-
pressiveness of formulas is achieved by providing large
enough sets of 𝐾 and 𝐶 for numerical coefficients and
constants: if an element is in a set, its additive inverse
is also in the set. Thus, instead of generating formula
𝑘1 ¨𝑥1` . . .`𝑘𝑛 ¨𝑥𝑛 ă 𝑐, we generate an equivalent formula
p´𝑘1q ¨ 𝑥1 ` . . . ` p´𝑘𝑛q ¨ 𝑥𝑛 ą ´𝑐 (see more details in
Sect. III-B).

In practice, there could be dependencies among ingredi-
ents of a sample. For instance, the number of disjuncts in
a sample could affect the variables, coefficients, constants,
and the comparison operators appearing in each disjunct.
Because our sampling is hierarchical, the dependencies
propagate top-to-bottom. To formally address this, we
allow the production rules operate over conditional prob-
ability distributions.

B. Value ranges and frequency distributions

The sampling grammar imposes the fixed structure
on the candidate invariants. The key to success while
assembling each candidate is to fix the sets of numerical
constants 𝐾 and 𝐶. Our contribution is the technique
that 1) automatically constructs these sets and 2) supplies
each production rule in the grammar with the probability
distribution. We achieve both targets via exploring the
Init , Tr , and Bad formulas, included in the verification
task, and calculating the frequencies of appearances of
particular constants.
The algorithm of frequency calculations is informally

described below. It starts with converting the Init , Tr , and
Bad formulas to the Conjunctive Normal Form, splitting
them into clauses (i.e., disjunctions of linear inequalities)
and inserting the clauses to two sets, denoted respectively
AV and AVYV 1 . Set AV contains elements which have
appearances of input variables V only (i.e., all elements
obtained from Init or Bad and possibly some elements
from Tr). Set AVYV 1 contains elements which have ap-
pearances of input and output variables V and V 1 at the
same time (e.g., 𝑥1 “ 𝑥` 2 which can be originated from
Tr).

Then, for each clause a P AV , an application of ‰, “,
ă, or ď is replaced by application(s) of ą or ě:

𝐴 ă 𝐵
´𝐴 ą ´𝐵

𝐴 ď 𝐵
´𝐴 ě ´𝐵

𝐴 “ 𝐵
𝐴 ě 𝐵 ^´𝐴 ě ´𝐵

𝐴 ‰ 𝐵
𝐴 ą 𝐵 _´𝐴 ą ´𝐵

Note that in case a “ p𝐴 “ 𝐵q the resulting formula is
conjunction a` ^ a´, and thus a is replaced by a` and
a´, i.e., AV Ð AV ztau Y ta`, a´u. After this rewriting,
we assume that each clause a P AV matches the sampling
grammar. Thus, it is straightforward to determine the
arity of the _-operator (and include them to set 𝑁),
numerical coefficients (and include them to set 𝐾), and
constants (and include them to set 𝐶).
Additionally, we collect constants which appear in

clauses AVYV 1 and include them to 𝐾. The last trick is
to include products 𝑐 ¨ 𝑘 to 𝐾, for any 𝑐 P 𝐶 and 𝑘 P 𝐾;
and products 𝑐1 ¨ 𝑐2 to 𝐶, for any 𝑐1, 𝑐2 P 𝐶.

Definition 6. The set of formulas specified by the gram-
mar in Fig. 2, in which the sets of arities of the _-operator
𝑁 , numerical coefficients 𝐾, and constants 𝐶 are obtained
from AV and AVYV 1 is called an appearance-guided search
space.

Finally, we are ready to calculate various statistics, in
particular:

‚ how often 𝑎 P AV has arity 𝑖 P 𝑁 ,
‚ how often each combination of variables 𝑥⃗ Ď 𝑉
appears among the inequalities,

‚ how often a variable 𝑥 P V has a coefficient 𝑘 P 𝐾,
‚ how often a constant 𝑐 P 𝐶 appears among the
inequalities,

Algorithm 1: Sampling inductive invariants.

Input: 𝑃 “ xV YV 1, Init ,Try: program;
x𝑃,Bady: verification task

Output: learnedLemmas: set of Expr

1 AV ,AVYV 1 Ð normalizep𝑃 q;
2 𝐶,𝐾,𝑁 Ð getRangespAV ,AVYV 1 q;
3 t𝑝˚u Ð getFrequenciespAV ,AVYV 1 q;
4 learnedLemmas Ð ∅;

5 while pBadpV q ^
Ź

ℓPlearnedLemmas
ℓpV q ­ùñ Kq do

6 Cand Ð K;
7 𝑛Ð samplep𝑝_q;
8 for p𝑖 P r1, 𝑛sq do
9 𝑥⃗𝑖 Ð samplep𝑝` | 𝑛q;

10 𝑘⃗𝑖 Ð samplep𝑝𝑘 | 𝑛, 𝑥⃗q;
11 for p𝑖 P r1, 𝑛sq do

12 𝑐𝑖 Ð samplep𝑝𝑐 | 𝑖, 𝑛, t𝑥⃗𝑖, 𝑘⃗𝑖uq;

13 op𝑖 Ð samplep𝑝𝑜𝑝 | 𝑖, 𝑛, 𝑐𝑖, t𝑥⃗𝑖, 𝑘⃗𝑖uq;

14 Cand Ð Cand _ assembleIneqp𝑥⃗𝑖, 𝑘⃗𝑖, 𝑐𝑖, op𝑖q;

15 if p CandpV q ùñ Kq then continue;

16 if pInitpV q ^ CandpV q ­ùñ Kq then continue;

17 if pCandpV q ^ TrpV ,V 1q ^ CandpV 1q ^
Ź

ℓPlearnedLemmas

ℓpV q ­ùñ Kq then continue;

18 learnedLemmas Ð learnedLemmas Y Cand ;

‚ how often an operator 𝑜𝑝 P tą,ěu appears among the
inequalities.

These statistics are used to construct frequency distri-
butions, respectively: 𝑝_, 𝑝`, 𝑝𝑘0

, . . . , 𝑝𝑘𝑛
, 𝑝𝑐, and 𝑝𝑜𝑝,

and to guide the sampling process. To enlarge the search
space, an artificial 𝜖-frequency representing appearances
that never happened in the actual code (e.g., by connecting
a variable and a constant that never appear together)
could be introduced. The value of 𝜖-frequency could be
chosen heuristically based on values of other frequencies,
as long as it stays sufficiently small and positive.

C. Core algorithm

Alg. 1 shows the routines of the sampler, the invariance
checker, and their interaction. As a preprocessing step
(lines 1-3), the algorithm normalizes formulas, collects sets
𝑁 , 𝐾, and 𝐶, and calculates frequencies as described in
Sect. III-B.

The sampler generates a formula (line 14) from the
appearance-guided search space using the frequency dis-
tributions. In a naive scenario, the sampler deals with
distributions 𝑝_, 𝑝`, 𝑝𝑘0

,. . . , 𝑝𝑘𝑛
, 𝑝𝑐, and 𝑝𝑜𝑝 directly.

However, in order to make the sampling more predictable,
the algorithm creates conditional distributions and sam-
ples from them (lines 9-13), in particular:

‚ how often each combination of variables 𝑥⃗ Ď 𝑉
appears among inequalities which are contained in a
clause of the given arity 𝑛,

‚ how often a constant 𝑐 P 𝐶 appears in 𝑖𝑛𝑒𝑞, given 𝑖𝑛𝑒𝑞
is the 𝑖-th inequality among 𝑛 inequalities tineq𝑗u and

each ineq𝑗 is over particular t𝑥⃗𝑗 , 𝑘⃗𝑗u,
‚ etc . . .

As mentioned in Sect. III-A, the choice of conditional
distributions is justified by the order of sampling of each
ingredient of a candidate Cand . Thus, any change in this
order may affect the conditional distributions used for
sampling. At the same time, any conditions for the distri-
butions could be made optional (depending on the problem
in hand). Evidently, this does not affect soundness of the
entire approach, but affects the speed of convergence.

If the sampled Cand is a tautology (performed by an
SMT solver, line 15), then it is known to be an inductive
invariant, but it does not make any progress towards com-
pleting the verification; thus Cand should be withdrawn.
It would also make sense to withdraw all unsatisfiable
candidates, but by construction, the number of products
𝑘𝑖 ¨ 𝑥𝑖 in each disjunct is always positive, which makes
Cand always satisfiable.
The checker decides a number of local SMT queries per

each Cand . A negative result – i.e., whenever Cand is a
tautology or the initiation or the consecution check fails
(line 16 or 17, respectively) – is called an invariance failure.
Otherwise, the result is positive and is called a learned
lemma. Each new learned lemma is book-kept (line 18)
for the safety check (line 5), and also for the consecution
checks (line 17) of candidates coming in the next iterations
(recall Lemma 2). The sampler and the checker alternate
until a safe inductive invariant is found.

Theorem 1. If a safe inductive invariant can be expressed
by a conjunction of formulas within the appearance-guided
search space; then the probability that Alg. 1 eventually
discovers it tends to 1.

D. Prioritizing the search space

The success of techniques based on syntax-guided syn-
thesis (SyGuS) depends on how effectively the search
space is pruned after a positive or negative sample is
examined. To avoid repeatedly appearing learned lemmas
and invariance failures in the future, we introduce a pool
of all samples and refer to it whenever a new candidate is
sampled. Furthermore, we employ a lightweight analysis
to identify and block some closely related candidates
from being sampled and prioritize some likely unrelated
candidates to being sampled and checked for invariance.

Definition 7. The priorMap
x𝑥⃗,⃗𝑘y function maps linear

combinations t𝑥⃗𝑖, 𝑘⃗𝑖u to joint probability distributions for
op𝑖 and 𝑐𝑖 (called priority distributions).

One natural goal of priorMap
x𝑥⃗,⃗𝑘y is to set to zero

probabilities of sampling the candidates which are 1)
already checked, 2) stronger than failures, and 3) weaker
than learned lemmas. Consequently, the probabilities of
other candidates should be increased, and we achieve it
by exploiting the ordering of constants and comparison
operators in the sampling grammar. Alg. 2 shows a version
of Alg. 1, augmented with prioritizing capabilities (the
pseudocode inherited from Alg. 1 is decoloured).

Algorithm 2: Sampling inductive invariants from pri-
ority distributions.

Input: 𝑃 “ xV YV 1, Init ,Try: program;
x𝑃,Bady: verification task

Output: learnedLemmas: set of Expr
1 AV ,A

VYV 1
Ð normalizep𝑃 q;

2 𝐶,𝐾,𝑁 Ð getRangespAV ,A
VYV 1

q;

3 t𝑝˚u Ð getFrequenciespAV ,A
VYV 1

q;

4 learnedLemmas Ð ∅;
5 while pBadpV q ^

Ź

ℓPlearnedLemmas
ℓpV q ­ùñ Kq do

6 Cand Ð K;
7 𝑛 Ð samplep𝑝_q;
8 for p𝑖 P r1, 𝑛sq do
9 𝑥⃗𝑖 Ð samplep𝑝` | 𝑛q;

10 𝑘⃗𝑖 Ð samplep𝑝𝑘 | 𝑛, 𝑥⃗q;

11 if ppriorMap
x𝑥⃗,𝑘⃗y

“ ∅q then
12 priorMap

x𝑥⃗,𝑘⃗y
Ð uniform

x𝑥⃗,𝑘⃗y
;

13 for p𝑖 P r1, 𝑛sq do

14 𝑐𝑖 Ð samplep𝑝𝑐 | 𝑖, 𝑛, t𝑥⃗𝑖, 𝑘⃗𝑖uq;

15 op𝑖 Ð samplep𝑝𝑜𝑝 | 𝑖, 𝑛, 𝑐𝑖, t𝑥⃗𝑖, 𝑘⃗𝑖uq;

16 Cand Ð Cand _ assembleIneqp𝑥⃗𝑖, 𝑘⃗𝑖, 𝑐𝑖, op𝑖q;

17 else if ppriorMap
x𝑥⃗,𝑘⃗y

“ undefinedq then continue;

18 else
19 for p𝑖 P r1, 𝑛sq do

20 𝑐𝑖, op𝑖 Ð sampleppriorMap
x𝑥⃗,𝑘⃗y

pt𝑥⃗𝑖, 𝑘⃗𝑖uqq;
21 Cand Ð Cand _ assembleIneqp𝑥⃗𝑖, 𝑘⃗𝑖, 𝑐𝑖, op𝑖q;

22 if p CandpV q ùñ Kq then

23 updateppriorMap
x𝑥⃗,𝑘⃗y

, prioritize
Ò

o⃗p, 𝑐⃗
px𝑥⃗, 𝑘⃗yqq;

24 continue;

25 if pInitpV q ^ CandpV q ­ùñ Kq then

26 updateppriorMap
x𝑥⃗,𝑘⃗y

, prioritize
o⃗p, 𝑐⃗
Ó
px𝑥⃗, 𝑘⃗yqq;

27 continue;

28 if pCandpV q^TrpV ,V 1q ^ CandpV 1q ^
Ź

ℓPlearnedLemmas
ℓpV q ­ùñ Kq then

29 updateppriorMap
x𝑥⃗,𝑘⃗y

, prioritize
o⃗p, 𝑐⃗
Ó
px𝑥⃗, 𝑘⃗yqq;

30 continue;

31 learnedLemmas Ð learnedLemmas Y Cand;

32 updateppriorMap
x𝑥⃗,𝑘⃗y

, prioritize
Ò

o⃗p, 𝑐⃗
px𝑥⃗, 𝑘⃗yqq;

For each sequence of linear combinations x𝑥⃗, 𝑘⃗y
def
“

t𝑥⃗𝑖, 𝑘⃗𝑖u
(

, that has been sampled for the first time: 1)
priorMap

x𝑥⃗,⃗𝑘y gets assigned a sequence of uniform joint

distributions for each 𝑥⃗𝑖 and 𝑘⃗𝑖 (line 12), and 2) the
remaining ingredients for assembling Cand are sampled
from the frequency distributions (lines 13-16, as in Alg. 1).
Before proceeding to the next iteration, each positive
or negative result nudges distributions at priorMap

x𝑥⃗,⃗𝑘y

(line 23, 26 29, or 32).
For each x𝑥⃗, 𝑘⃗y, that has been sampled not for the

first time, there exists a sequence of non-uniform distri-
butions at priorMap

x𝑥⃗,⃗𝑘y. Further, the sampler produces
candidates from that distribution instead of the frequency
distributions (lines 19-21), and again, distributions at
priorMap

x𝑥⃗,⃗𝑘y get nudged after each positive and negative
result.

Once for some x𝑥⃗, 𝑘⃗y the search is exhausted then the
distributions at priorMap

x𝑥⃗,⃗𝑘y are said to be undefined

(line 17), and the sampler proceeds to exploring another
sequence of linear combinations. In the rest of the sub-
section, we clarify how distributions at priorMap

x𝑥⃗,⃗𝑘y get
nudged and how it might make them undefined.

Definition 8. Given x𝑥⃗, 𝑘⃗y and ineq1 _ . . ._ ineq𝑛, such

that each ineq 𝑖 is over a linear combination t𝑥⃗𝑖, 𝑘⃗𝑖u, oper-
ator op𝑖, and constant 𝑐𝑖, we write:

‚ prioritize
Ò

o⃗p, 𝑐⃗
px𝑥⃗, 𝑘⃗yq – to produce a joint probability

distribution for each 1 ď 𝑖 ď 𝑛 to sample op1𝑖 and 𝑐1𝑖
and to produce ineq 1𝑖 “ assembleIneqp𝑥⃗𝑖, 𝑘⃗𝑖, 𝑐

1
𝑖, op

1
𝑖q,

such that if ineq 𝑖 ùñ ineq 1𝑖 then the probability of
sampling op1𝑖 and 𝑐1𝑖 is set to zero, and otherwise it
increases with the growth of 𝑐1𝑖;

‚ prioritize
o⃗p, 𝑐⃗
Ó
px𝑥⃗, 𝑘⃗yq – to produce a joint probability

distribution for each 1 ď 𝑖 ď 𝑛 to sample op1𝑖 and 𝑐1𝑖
and to produce ineq 1𝑖 “ assembleIneqp𝑥⃗𝑖, 𝑘⃗𝑖, 𝑐

1
𝑖, op

1
𝑖q,

such that if ineq 1𝑖 ùñ ineq 𝑖 then the probability
of sampling op1𝑖 and 𝑐1𝑖 is set to zero, and otherwise
it decreases with the growth of 𝑐1𝑖 (symmetrically to

prioritize
Ò

o⃗p, 𝑐⃗
px𝑥⃗, 𝑘⃗yq).

Example 3. Let 𝐶 “ t´5, 0, 5u, and ineq1 _ ineq2 =
𝑥 ą ´5 _ 𝑥 ` 𝑦 ě 5 be a learned lemma for some
program 𝑃 . Then, any disjunction 𝑖𝑛𝑒𝑞11 _ 𝑖𝑛𝑒𝑞12 where
𝑖𝑛𝑒𝑞11 P t𝑥 ě ´5, 𝑥 ą ´5u, and 𝑖𝑛𝑒𝑞

1
2 P t𝑥`𝑦 ě ´5, 𝑥`𝑦 ą

´5, 𝑥 ` 𝑦 ě 0, 𝑥 ` 𝑦 ą 0, 𝑥 ` 𝑦 ě 5u is weaker or equal
to ineq1 _ ineq2, and checking its invariance would not

affect our verification process. The prioritize
Ò

o⃗p, 𝑐⃗
px𝑥⃗, 𝑘⃗yq

function outputs two probability distributions 𝑝𝑥 and 𝑝𝑥`𝑦

to sample a new comparison operator and a new constant
for 𝑥 and 𝑥` 𝑦, respectively:

𝑥 ą 5 ÞÑ 4{10 𝑥` 𝑦 ą 5 ÞÑ 1

𝑥 ě 5 ÞÑ 3{10 𝑥` 𝑦 ě 5 ÞÑ 0

𝑥 ą 0 ÞÑ 2{10 𝑥` 𝑦 ą 0 ÞÑ 0

𝑥 ě 0 ÞÑ 1{10 𝑥` 𝑦 ě 0 ÞÑ 0

𝑥 ą ´5 ÞÑ 0 𝑥` 𝑦 ą ´5 ÞÑ 0

𝑥 ě ´5 ÞÑ 0 𝑥` 𝑦 ě ´5 ÞÑ 0

Distributions priorMap
x𝑥⃗,⃗𝑘y block the sampler from pro-

ducing more formulas than needed, i.e., not only the ones
which are strictly weaker (or stronger) that the learned
lemmas (or invariance failures). Thus there is a risk to
miss some invariants and to meet divergence. However,
the intention of our synthesis procedure is to encourage
exploring a wide range of unrelated samples. While having
the risk to miss a “next door” invariant, we aggressively
increase probabilities of “far away” candidates to being
sampled. Our experiments confirm that such aggressive-
pruning strategy in many cases accelerates the invariant
discovery (see Sect. IV-B).
Note that in Alg. 2, we prioritize the search space after

a tautology in a similar fashion to how we proceed after
a learned lemma (but as in Alg. 1, we do not add it
to learnedLemmas). This trick helps blocking some more
tautologies from being sampled.

Example 4. Let 𝐶 “ t´5, 0, 5u, and ineq3 _ ineq4 =
𝑥 ě 5 _ 𝑥 ` 𝑦 ą 5 be an invariance failure for 𝑃 . The

prioritize
o⃗p, 𝑐⃗
Ó
px𝑥⃗, 𝑘⃗yq function outputs two probability

distributions 𝑝1𝑥 and 𝑝1𝑥`𝑦:

𝑥 ą 5 ÞÑ 0 𝑥` 𝑦 ą 5 ÞÑ 0

𝑥 ě 5 ÞÑ 0 𝑥` 𝑦 ě 5 ÞÑ 1{15

𝑥 ą 0 ÞÑ 1{10 𝑥` 𝑦 ą 0 ÞÑ 2{15

𝑥 ě 0 ÞÑ 2{10 𝑥` 𝑦 ě 0 ÞÑ 3{15

𝑥 ą ´5 ÞÑ 3{10 𝑥` 𝑦 ą ´5 ÞÑ 4{15

𝑥 ě ´5 ÞÑ 4{10 𝑥` 𝑦 ě ´5 ÞÑ 5{15

Definition 9. Given two probability distributions 𝑝, 𝑝1

on set 𝐴, a probability distribution 𝑝𝑚p𝑝, 𝑝
1q on 𝐴 is

defined as follows. Let 𝑠
def
“

ř

𝑎P𝐴

𝑚𝑖𝑛p𝑝p𝑎q, 𝑝1p𝑎qq, then

@𝑎 P 𝐴 . 𝑝𝑚p𝑝, 𝑝
1qp𝑎q

def
“

𝑚𝑖𝑛p𝑝p𝑎q,𝑝1p𝑎qq
𝑠 .

We write updateppriorMap
x𝑥⃗,⃗𝑘y, t𝑝𝑖uq to produce a dis-

tribution 𝑝𝑚ppriorMap
x𝑥⃗,⃗𝑘ypt𝑥⃗𝑖, 𝑘⃗𝑖uq, 𝑝𝑖q for each 𝑖 and to

store all of them in priorMap
x𝑥⃗,⃗𝑘y.

Example 5. Given 𝑝𝑥 and 𝑝𝑥`𝑦, 𝑝
1
𝑥 and 𝑝1𝑥`𝑦 obtained

in Examples 3-4 respectively, two distributions 𝑝𝑚p𝑝𝑥, 𝑝
1
𝑥q

and 𝑝𝑚p𝑝𝑥`𝑦, 𝑝
1
𝑥`𝑦q are as follows. Note that the latter

is undefined since all formulas are mapped to 0, and the
condition of Def. 5 is violated.

𝑥 ą 5 ÞÑ 0 𝑥` 𝑦 ą 5 ÞÑ undefined

𝑥 ě 5 ÞÑ 0 𝑥` 𝑦 ě 5 ÞÑ undefined

𝑥 ą 0 ÞÑ 1{2 𝑥` 𝑦 ą 0 ÞÑ undefined

𝑥 ě 0 ÞÑ 1{2 𝑥` 𝑦 ě 0 ÞÑ undefined

𝑥 ą ´5 ÞÑ 0 𝑥` 𝑦 ą ´5 ÞÑ undefined

𝑥 ě ´5 ÞÑ 0 𝑥` 𝑦 ě ´5 ÞÑ undefined

This way, since one of the two distributions at
priorMap

x𝑥⃗,⃗𝑘y is undefined, the entire x𝑥⃗, 𝑘⃗y is withdrawn
by the algorithm and is not going to be considered in the
next iterations.

E. Invariants over non-linear arithmetic

Our approach has a limited support for learning nu-
merical invariants for programs with non-linear arithmetic
computations. It naturally extends the idea of collecting
and exploiting features of the program source code. In
addition to populating sets𝑁 ,𝐾, and 𝐶 from Init , Tr , and
Bad (described in Sect. III-B), our algorithm populates set
𝑊 by applications of either 1) the modulo operator, 2) the
division operator, or 3) the multiplication operator, the list
of arguments of which contains more than one variable.

The grammar in Fig. 3 enhances the sampling grammar
with elements of 𝑊 , which are treated as fresh variables.
That is, the sampler may end up with candidates having

. . .

𝑥 ::“𝑥1
ˇ

ˇ . . .
ˇ

ˇ 𝑥𝑛
ˇ

ˇ 𝑥𝑖 div 𝑘𝑖
ˇ

ˇ 𝑥𝑖 mod 𝑘𝑗
ˇ

ˇ 𝑥𝑖 ¨ 𝑥𝑗
ˇ

ˇ 𝑥𝑖 div 𝑥𝑗
ˇ

ˇ 𝑥𝑖 mod 𝑥𝑗

. . .

Figure 3: Non-linear sampling grammar (see Fig. 2 for the omis-
sions).

int x = y = 0;

int z = *;

while (*) {

x = x + z;

y = y + 1;

}

assert(x == y * z);

Figure 4: Program with non-linear computations.

elements of 𝑊 , possibly multiplied by numeric constants
and appeared in linear combinations.

Example 6. For program shown in Fig. 4, Bad “ p𝑥 “
𝑦 ¨ 𝑧q, thus 𝑊 “ t𝑦 ¨ 𝑧u. This lets our sampler generate
candidates such as ´1¨𝑥`𝑦 ¨𝑧 ě 0 and 𝑥`´1 ¨ 𝑦 ¨ 𝑧 ě 0
which would pass the invariance check by a theory solver
over non-linear arithmetic.

F. Further extensions

Extending frequencies with redundant clauses.
Before populating the set of clauses AV from Init , Tr ,
and Bad , these formulas could be enhanced by conjoining
with some redundant clauses. A straightforward approach
would consider pairs of conjuncts of Init (respectively, Tr ,
and Bad), infer a new clause and conjoin it back to Init .
For instance, if Init “ p𝑥 “ 0q ^ p𝑦 “ 0q then it implies
𝑥 “ 𝑦; and thus we can rewrite Init to be p𝑥 “ 0q ^ p𝑦 “
0q^ p𝑥 “ 𝑦q. After the frequency distributions are created
and used for sampling, the probability of getting formulas
´1 ¨ 𝑥 ` 𝑦 ě 0 and 𝑥 ` ´1 ¨ 𝑦 ě 0 increases. In practice,
there could be many possible ways of inferring redundant
clauses, and we leave the investigation of which way is the
best for the future work.
More aggressive pruning. Besides of aggressive pri-

ority distributions, other tricks could be applied to shrink
the search space. From a set of learned lemmas tineq1 _
. . ._ ineq𝑛, ineq1, . . . , ineq𝑛´1u, it follows that formula
 ineq𝑛 is not an inductive invariant. Thus, it could
be withdrawn by the algorithm and not considered for
sampling. Furthermore, the sets 𝐶 and 𝐾 might allow
equivalent formulas (e.g., 𝑥 ą 1 and 2¨𝑥 ą 2). The priority
distributions could be nudged to block those as well.
Compensating aggressive pruning. One could intro-

duce a “reincarnating” function, which turns distributions
at priorMap

x𝑥⃗,⃗𝑘y back to uniform
x𝑥⃗,⃗𝑘y once they become

undefined, or once each next lemma is learned.

IV. Implementation and Evaluation

We implemented the proposed approach in a tool Freq-
Horn1. It takes as input a verification task in a form of
linear constrained Horn clauses. Despite we described the
algorithm in a setting of single-loop programs, FreqHorn
also supports multiple (possibly, nested) loops, but the risk
of divergence due to the search space pruning in this case
is higher.

A. Parallel architecture

FreqHorn is designed to benefit from asynchronous
parallelism. The master process takes care of the prepro-
cessing, sampling, learning, and prioritizing steps. It is
equipped with an incremental SMT solver, called safe-
Solver which holds the conjunction of all learned lemmas
till the end of the entire verification.

The most expensive computation at the FreqHorn
workflow happens to be the invariance checking. Each sam-
pled Cand requires a number of isolated SMT checks, per-
formed by worker processes. Thus each worker is equipped
with its own SMT solver, called invSolver, which exam-
ines if Cand is an inductive invariant. In particular, inv-
Solver gets reset before each tautology check, initiation
check, and consecution check. After all checks are done, a
worker communicates its positive or negative result back to
the master, and the worker becomes available for another
candidate.

When the verification starts, 𝑛 workers are available.
The master samples 𝑛 candidates in a row and sends
one sample per worker. Since each sample requires un-
predictable worker’s time, the communication between
the master and workers is asynchronous. After a learned
lemma is received, the master re-checks safety. If the safety
check failed (or an invariance failure is received), the
master creates / nudges the priority distributions, samples
a new candidate and sends it to the available worker. If
the safety check succeeded, the verification is done.

B. Evaluation

Benchmarks. We evaluated FreqHorn on a set of
76 loopy programs, taken from various sources including
SVCOMP2, literature (e.g., [2], [7]) and crafted programs.
The set contains 16 benchmarks over non-linear arithmetic
(i.e., with ¨, div, and mod operators).
Experimental setup. We used m4.xlarge instances on

Amazon Web Services, which have Intel Xeon E5-2676 v3
processors (“base clock rate of 2.4 GHz and can go as
high as 3.0 GHz with Intel Turbo Boost”) and 16GiB of
RAM. All solvers were instantiated with Z3 [8]. Due to the
stochastic nature of our learning, the FreqHorn timings
are the means of 10 independent runs. We used a timeout
of 10 mins for all runs.

1The source code and benchmarks are available at https://github.
com/grigoryfedyukovich/aeval/tree/rnd-parallel-master-slave.

2Software Verification Competition, http://sv-comp.sosy-lab.org/

10´2 10´1 100 101 102 103

10´2

10´1

100

101

102

103

Learning from frequency and priority distributions

L
e
a
rn

in
g
fr
o
m

fr
e
q
u
e
n
c
y
d
is
tr
ib
u
ti
o
n
s

Figure 5: Effect of the search space pruning / prioritizing.

10´2 10´1 100 101 102 103

10´2

10´1

100

101

102

103

FreqHorn performance

C
o
m
p
e
ti
n
g
to

o
l
p
e
rf
o
rm

a
n
c
e

Figure 6: Comparison with 𝜇Z (red); ICE-DT (green); MCMC
(blue).

Comparing FreqHorn’s learning strategies. Fig. 5
shows a scatter plot comparing the average running times
of FreqHorn with /without prioritizing the search space.
Each point in the plot represents a pair of learning runs
for the same benchmark: Alg. 2 (x-axis) and Alg. 1 (y-
axis). Priority distributions accelerated the synthesis in 48
cases, and we witnessed a speedup up to 28%. As expected,
there were six benchmarks, for which priority distributions
helped finding an invariant (i.e., Alg. 1 diverged), but there
were two another benchmarks, for which the search space
was pruned too aggressively (i.e., Alg. 2 diverged).

Comparing with other tools. Fig. 6 shows a scatter
plot comparing the timings of Alg. 2 and 𝜇Z v.4.5.0 [4],
ICE-DT [7], and MCMC [9] invariant synthesizers. With
four workers, FreqHorn outperformed 𝜇Z for 37 bench-
marks (including 32 for which 𝜇Z crashed or reached
timeout), ICE-DT for 53 (respectively, 30), and MCMC
for 67 (respectively, 49).

Compared to 𝜇Z, FreqHorn solved all non-linear tasks
and the tasks requiring large disjunctive invariants. In-

https://github.com/grigoryfedyukovich/aeval/tree/rnd-parallel-master-slave
https://github.com/grigoryfedyukovich/aeval/tree/rnd-parallel-master-slave
http://sv-comp.sosy-lab.org/

terestingly, FreqHorn was able to deliver a compact
conjunctive representation of them. Compared to its clos-
est competitor, MCMC (see Sect. V for more details),
FreqHorn exhibited more consistent performance. We
compared benchmarks for which both tools succeeded by
their coefficients of variation (i.e., the ratio of the standard
deviation to mean of the benchmark time): FreqHorn
gets 0.60, and MCMC gets 0.92. Finally, FreqHorn for
most benchmarks outperformed ICE-DT. This could be
possibly explained by the reliance of the latter on the
actual program executions, which are hard to get for non-
deterministic programs.

V. Related work

Our enumerative approach can be considered as data-
driven since it treats frequencies of various features
in the source code as data. Among other enumerative-
learning techniques, MCMC [9] employs Metropolis Hast-
ings MCMC sampler to produce candidates for the whole
invariant. Similarly to our approach, it obtains some
statistics from the code (namely, constants), but as can
be seen from Sect. IV-B, it is not enough to guarantee
consistent results. In [10], [11], [7], the data is obtained
by executing programs. Then, the learning of invariants
proceeds by analyzing the program traces and does not
take into account the source code.
There is a large body of inductive and non-enumerative

SMT-based techniques for invariant synthesis, and due to
lack of space we list only a few here. IC3 / PDR [12], [2],
[3], [4] and abductive inference [13] depend crucially on the
background theory of verification conditions which should
admit interpolation and / or quantifier elimination. Those
approaches were shown effective for propositional logic,
linear arithmetic, and arrays. Our tool, in contrast, can
discover non-linear invariants since it reduces the synthesis
task to only quantifier-free queries and does not require
interpolation.
Some prior work considered non-enumerative invariant

inference from the source code. In Formula Slicing [14],
a variant of Houdini [15], candidate invariants are cho-
sen from the Init formulas (not from Tr or Bad , as
in our case). In Niagara [16], [17] candidate invariants
are obtained from the previous versions of the program.
Despite those techniques proceed in the “guess-and-check”
manner, for each new guess they just weaken the formula
from the previous guess. In contrast, we permit much
wider search space.

Syntax-guided approaches to synthesis [6] in general
proceed by exploring the pre-determined (and adjusted
for a particular problem) grammar. Recently, the “Divide-
and-Conquer” [18] methodology, in which the problem is
being solved in small pieces, has been successfully applied
to SyGuS. Our approach has a similar underlying idea –
to learn each lemma individually and conjoin it to the
invariant – but the implementation via frequency and
priority distributions is entirely new.

VI. Conclusion

We addressed the challenge of inductive invariant syn-
thesis. Motivated by the observation that invariants can
often be learned from the “easy-to-get” ingredients, we
proposed to guide the learning process by frequency dis-
tributions, collected after a lightweight syntactic analysis
of the source code, and to further prune / prioritize the
search space. We built FreqHorn, the first tool that
constructs the grammars for candidate invariants and
distributions completely automatically, enables parallel
verification of well-known programs over linear arithmetic,
and to a limited extent supports non-linear arithmetic. In
the future, we plan to investigate how deeper statistics
about the code can help discovering more complicated
inductive invariants.

References

[1] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in CAV,
vol. 1855 of LNCS, pp. 154–169, Springer, 2000.

[2] A. R. Bradley, “Understanding IC3,” in SAT, vol. 7317 of LNCS,
pp. 1–14, Springer, 2012.

[3] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient im-
plementation of property directed reachability,” in FMCAD,
pp. 125–134, IEEE, 2011.

[4] K. Hoder and N. Bjørner, “Generalized property directed reach-
ability,” in SAT, vol. 7317, pp. 157–171, Springer, 2012.

[5] A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia, and V. A.
Saraswat, “Combinatorial sketching for finite programs,” in
ASPLOS, pp. 404–415, ACM, 2006.

[6] R. Alur, R. Bod́ık, G. Juniwal, M. M. K. Martin,
M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-Lezama,
E. Torlak, and A. Udupa, “Syntax-guided synthesis,” in
FMCAD, pp. 1–17, IEEE, 2013.

[7] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning in-
variants using decision trees and implication counterexamples,”
in POPL, pp. 499–512, ACM, 2016.

[8] L. M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,”
in TACAS, vol. 4963 of LNCS, pp. 337–340, Springer, 2008.

[9] R. Sharma and A. Aiken, “From invariant checking to invariant
inference using randomized search,” in CAV, vol. 8559 of LNCS,
pp. 88–105, Springer, 2014.

[10] S. Gulwani and N. Jojic, “Program verification as probabilistic
inference,” in POPL, pp. 277–289, ACM, 2007.

[11] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “ICE: A
robust framework for learning invariants,” in CAV, vol. 8559 of
LNCS, pp. 69–87, Springer, 2014.

[12] A. R. Bradley and Z. Manna, “Property-directed incremental
invariant generation,” Formal Asp. Comput., vol. 20, no. 4-5,
pp. 379–405, 2008.

[13] I. Dillig, T. Dillig, B. Li, and K. L. McMillan, “Inductive invari-
ant generation via abductive inference,” in OOPSLA, pp. 443–
456, ACM, 2013.

[14] E. G. Karpenkov and D. Monniaux, “Formula slicing: Inductive
invariants from preconditions,” in HVC, vol. 10028 of LNCS,
pp. 169–185, Springer, 2016.

[15] C. Flanagan and K. R. M. Leino, “Houdini: an Annotation
Assistant for ESC/Java,” in FME, vol. 2021 of LNCS, pp. 500–
517, Springer, 2001.

[16] G. Fedyukovich, A. Gurfinkel, and N. Sharygina, “Incremental
verification of compiler optimizations,” in NFM, vol. 8430 of
LNCS, pp. 300–306, Springer, 2014.

[17] G. Fedyukovich, A. Gurfinkel, and N. Sharygina, “Property
directed equivalence via abstract simulation,” in CAV, vol. 9780,
Part II, pp. 433–453, Springer, 2016.

[18] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling Enumerative
Program Synthesis via Divide and Conquer,” in TACAS, Part
I, vol. 10205 of LNCS, pp. 319–336, 2017.

	Introduction
	Background
	Programs and their inductive invariants
	Sampling from probability distributions

	Learning Numerical Invariants
	Grammar and probabilistic production rules
	Value ranges and frequency distributions
	Core algorithm
	Prioritizing the search space
	Invariants over non-linear arithmetic
	Further extensions

	Implementation and Evaluation
	Parallel architecture
	Evaluation

	Related work
	Conclusion
	References

