First Order Temporal Logic Monitoring with BDDs

Klaus Havelund
Jet Propulsion Laboratory,
California Inst. of Technology, USA

Abstract—Runtime verification is aimed at analyzing execu-
tion traces stemming from a running program or system. The
traditional purpose is to detect the lack of conformance with
respect to a formal specification. Numerous efforts in the field
have focused on monitoring so-called parametric specifications,
where events carry data, and formulas can refer to such. Since
a monitor for such specifications has to store observed data, the
challenge is to have an efficient representation and manipulation
of Boolean operators, quantification, and lookup of data. The
fundamental problem is that the actual values of the data are
not necessarily bounded or provided in advance. In this work
we explore the use of Binary Decision Diagrams (BDDs) for
representing observed data. Our experiments show a substantial
improvement in performance compared to related work.

I. INTRODUCTION

Runtime verification (RV) allows checking whether a tem-
poral property holds during the execution of a system. The
system execution can be considered as emitting an execu-
tion trace, a sequence of events, which is then consumed
and checked by a monitor. A monitor performs for each
received event some incremental computation that is aimed
at detecting and warning as soon as the temporal property is
violated. The field of model checking has mostly focused on
propositional logics [18]. Very early RV systems, were also
based on specifications given in some form of propositional
temporal logic. A propositional temporal logic formula can
for example be translated into a finite automaton, where the
incremental computation updates the automaton state based
on the recent input reporting information captured from the
monitored system. However, the state of the art in RV has
for some time focused on monitoring so-called parametric
specifications, where events carry data, and formulas can refer
to such. Since such a monitor has to store observed data,
the challenge is efficient representation; manipulation such as
negation, conjunction, disjunction, quantification, and lookup.
The field has not settled on a single best solution. As is usually
the case, there are compromises to be made with respect to
the efficiency of algorithms and expressiveness of logics.

Temporal logics usually come in two variants: future and
past (or mixtures). As future temporal properties depend on an
infinite input, one may only provide partial information about
whether the property holds; namely, if it is already violated,
already achieved, or undecided yet [18]. The focus of this

The research performed by the first author was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. The research performed by
the second author was partially funded by Israeli Science Foundation grant
2239/15: “Runtime Measuring and Checking of Cyber Physical Systems”.

Doron Peled
Department of Computer Science
Bar Ilan University, Israel

Dogan Ulus
Verimag/Université Grenoble-Alpes
Grenoble, France

work is past temporal properties, which are also classified as
the safety temporal properties [2], [19], and are properties
for which we are capable of detecting a violation based on
the monitored current prefix of the execution, as soon as it
occurs [18]. As an example, consider a predicate open(f),
indicating that a file f is being opened, and a predicate
close(f) indicating that f is being closed. We can formulate
that a file cannot be closed unless it was opened before with
the following first order past time temporal logic formula:

Vf (close(f) — Popen(f))

Here P is the “sometimes in the past” temporal operator. This
property must be checked for every monitored event. Already
in this very simple example we see that we need to store all the
names of files that were previously opened so we can compare
to the files that are being closed. A more refined specification
would be the following, requiring that a file can be closed only
if it was opened before, and has not been closed since. Here,
we use the temporal operators & (“at previous step”) and S
(“since”):

Vf (close(f) — S(~close(f) S open(f)))

One problem we need to solve is the unboundedness caused
by negation. For example, assume that we have only observed
so far one close event close(“ab”). The subformula close(f)
is therefore satisfied for the value f = “ab”. The subformula
—close(f) is satisfied by all values from the domain of f
except for “ab”. This set contains those values that we have
not seen yet in the input within a close event. We need a
representation of finite and infinite sets of values, upon which
applying complementation is efficient.

We present a first order past time temporal logic, named
QTL (Quantified Temporal Logic), and an implementation,
named DEJAVU based on a BDD (Binary Decision Diagram)
representation of sets of assignments of values to the free
variables of subformulas. Instead of storing the values assigned
to variables, we enumerate input values as soon as we see them
and use Boolean encodings of this enumeration. We use BDDs
to represent sets of such enumerations. For example, if the
runtime verifier sees the input events open(“a”), open(“b”),
open(‘‘c”), it will encode them as 000, 001 and 010 (say, we
use 3 bits by, by and b, to represent each enumeration, with bg
being the most significant bit). A BDD that represents the set
of values {“a”,“c”} would be equivalent to a Boolean function
(—=bo A —b;y) that returns 1 for 000 and 010 (the value of b
can be arbitrary). This approach has the following benefits:

o It is highly compact. With k bits we can represent 2% val-
ues. The BDD can grow up to a maximal number of 2%+ 1
nodes; but BDDs usually compact the representation very
well [9]. In fact, we are expected to pay very little for
keeping surplus bits, as the BDD will compact away most
of their effect. Thus, we can start with an overestimated
number of bits k such that it is unlikely to see more than
2% different values for the domain they represent. We can
also incrementally extend the BDD with additional bits.

« Complementation (negation) is efficient, by just switching
the 0 and 1 leaves of the BDD. Moreover, even though at
any point we may have not seen the entire set of values
that will show up during the execution, we can safely (and
efficiently) perform complementation: values that have
not appeared yet in the execution are being accounted
for and their enumerations are reserved already in the
BDD before these values appear.

« Our representation of sets of assignments as BDDs al-
lows a very simple algorithm that naturally extends the
dynamic programming monitoring algorithm for proposi-
tional past time temporal logic shown in [14].

We first define the semantics of a predicate linear temporal
logic property for an assignment of values to its free variables
after a given execution prefix. Then we redefine it as a
function that returns the set of assignments satisfying the
property at that prefix. There, we use the union and intersection
set operators. For the final algorithm, we replace union and
intersection by BDD disjunction and conjunction operators,
respectively. We only have to keep values to represent the
current and previous state in the execution. The remaining
part of the paper is organized as follows. Section II discusses
related work. Section III presents the syntax and semantics
of the QTL temporal logic. Section IV presents the BDD-
based algorithm for monitoring a trace against a QTL for-
mula. Section V outlines the implementation, and Section VI
presents an evaluation of the implementation. Finally, Section
VII concludes the paper.

II. RELATED WORK

There are several systems that allow monitoring temporal
properties with data. The system closest to our presentation,
in monitoring first order temporal logic is the MONPOLY sys-
tem [7]. As in the current work, it monitors first order temporal
properties. In fact, it is also has the additional capabilities
of asserting and checking properties that involve arithmetic
relations among the data elements, progress of time, and a
limited capability of reasoning about the future. The main
difference between our system and MONPOLY is in the way
in which data are represented and manipulated. MONPOLY
exists in two versions. The first one models unbounded sets
of values using regular expressions (see, e.g., [16] for a
simple representation of sets of values). This version allows
unrestricted complementation of sets of data values. Another
version of MONPOLY is based on representing finite sets of as-
signments. This is based on using algebraic database operators.
For example, intersecting between two sets of assignments that

are possibly over non identical sets of variables is done using
the join operator. In that implementation complementation
is restricted, to account for finite sets. Our system is based
on representing sets of enumerations of data values as BDD
functions, and does not restrict negation.

An important volume of work on data centric runtime
verification is the set of systems based on trace slicing. These
include TRACEMATCHES [1], MoP [20], and QEA [21]. Trace
slicing is based on the idea of mapping variable bindings to
propositional automata relevant for those particular bindings.
This results in very efficient monitoring algorithms, although
with limitations w.r.t. expressiveness. QEA is an attempt to
increase the expressiveness of the trace slicing approach. It is
based on automata, as is the ORHCIDS system [11].

Other systems include BEEPBEEP [12] and TRACECON-
TRACT [5], which are based on future time temporal logic
using formula rewriting. Very different kinds of specifica-
tion formalisms can be found in systems such as EAGLE
[4], RULER [6], LOGFIRE [13] and LOLA [3]. The sys-
tem MMT [10] represents assignments as constraints solved
with an SMT solver. An encoding of BDD functions over
enumerations of values appears in [22] in the context of
datalog programs. However, that work does not deal with
unbounded domains.

III. SYNTAX AND SEMANTICS

We define here the syntax and semantics for the QTL logic.
Assume a finite set of domains Di,D;,.... Assume further
for now that the domains are infinite, e.g., they can be the
integers or strings. (In Section IV it is explained how to deal
with finite domains.) Let V be a finite set of variables, with
typical instances x, y, z. In an assignment, each variable x can
be assigned a value from its associated domain domain(x),
where multiple variables (or all of them) can be related to the
same domain. For example [x — 5,y — “abc”] is an assignment
of the values 5 and “abc” to the variables x and y, respectively.
Let T a set of predicate names with typical instances p, g,
r. Each predicate name p is associated with some domain
domain(p). (Notice that domain is used both with a predicate
name and with a variable.) A predicate is constructed from a
predicate name and a variable or a constant of the same type.
Thus, if the predicate name p and the variable x are associated
with the domain of strings, we have predicates like p(“gaga”),
p(“baba”) and p(x). Similarly, if ¢ and y are associated with
the domain of integers, then we can have the predicates ¢(3)
and ¢(y). We refer to predicates over constants as ground
predicates. A state is a finite set of ground predicates, where
each predicate name may appear at most once. An execution
o =s152... (observed at any time) is a finite sequence of states.
For example, if T = {p,q,r}, then {p(“xyzzy”),q(3)} is a
possible state. Although during monitoring we always at any
point in time only have observed a finite trace so far, the trace
can grow unbounded, as the system being monitored keeps
executing. In a monitoring context such as this, however, we
will never observe an infinite trace.

Syntax. The formulas of the core QTL logic are defined by
the following grammar, where a is a constant in domain(p).
(For simplicity of the presentation, we define here the logic
with unary predicates, but this is not due to any principle
limitation, and, in fact, our implementation supports predicates
with multiple arguments, including zero arguments, which
correspond to propositions.)

¢ = true | false | p(a) | p(x) | (V@) | (9N 9) |
@l (@S0)| Co|Ixo|Vxo

At a given state the formula p(“a”) means that p(“a”)
happened, more formally, that p(“a”) is among the ground
predicates of the state. Consider now the formula p(x), for
a variable x € V. We interpret it such that x is assigned any
value “a” where p(“a”) appears in the current state. Thus,
for interpreting p(x) Ag(y) in a state that has the predicates
p(“a”) and ¢(3), we have the assignment [x — “a”,y > 3]. The
formula (@; S ¢2) (reads @; since ¢;) means that @, occurred
in the past (including now) and since then (beyond that state)
@1 has been true. This is the past dual of the common future
time until modality [19]. The property © @ means that @ is
true in the previous state. This is the past dual of the common
future time next modality. We can also define the following
additional temporal operators: P @ = (true S @) (“previously”),
and Hp = —P—@ (“always in the past”). The operator [@;,),
borrowed from [17], has the same meaning as (=@, S @), but
reads more naturally as an interval.

In the following we present the semantics of QTL, formu-
lated in two alternative ways. First using predicates on variable
assignments, and subsequently using sets of such assignments.
In Section IV the algorithm is introduced which encodes such
sets of assignments as BDDs.

Semantics. Let y be an assignment to the variables that
appear free in a formula ¢@. Then (Y,0,i) | ¢ if @ holds
for the prefix sis;...s; of the trace ¢ with the assignment .
This is a standard definition, agreeing, e.g., with [7]. Note
that by using past operators, the semantics is not affected
by states s; for j > i. Let vars(@) be the set of free (i.e.,
unquantified) variables of a subformula ¢. We denote by
y|wm the restriction (projection) of an assignment Y to the
free varlables appearing in @. Let € be an empty assignment.
In any of the following cases, (V,0,i) = @ is defined when 7y
is an assignment over vars(@), and i > 1.

€,0,i) = true.

(&,
(¢.0,i) = pla) if p(a) < o
-E[VHa]Gl)Fp()lfp() oli].
(
(

Y,0,0) = (@AY) if (Yhars(g)-0,0) = ¢ and

Ylvarv G? i) ': “lj'

Y, O, z)): —¢ if not (v,0,i) = @.

° (%Gal) ': ((PS W) if for some 1 < j <i, ('Y‘vars(w)
v and for all j <k <i, (Yyars(g),O,k) = @

e (V,0,i)EFc@ifi>1and (y,6,i—1) =o.

e (7,0,i) = 3x @ if there exists a € domain(x) such that!

(Vb= dl,0,0) = .

,6,J) F

ly[x+ a] is the overriding of y with the binding [x — a].

The definition of the since operator S can be simplified in
a standard way such that it refers only to the positions i and
i— 1 in the sequence ©. This is based on the fact that according
to the semantics of since, (QSY) = (WV (¢ AS(QSWY))).
This will serve in the implementation to work with only
two versions of the sets of assignments, for the current and
previous state:

® (Y’Gvi) ': ((P5W) if (Y|vars(\y) o, l) ': y oor i>1,
(Ylvars((p)vcv i) ': ¢, and (’chvi* 1)): ((PSW)

The rest of the operators are defined as syntactic sugar using
the operators defined in the above semantic definitions: false =
—true, Vx @ = —3x—@, (QVY) = (-9 Ay).

Set Semantics. We now refine the semantics of the logic.
Under the new definition, /[, 5,{] is a function that returns a
set of assignments such that y € I[@, 0, iff (,0,i) = ¢. This
redefinition will later lead to a simple implementation using
BDDs, where each set of assignments will be represented as
a BDD, and the Boolean operators will correspond directly to
Boolean operators on BDDs.

In order to deal with subformulas with different sets of free
variables (hence, different domains for assignments), we apply
a projection and an extension operator to assignments over a
subset of the variables. Let I" be a set of assignments over the
variables W, and U C W. Then hide(T",U) (for “projecting ouz”
or “hiding” the variables U) is the largest set of assignments
over W\ U, each agreeing with some assignment of I" on all the
variables in W\ U. Let UNW =0, then ext(I',U) is the largest
set of assignments over W UU, where each such assignment
agrees with some assignment in I" on the values assigned to the
variables W. This means that we extend I" by adding arbitrary
values to the variables in U from their domains. We have that
hide(ext(T',U),U) =T. We define the union and intersection
operators on sets of assignments, even if they are defined over
non identical sets of variables. In this case, the assignments
are extended over the union of the variables. Thus, if I is a
set of assignments over W and I is a set of assignments over
W', then TUT" is defined as ext(I,W \ W)U ext(I",W\ W’)
and TN is ext(I, W\ W) Next(I",W\ W’). Hence, both are
defined over the set of variables W UW’.

We denote by A,,(g) the set of all possible assignments of
values to the variables that appear free in @. Thus, I[@,c,i] C
Ayars(g)- To simplify definitions, we add a dummy position 0
for sequence ¢ (which starts with s1), where every formula is
interpreted as an empty set. Observe that the value 0 and {e},
behave as the Boolean constants 0 and 1, respectively. The set
semantics is defined as follows, where i > 1.

. 1[@,6,0]20

o I[true,c,i] = {e}.

« I[p(a),o,i] = if p(a) € oli] then {e} else 0.

o I[p(v),0,i] = {[v+— d]|p(a) € ofi]}.

o I[(oAY),0,i] =I[@,0,i] N I[y,0,i].

. I[_‘(P,G,l] :Ava s(Q) \ [@76 l]

o [(9SW),0,i =I[y.0,]U(e,0.]NI[(9SY),0,i—1]).
. I[@(p,c,i]zl[(p,c,z—l].

o 1[3x9,0,i] = hide(I[@,5,i], {x}).

As before, the interpretation for the rest of the operators can
be obtained from the above using the connections between
the operators. For example, I[P, 0,i] = I[(true S @),c,i]. The
correspondence between this set based semantics and the
previous semantics, namely that y € I[@,0,i] iff (y,0,i) E @
can be proved by a simple structural induction on the size of
the formulas.

IV. AN EFFICIENT ALGORITHM USING BDDs
Representation of sets of assignments as BDDs

Our last refinement is to represent sets of assignments using
Ordered Binary Decision Diagrams (OBDDs, although we
write simply BDDs) [8]. A BDD is a compact representation
for a Boolean tree representing a Boolean function. Because of
compaction, however, the BDD forms a directed acyclic graph
rather than a tree. Each internal node is marked with a Boolean
variable. The left edge from a node represents that this variable
has the Boolean value 0, while the right edge represents that
it has the value 1. The nodes in the tree have the same order
along all paths from the root, although some of the nodes may
be missing, where the result of the Boolean function does not
depend on the value of the corresponding variable. The leaves
have the Boolean values O and 1. Thus, following a path in
this graph, moving left or right corresponding to choosing Os
or 1s, respectively, leads to a leaf node that is marked by
either a 0 or 1, representing the Boolean value returned by
the function for the Boolean values on the path. The graph is
compacted in such a way that isomorphic subtrees are “glued”
together. Instead of keeping a node b with left or right edges
that lead to the same subgraph, the node and its outgoing edges
are removed from graph representation of the BDD. (previous
edges point directly to a successor node). This means that for
the Boolean values on the prefix of the path so far, the BDD
value does not depend on the value of b. This compaction can
be quite significant. BDDs have been instrumental in achieving
a tremendous improvement in the size of systems that can be
automatically verified [9].

When a new value of some domain D; appears in a predicate
in the current state, we add it to a list of values of that domain
that were seen. In order to search efficiently if this value
already appeared, in time linear with its representation, we
can use e.g. a hash table. Thus, if we see p(“ab”), p(“de”),
p(“af”) and g(“fg”) in subsequent states, where p and g are
over the domain of strings, then we obtain a list of values
[“ab”, “de”, “af”, “fg”].

Each new value that appears in the monitored sequence is
enumerated as a binary number. We use BDDs to represent
sets of values. The BDDs are over Boolean representations
of enumerations of the observed values, according to the
order in which they appear in the input, rather than a direct
representation of the actual domain values. Thus, using two
bits, “ab” can be represented as the bit string 00 (we start
to enumerate from 00), “de” as 01, “af” as 10 and “fg” as
11. A BDD returns a 1 for each bit string representing an
enumeration of a value in the set, and 0 otherwise. Then a
BDD for a set containing the values “de” and “af”’ (2nd and 3rd

values) will return 1 for 01 and 10. If the Boolean function is
over by (for most significant bit) and b; (for least significant),
then this is the Boolean function (—bgAby)V (bg A —by).

We can now represent sets of assignments to variables as
required by our set semantics. We use a partition of the BDD
bits according to the variables. Say, we want to represent a
set S of assignments to the variables x and y, each expected
to assume no more than 8 values. Then we can use the bits
Yo Y1 Y2 X X1 X2, where xp, x; and x; represent the enumerations
of values of x, and yp, y; and y, represent the enumerations of
values of y. The BDD over these 6 bits will return 1 for each
pair of enumerations that represent an assignment of values to
x and y in the set S.

A subset of a set of k values can therefore be represented as
function on [log, (k)] bits. It can be represented as a Boolean
tree of size O(k). If we have m variables, Z',...7", where the
number of values from the domain of the variable 7' is of size
ki, then we can represent any encoding of an assignments to
the m variables with X,_;_,,[log,(k;)] bits. With this number
of bits, the BDD graph can grow up to size O(IT;—j_nk;).
However, representing this function as a BDD can often be
quite more compact.

The Algorithm

Given some value a observed in the trace as an argument
to a ground predicate, let lookup(a) return a bit string that
represents the occurrence order of appearance of a (among
other values of the same domain) in the trace. Thus, if a is
the first value occurring for that domain, lookup(a) will return
00...00. If it is the 2nd value occurring, 00...01, and so forth.
We update this representation for each new state that appears.

We use a function called build(x,a) for building a BDD
function that represents an assignment of a to the vari-
able x, independent of the other variables. For example, if
lookup(a) = 011, assuming we use only 3 bits, by, b; and
by to represent values, then build(x,a) will obtain a BDD
representation of the function —by A by A by. There may be
other bits, representing other variables, but the BDD function
is independent of them (which leads to a large compaction).

Union and intersection of sets of assignments are translated
simply to disjunction and conjunction of their BDDs represen-
tation, respectively, and complementation becomes negation.
We will denote the Boolean BDD operators as and, or and
not. To implement the existential (universal, respectively)
operators, as in the interpretation of Jx ¢, we use the BDD
existential (universal, respectively) operator over the bits that
represent (the enumeration of) values of x. Thus, we translate
dx, where x is represented using the bits xg, x1,...x¢_| into
dxg...3xx—1. We use the following BDD function to perform
existential quantification over bits: exists({(x,...,xx—1),bdd).
Finally, BDD(0) and BDD(1) are the BDDs that return always
0 or 1, respectively.

The algorithm uses these standard BDD operators, and is
almost a direct translation of the semantics using sets of
assignments. The structure of the algorithm is similar to that
of [14]. Namely, there are only two vectors (arrays) of values

indexed by subformulas: for the current state (now) and for
the previous state (pre). However, while in [14] the vectors
contain Boolean values, here the values are BDD functions.
The algorithm follows.

1) Initially, for each subformula ¢, now(¢) = BDD(0).

2) Observe a new state (as set of ground predicates) s as
input.

3) Let pre := now.

4) Make the following updates for each subformula. If @
is a subformula of y then now(@) is updated before

now(y).
« now(true) = BDD(1)
o now(p(a)) = if p(a) € s then BDD(1) else BDD(0)
(

e now(p(x)) = if Jap(a) € s then build(x,a) else
BDD(O)

+ now((p\y) = and(non(9) ow(y)

o now(—@) = not(now(®))

o now(© @) = pre(o)
o now(3x @) = exists({xo,...

5) Goto step 2.

7xk—l>7 now((p))

We can define the number of bits per domain to a large
enough number k such that we anticipate no more than
2k different values. For example, if kK = 20, this will allow
more than a million different values. In fact, large part of
the BDD that is related to bits that are not used is mostly
compacted away. To see this, recall that the BDD functions,
obtained during the runtime verification for representing the
sets of assignments for the subformulas, are functions from
the enumeration of values, according to the order in which
they appear in the input. We start enumerating from 00...00,
and then continue with 00...01, 00...10, etc. The Boolean
operators, including the negation and applying quantification,
maintain invariantly, that as long as only m < 2% values
appeared, then the values for the binary representation of the
m+ 1st to the 2¥th enumerations of values are the same (for
any combination of values of the other variables). In fact, it can
be shown by induction on the length of temporal formulas and
the input sequence that these enumerations, and in particular
the enumeration 11...11, correctly represent all the values that
were not seen so far in the input?.

Suppose now that only / < k bits are needed for storing the
current set of enumerations, where the other (most significant
bits) are 0. Then the maximal enumeration that is assigned
to input values is no larger than binary 00...0011...11, with
k—1[times Os, and [times 1s. The BDD function will return
the same Boolean values for larger enumerations of the same
domain (these will be enumerations that have at least a single

2Formally, let y be a subformula, for which a BDD By was constructed
so far. Then By will return 1 for exactly the following bit strings. Let y be
some assignment satisfying y after the current input. Construct the following
concatenation of bit strings, according to the given order on variables: for
each variable, if its value under y has appeared in the input, concatenate its
binary enumeration, otherwise, concatenate some enumeration larger than the
number of its domain values seen so far.

(
(
. wE((pS\v) =or(now(y),and(now(9), pre((9Sy)))).

1 in the most significant k —/ digits). This by itself leads to a
significant compaction.

It is important to maintain that for infinite domains there

is at least one such unused enumeration for the allocated k
bits. In particular, the largest possible enumeration 11...11
would play this role (but as discussed above, possibly also
some smaller enumerations). To see why this is important,
consider the case where all 2¥ enumerations are used (.e.,
they were seen in the execution so far) for predicate g(x).
Then Pg(x) will be represented as BDD(1), returning con-
stantly a 1. Thus, —-Pg(x) will be calculated to BDD(0),
returning constantly 0. Now, dx—Pg(x) will be translated
into Ixp3x; ... Ixx—BDD(0), and will return BDD(0) (false).
However, checking 3x—Pg(x) should have returned BDD(1)
(true), since it claims that there are values that did not occur
so far within a g predicate; indeed, for an infinite domain we
could have never seen all the possible values during a finite
execution.
Dynamic expansion of the BDDs. In case we did not
allocate in advance enough bits, it is possible to extend the
number of bits we use for representing values for a variable.
As explained above, the enumeration 11...11 of length k
represents for every variable “all the values not seen so far
in input the sequence”. Consider the following two cases:

+« When the added (most significant) bit has the value O,
the enumeration still represents the same value. Thus, the
updated BDD needs to return the same values that the
original BDD returned without the additional 0.

¢ When the added bit has the value 1, we obtain enumer-
ations for values that were not seen so far in the input.
Thus, the updated BDD needs to return the same values
that the original BDD gave to 11...11.

Suppose we have three variables, x, y and z, represented
using 3 bits each, i.e., xo, X1, X2, Yo, Y1, Y2, 20, Z1, 22, and we
want to add a new most significant bit y,,,, for representing
y. Let B be the BDD before the expansion. The case where
the value of y,, is O is the same as for a single variable. For
the case where y,, is 1, the new BDD needs to represent a
function that behaves like B when all the y bits are set to 1.
Denote this by B[yo\ 1,y1 \ 1,y2\ 1]. This function returns the
same Boolean values independent of any value of the y bits,
but it may depend on the other bits, representing the x and z
variables. Thus, to expand the BDD, we generate a new one
as follows:

((B/\ _‘ynew) \ (B[yO \ 1vy1 \ 1,)’2 \ 1] /\ynew))

The generalization of this formula to any number of variables
is clear.

Finite domains. We now show how to deal with the case
of variables that are defined over finite domains. Say we have
a BDD over enumerations of variables x, y and z, where
y has a domain of size m. Then we need k = [log,(m)]
bits, yo,...yr—1, for representing y. We need to relativize the
use of existential quantifier to m. We can encode a fixed
BDD function smaller(y,t) that expresses that the bits that

represent y have a binary value that is smaller than the
binary representation of 7. (Note that we start enumerating
from 00...00, hence we check smaller rather than smaller
or equal). For example, if we use 2 bits yp and y; then
smaller(y,3) = —(yo Ay1), as any binary number smaller than
3 will have at least yo =0 or y; = 0. Now, we need to replace
each subformula of the form Jx ¢ where x appears free in @
by Ix (smaller(x,m) A). This limits the quantification on the
bits that represent x to values that are in the finite domain with
m values. We implement universal quantification Vx ¢ using
negation (twice) and existential quantification; effectively, it is
translated into Vx (smaller(x,m) — @).

Quantifying over values seen so far. We can also extend
our logic with a construct seen(y) for a variable y. This
construct will be translated, in a similar way as explained in
the previous paragraph, into a BDD that encodes the binary
values of the bits representing y that are no bigger than the
maximal enumeration used (seen) so far for the domain of y.
We saw earlier that 3x —P g(x) should always return a frue in
an infinite domain, as it says that there is a value in the domain
of x that did not appear within a g predicate name. However,
we may intend to mean that the existential quantification is
restricted to be only over the values that were seen. In this
case, we can write 3x (seen(x) A—=Pg(x)). This can be rrue if
there is some value in the domain of x that appeared in the
execution so far within a predicate name other than g, but not
within g.

Comparing variables. Another important extension is to be
able to compare different variables, i.e., x =y (or x # y). This
can also be coded as a fixed BDD over the bit representation
of enumerations of values of x and y. This is encoded as a
BDD representing xo = yo AxX| = Y1 A.. . Xp—] = Vk—1-

V. IMPLEMENTATION

We implemented a monitoring tool for the QTL logic, called
DEJAVU. Let E be the type of n-ary predicate symbols, and
the B be the type of Boolean values. The implementation of
the monitoring algorithm presented in Section IV consists of a
program translate : Spec — (E* — B*), which, when provided
a specification generates a monitor program; the monitor
takes as input a trace (a sequence of events), and returns
a verdict, effectively a Boolean value for each event in the
trace. In the following we outline the format of the generated
monitor program. The tool is implemented in SCALA, using
the standard approach where a parser parses the specification
and produces an abstract syntax tree, which is then traversed
and translated into the monitor program. The parser is written
using SCALA parser combinators. The generated monitor
program uses the JavaBDD package [15] for generating and
operating BDDs. Log files in CSV format are parsed using
the Apache Commons CSV (Comma Separated Value format)
parser. The tool can be used for online (observing a program as
it executes) as well as offline (analyzing log files) monitoring.
We shall illustrate the monitor generation using an example.
Consider the following variation of the first property from
Section I (using syntax supported by the implementation):

class Formula_p extends Formula {
var pre: Array[BDD] = Array. fill (6)(False)
var now: Array[BDD] = Array. fill (6)(False)
var tmp: Array[BDD] = null
val var f :: var_m :: Nil = declareVariables("f", "m")

override def evaluate(): Boolean = {
now(5) = build("open")(V("£"),V("m"))
(4) = now(5).or(pre(4))
(3) = now(4).exist(var_m)
now(2) = build("close")(V("£"))
(1) = now(2).not().or(now(3))
now(0) = now(1).forAll (var_f)
tmp = now; now = pre; pre = tmp
Itmp(0).isZero

| 0 : forall f . close(f) -> exists m . P open(f,m) |

l

| 1 : close(f) -> exists m . P open(f,m) |

N

| 2 : close(f) | | 3 : exists m . P open(f,m) |

4 : P open(f,m)

5 : open(f,m)

Fig. 1: Monitor (top) and AST (bottom) for the property

prop p: forall f . close(f) — exists m. P open(f,m)

It states that if a file f is closed, it should have been opened
in the past with some access mode (read, write, ...). The
generated monitor relies on an enumeration of the subformulas
of the original formula in order to evaluate the subformulas
bottom up for each new event. Figure 1 (bottom) shows
the decomposition of the original formula into subformulas
(an Abstract Syntax Tree - AST), indexed by numbers from
0 to 5, satisfying the invariant that if a formula @ is a
subformula of a formula @, then @’s index is bigger than @;’s
index. The monitor generated from the property is shown in
Figure 1 (top). Specifically two arrays are declared, indexed
by subformula indexes: pre for the previous state and now
for the current state. A BDD here represents a predicate on
bit strings, effectively representing a set of bit strings (those
for which the BDD evaluates to true). Actual values in the
trace are uniquely mapped to such bit strings, and the BDD
therefore indirectly represents a set (set membership function)
of the actual values.

In each step the evaluate function re-computes the now
array from highest to lowest index, and returns true (ok) iff

now(0) is not the zero-BDD. Assume for example that an event
close(out) is observed. At the leaf node 2 representing the
close(f) event, the function call build ("close™)(V("£")) builds
a new BDD for out unless one has previously been computed,
in which case that is used. At composite subformula nodes,
BDD operators are applied. For example for subformula 4,
the new value is now(5).or(pre(4)), which is the interpreta-
tion of the formula P open(f,m). Quantification is solved by
performing quantification over the relevant bits of the BDD
corresponding to the variable in question.

Fig. 2: BDDs for (left) subformula 5 on the first event, (mid)
subformula 5 on the second event, (right) subformula 4 on the
second event

Example

Assume that each variable f and m is represented by three
bits. Consider the input trace, consisting of three events:
(open(input,read),open(output,write), close(out)). When the
monitor processes the first event for subformula number 5 (all
subformulas here are numbered according ot Figure 1), it will
create a bit string composed of a bit string for each parameter
f and m. As previously explained, bit strings for each variable
are allocated in increasing order: 000, 001, 010,..., hence the
first bit string representing the assignment [f—input,m—read)
becomes 000000 where the three rightmost bits represent input
and the three leftmost bits represent read. Figure 2 (left) shows
the corresponding BDD. (Note that most significant bits are
implemented lower in the BDD.) For each bit (node) in the
BDD, the dotted arrow corresponds to this bit being 0 and the
full drawn arrow corresponds to this bit being 1. In this BDD
all bits have to be zero in order to be accepted by the function
represented by the BDD.

Upon the second event, new values (output,write) are
observed as argument to the open event. Hence a new bit string
for each variable f and m is allocated, in both cases 001 (the
next unused bit string). The new combined bit string for the
assignments satisfying subformula 5 then becomes 001001,
again forming a BDD representing a single assignment, ap-
pearing in Figure 2 (mid). Subformula 4 now becomes the
union of the two BDDs, resulting in the BDD on Figure 2
(right). The existential quantification in subformula 3 causes
the BDD to be reduced to only the first 3 bits. However since
subformula 2 is still false the whole formula evaluates to true.

prop access : forall u . forall f .
access (u,f) — [login(u),logout(u)) & [open(f), close(f))

prop file : forall f .
close (f) — exists m . @ [open(f,m),close (f))

prop fifo : forall x .
(enter (x) — ! @ P enter(x)) &
(exit(x) — ! @ P exit(x)) &
(exit(x) — @ P enter(x)) &
(forall y . (exit(y) & P (enter(y) & @ P enter(x))) —
@ P exit(x))

Fig. 3: Evaluation properties in QTL

Finally, on observation of the third and last event close(out), a
new value out for f is observed, and allocated the bit pattern
010, represented by the corresponding BDD for subformula
2. As end result, for the formula in node 1 we end up with a
BDD that is neither constantly frue nor constantly false, and
hence universally quantifying over it yields false since it is
not the case that for all bit assignments it yields true.

VI. EVALUATION

DEJAVU performance is evaluated by comparing against
MONPOLY, the tool that seems to have most similarities to
DEJAVU as previously discussed. We specifically evaluated
the three temporal properties shown in Figure 3, on different
sizes of traces, while varying the number of bits allocated to
represent variables in BDDs. The properties were encoded in
MONPOLY in a 1-1 manner. The ACCESS property states that
if a file f is accessed by a user u, then the user should have
logged in and not yet logged out, and the file should have
been opened and not yet closed. The FILE property states that
if a file is closed, then it must have been opened (and not
yet closed) with some mode m (e.g. read or write). Finally,
the FIFO property is a conjunction of four subformulas about
data entering and exiting a queue. The first two subformulas
state that a datum can at most enter and exit once. The last
subformula states the FIFO principle of queues.

TABLE I: Evaluation of DEJAVU and MONPOLY

Property | Trace length | MONPOLY (sec) DEJAVU (sec)
bits per var.: 20 (40, 60)

11,006 1.9 3.13.3,32)

ACCESS 110,006 2419 6.1 (9.1, 10.9)
1,100,006 58,455.8 36.8 (61.9, 88.8)

11,004 61.1 2.8 (2.8, 3.0

FILE 110,004 7,348.7 6.3 (6.5, 8.6)
1,100,004 DNF 30.3 (43.9, 59.5)
FIFO 5,051 158.3 1954 (OOM, -)

10,101 1140.0 ERR (-, -)

Table I shows the result of the evaluation, which was
performed in the Mac OS X 10.7.5 operating system on a 2
x 2.93 GHz 6-Core Intel Xeon with 32 GB of memory. The
properties were evaluated with each tool on traces of sizes

spanning from (approximately) 5 thousand to 1 million events
(see table for exact numbers). Traces have the general form
that initially numerous opening events (login, open, enter)
occur, in order to accumulate a large amount of data stored in
the monitor, after which a smaller number of corresponding
closing events (logout, close, exit) occur. In addition, for
each trace we experimented with three different sizes of bit
vectors: 20, 40 and 60 bits, corresponding to the ability to
store respectively approximately a million, a trillion, and a
quintillion different values for each variable (the latter two
are not needed for these traces). The following abbreviations
are used: DNF = Did Not Finish (during 16 hours), OOM =
Out of Memory, and ERR = an error occurred, in this case an
array index out of bound problem in the JavaBDD package.
The important numbers to compare are in bold font.

Table I demonstrates clearly that w.r.t. the first two proper-
ties, DEJAVU outperforms MONPOLY by a factor up to 3000.
Those are substantial differences, and demonstrates that BDDs
may be an interesting way to refer to stored data. However,
for the last FIFO property, the two systems are somewhat
comparable, although MONPOLY seems to do better on this
particular property. The complexity lies in the last of the
four subformulas in the conjunction, the actual FIFO property.
Increasing the number of bits allocated per variable, from 20
to 40 and 60, does not seem to have a substantial impact on
the performance, except for the FIFO property, where it causes
an OOM result for 40 bits.

VII. CONCLUSION

We described a BDD based runtime verification algorithm
for checking the execution of a system against a first order
past time temporal logic property. The challenge is to provide
a compact representation that will grow slowly and can be
updated quickly with each incremental calculation that is
performed per each new monitored event, even for very long
executions.

We used a BDD representation of sets of assignments for
the variables that appear (free) in the monitored property. Each
value observed in the trace is represented by a BDD encoding
the value’s enumeration in appearance order. While the size
of the BDD can grow linearly with the number of represented
values, it is often much more compact, and the BDD functions
of a standard BDD package are optimized for speed. Our
representation allows assigning a redundantly large number
of bits for representing the encoding of values, so that even
extremely long executions can be monitorable. For example,
if the encoding for each variable uses 64 bits, the BDD can
hold up to 2%+ different values for each variable. Redundant
bits, used pessimistically for representing encodings in the
expectation that the number of values encountered during
the execution will grow considerably, do not cause a large
explosion in the size of the BDD. Alternatively, we showed
how to dynamically expand the BDD when the number of
values exhausts the allocated size.

Our experiments provide an optimistic view on the benefit
of using BDDs. The implementation was written in SCALA,

an object-oriented and functional programming language with
active garbage collection. We expect that using an iterative
programming language such as C will result an even quicker
runtime verification monitor. A limitation of our approach is
that the encoding of assignment sets does not blend well with
using various relations between values. While we can easily
compare variables to be equal or not equal, we are not capable
of comparing, say, whether one value is smaller than another
value in an efficient way. This remains a challenge for future
work.

REFERENCES

[1] C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins,
O. Lhotak, O. de Moor, D. Sereni, G. Sittampalam, J. Tibble, Adding
trace matching with free variables to Aspect], OOPSLA 2005, 345-364.

[2] B. Alpern, F. B. Schneider, Recognizing Safety and Liveness. Distributed
Computing 2(3), 117-126, 1987.

[3] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson,
B. Finkbeiner, H. B. Sipma, S. Mehrotra, Z. Manna: LOLA: Runtime
Monitoring of Synchronous Systems, TIME 2005, 166-174.

[4] H. Barringer, A. Goldberg, K. Havelund, K. Sen, Rule-Based Runtime
Verification, VMCAI, LNCS Volume 2937, Springer, 2004.

[5] H. Barringer, K. Havelund, TraceContract: A Scala DSL for Trace
Analysis, Proc. of the 17th International Symposium on Formal Methods
(FM’11), LNCS Volume 6664, Springer, 2011.

[6] H. Barringer, D. Rydeheard, K. Havelund, Rule Systems for Run-Time
Monitoring: from Eagle to RuleR, Proc. of the 7th Int. Workshop on
Runtime Verification (RV’07), LNCS Volume 4839, Springer, 2007.

[71 D. A. Basin, F. Klaedtke, S. Miiller, E. Zalinescu, Monitoring Metric
First-Order Temporal Properties, Journal of the ACM 62(2), 45, 2015

[8] R. E. Bryant, Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams, ACM Comput. Surv. 24(3), 293-318 (1992).

[9] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang,

Symbolic Model Checking: 10%° States and Beyond, LICS 1990, 428-

439.

N. Decker, M. Leucker, D. Thoma, Monitoring modulo theories, Journal

of Software Tools for Technology Transfer, Volume 18, Number 2, 2016.

J. Goubault-Larrecq, J. Olivain, A Smell of ORCHIDS, Proc. of the 8th

Int. Workshop on Runtime Verification (RV’08), LNCS Volume 5289,

Springer, 2008.

S. Hallé, R. Villemaire, Runtime Enforcement of Web Service Message

Contracts with Data, IEEE Transactions on Services Computing, Volume

5 Number 2, 2012.

K. Havelund, Rule-based runtime verification revisited, Journal of Soft-

ware Tools for Technology Transfer, Volume 17 Number 2, Springer,

2015.

K. Havelund, G. Rosu, Synthesizing Monitors for Safety Properties,

TACAS 2002, 342-356.

JavaBDD, http://javabdd.sourceforge.net.

J. G. Henriksen, J. L. Jensen, M. E. Jorgensen, N. Klarlund, R. Paige,

T. Rauhe, A. Sandholm, Mona: Monadic Second-Order Logic in Prac-

tice, TACAS 1995, 89-110.

M. Kim, S. Kannan, I. Lee, O. Sokolsky, Java-MaC: a Run-time

Assurance Tool for Java, Proc. of the Ist Int. Workshop on Runtime

Verification (RV’01), Elsevier, ENTCS 55(2), 2001.

O. Kupferman, M. Y. Vardi, Model Checking of Safety Properties,

Formal Methods in System Design 19(3): 291-314, 2001.

Z. Manna, A. Pnueli, Completing the Temporal Picture, Theoretical

Computer Science 83, 91-130, 1991.

P. O. Meredith, D. Jin, D. Griffith, F. Chen, G. Rosu, An overview of the

MOP runtime verification framework, J. Software Tools for Technology

Transfer, Springer, 2011.

G. Reger, H. Cruz, D. Rydeheard, MarQ: Monitoring at Runtime with

QEA, Proceedings of the 21st International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS

2015), Springer, 2015.

J. Whaley, D. Avots, M. Carbin, M. S. Lam, Using Datalog with Binary

Decision Diagrams for Program Analysis, APLAS 2005, 97-118.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

