
Estimating Worst-case Latency of on-chip Interconnects with Formal Simulation

Freek Verbeek
Open University of the Netherlands

Radboud University, Nijmegen

Nikè van Vugt
Open University of the Netherlands

Abstract—Latency is a major issue in the design and validation
of a Network-on-Chip (NoC). Various techniques for establish-
ing latency bounds exist. Formal and mathematical methods,
such as network calculus, can be used to analyze an NoC model.
Simulation-based methods can be used to estimate latency
bounds by exploring reachable states. Both have their advan-
tages and disadvantages. This paper presents an approach that
finds a middle ground between these two worlds. Our approach
is based on simulation of high-level formal models. In contrast
to traditional formal methods for worst-case latency, we do
not require error-prone manual computation or the absence of
cycles. In contrast to traditional simulation-based methods, we
leverage the high level of abstraction to explore up to billions of
states within a couple of hours. We apply our approach on an 8
core case study where a simple cache protocol runs on top of a
ring-based Spidergon architecture. We show that deadlocks or
starvations are easily found, and that for live networks a worst-
case bound estimation can be produced within reasonable time.

1. Introduction

Worst-case latency is a capricious matter: even a minor
detail in the semantics of a minor element in a network may
drastically impact whether some intricate and unexpected
worst-case scenario can occur or not. Therefore, simula-
tion is often done cycle-accurately and at a low level of
abstraction (e.g., RTL). Cycle-accurate RTL simulation is a
major research area in NoC validation [1], [2], [3]. However,
finding the intricate scenario that causes worst-case latency
can be tricky and may require simulation of many clock
cycles.

This paper presents an approach that is based on the sim-
ulation of formal models of communication interconnects.
Our approach is high-level: we purposefully do not simulate
RTL but do simulation on a high level of abstraction. This
enables fast simulation of large systems, e.g., an 8 core
Spidergon with each core running a cache coherence proto-
col. Our approach is formal: the semantics of our model
are completely formally defined in the Isabelle theorem
prover. This enforces that each individual building block
has concrete and executable semantics, and that the abstract
blocks in our model can be extracted from RTL using the
techniques described in [4], or that RTL can be generated

from them. Finally, the building blocks of our model are
generic: with various case studies we show that we can
simulate routers, queues, virtual channels, credit-counters
and state automata.

Simulation requires dealing with traffic patterns.
Latency-Rate (LR) servers are a commonly accepted model
of traffic injection and consumption [5] and are a basic
concept in the network calculus [6]. The second part of
our contribution consists of novel implementations for sim-
ulating network calculus traffic patterns in amortized cost
O(1) per clock cycle. We use these algorithms to generate
randomized traffic patterns – adhering to network calculus
constraints – guided by heuristics that may quickly lead to
a worst-case. All algorithms, models and Isabelle proofs are
available online at http://www.cs.ru.nl/∼freekver/fmcad17/.

Motivating example. Consider, e.g., Figure 4 from [7].
It presents a formal model of two communicating agents
P and Q initiating requests and answering with responses.
Each message type has its own virtual channel and a credit-
based flow control ensures that a maximum number of
packets can be en route at once. A packet that arrives at the
opposite agent experiences a nondeterministic delay before
it is sent back to its source.

The model can have a deadlock if the amount of credits
is oversized, i.e., if sufficiently many packets can be injected
to fill the cycle between the queues. That amount has to be
at least k + 2 for such a deadlock to happen. However, for
this deadlock to occur, a specific traffic pattern is necessary
where the sources inject packets sufficiently fast, the sinks
consume packets sufficiently slow, and the nondeterministic
delay is sufficiently long.

Even though that deadlock is reachable for such a traffic
pattern, for many traffic patterns it is not. If the sources
are bounded in their injection rate, if the sinks minimally
provide some service rate, and if the nondeterministic delay
is bounded, can the deadlock still occur? Our methodology
can be used to show – for example – that the deadlock may
occur in a setting where the sizes of the ingress queues are 2,
the credit-counters are oversized to 4, the delay is maximally
10 clock ticks, the sinks are eager, and the sources inject
packets at a maximum rate of 1 packet every 10 clock ticks.
If we take the exact same setting but lower the maximum
delay to 9 clock ticks, then the deadlock does not occur, even
though the credit-counters remain oversized. In that case, the
maximum latency is 23, i.e., once a packet has been injected

http://www.cs.ru.nl/~freekver/fmcad17/

it will maximally require 23 clock ticks before it arrives as
a response at the sink. Both dx queues account for a clock
tick. The packet waits 9 clocks ticks in iq1 behind another
packet. In the 11th clock cycle, the packet has reached the
front of iq1. It waits for 10 clock ticks: 9 due to the delay,
1 due to the fact that if in the last clock cycle a packet
is injected, the merge may add 1 clock tick to that delay.
This sums to 23: since the sinks are eager a packet will not
experience any delay in its final ingress queue.

To summarize, the queue sizes, the ratio between the
speeds of the sources, sinks and delays and the arbitration
policy of the merges can be such that the credit-counters are
actually not necessary, since the deadlock they are meant to
prevent cannot occur anyway. A minor change in any of
these elements can, however, significantly increase latency
or cause a deadlock.

We have simulated 108 clock cycles (about 5.5 · 107
packets) with random traffic that adheres to these constraints
without finding this scenario. The scenario does not occur
either when traffic is regular, e.g., when the sources inject
exactly each 10th clock tick. However, by simulating a high-
level formal model of the example and using traffic patterns
guided by some simple heuristics, we were able to find it
within a couple of hours.

2. Executable communication interconnect
modeling

We model communication networks formally, i.e., in
such a way that the semantics are defined mathematically,
and executable. An example of a language that allows formal
and executable modelling is xMAS [7]. Figure 1 presents
an example of an xMAS primitive: the join. This primitive
blocks its incoming packets until at both inputs a packet has
arrived, at which point it will use function f to produce a
packet at the output. The language xMAS provides various
primitives such as merges (for arbitration), switches (for
routing), sources and sinks.

a

f
c

b

(a) The xMAS join

c·irdy = a·irdy ∧ b·irdy
c·data = f(a·data, b·data)
a·trdy = c·trdy ∧ b·irdy
b·trdy = c·trdy ∧ a·irdy

(b) Formal semantics

Figure 1. Example of an xMAS primitive

Our modelling language is basically a generalization of
xMAS. Even though xMAS is executable, the primitives
are too fine-grained for efficient execution. For example, a
simple XY router takes about 17 primitives and modelling
virtual channels is inelegant [8]. Moreover, modelling, e.g.,
cache protocols with xMAS is infeasible.

In our generalization, we model communication net-
works using generic building blocks. Blocks can be fine-
grained primitives, such as arbiters or joins, but can also
be abstract statefull blocks such as routers, credit-counters
or a cache protocol. Each block is efficiently executable. A

communication network is then modelled as a composition
of executable building blocks.

We use Isabelle/HOL [9] to define the notion of “build-
ing block”, and how a communication network is composed
out of these blocks.

2.1. Definition of a generic building block

A communication network consists of blocks with an ID
of type ′block connected by a set of channels with IDs of
type ′chan1. Each channel has an initiator and a target, and
three wires, irdy, trdy and data. An irdy wire indicates the
initiator is ready to transmit data, a trdy wire indicates the
target is ready to receive, and the data wire is used for data
transmission. We use c·w to denote wire w of channel c.

datatype ′chan wire = irdy ′chan | trdy ′chan | data ′chan

The wires can have either Boolean values (in case of
irdy/trdy), a data value, or be undefined. We use the term
color to refer to the data, in the same fashion as colored
Petrinets. We assume the existence of type ′color that rep-
resents the set of colors.

datatype ′color wire-value = B bool | C ′color | Undef

A block assigns wire values to certain wires: the irdy and
data wires of its outgoing channels, and the trdy wires of
its incoming channels. It does so, based on the wire values
of its environment: the trdy wires of its outgoing channels,
and the irdy and data wires of its incoming channels. A
valuation is used to store wire values. It is a set of pairs of
wires and wire values.

type-synonym (′chan, ′color) val =
(′chan wire × ′color wire-value) set

A block is defined by two functions. The first function, eval,
takes as input the current internal state of the block and a
valuation. It computes new values for wires and adds these
to the given valuation. For example, in case of a join (see
Figure 1b), if the given valuation contains values for wires
a·irdy and b·irdy, then the semantics of the join are able to
compute a new value for wire c·irdy, and that value is added
to the valuation. The second function, tick, provides the set
of possible next internal states, given the current internal
state of the block and the current valuation. In case of a
stateless block, this function can return the empty set.

record (′chan, ′color, ′istate) block =
eval :: ′istate ⇒ (′chan, ′color) val ⇒ (′chan, ′color) val
tick :: ′istate ⇒ (′chan, ′color) val ⇒ ′istate set

The complete state σ of the communication network is then
simply a map of blocks to their internal state. Note that the
wires are not part of the state: they are combinatorial.

type-synonym (′block, ′istate) state = ′block ⇒ ′istate

1. Types preceded by an apostrophe are polymorphic, e.g., we allow any
set of block IDs and any set of channel IDs.

2.2. Composition of building blocks

To build a network out of these blocks, one has to
connect them using channels. A properly composed network
should satisfy various properties, such as: two channels may
not be connected to the same input of a block, there may be
no combinatorial cycles, there may be no dangling channels,
and for each wire it should be possible to derive a unique
and properly typed wire value. Moreover, the algorithm for
computing a valuation for the current state can be quite
contrived: it should start with blocks that can provide wire
values solely based on their current internal state (such as
queues, sinks and sources) and then propagate these values
to other blocks. That propagation is both forward (in case
of irdy/data wires) and backwards (in case of trdy wire).
Proving termination of this propagation is not possible in
the generic case: for example, if there is a combinatorial
cycle, then this propagation will not terminate.

We will show that all these problems can be dealt with
at once, by formalizing the derivation of wire values as a
least fixed point.

From now on, we assume the existence of a function block
that provides the set of blocks (modelled as a map of block
IDs to blocks). Moreover, we assume that for each block b,
derivation of the wire values is monotonically increasing.
This ensures that the valuation can only increase, i.e., if
more wire values are known, then more new wire values can
be computed. This assumption is formulated by requiring
for each block b and for each internal state x of that block,
monotonicity of its eval function. We use an Isabelle locale
to introduce a context in which such a function block exists.

locale monotone-blocks =
fixes block :: ′block ⇒ (′chan, ′color, ′istate) block
assumes mono (eval (block b) x)

We now define a function deriveWires that computes, given a
state σ, a valuation for all wires. This valuation is computed
by the following least fixpoint:

deriveWires σ ≡ µZ · eval (block b) (σ b) Z ⊆ Z

The valuation derived from a state σ is thus the smallest
valuation Z such that Z contains all wire values computed
by any block b given its current internal state (σ b).
We can now formally define the step function of a compo-
sition of building blocks. It is nondeterministic and returns,
given the current state σ, a set of next states.

definition step ::
(′block, ′istate) state ⇒ (′block, ′istate) state set
where step σ ≡
{σ ′ . ∀ b . σ ′ b ∈ tick (block b) (σ b) (deriveWires σ)}

For all blocks b, function tick is used to compute the next
internal state of that block. Function tick is given the current
internal state of that block (σ b) and the current valuation of
wires (deriveWires σ). State σ′ is a next state if and only if
all blocks b have “ticked”, i.e., moved to some next internal
state.

An Executable Communication Interconnect Model (ECIM)
is defined as a set of blocks, connected in such a way that
in each state there is a unique valuation for all wires. This
assumption at once takes care of all issues mentioned at
the beginning of this section. For example, it eliminates
combinatorial cycles, since such a cycle would prevent func-
tion deriveWires to assign a value to the wires participating
in that cycle. We extend the existing locale by adding the
assumption that for each wire w there should be a unique
value v derived by function deriveWires.

locale ECIM = monotone-blocks +
assumes ∃ ! v . (w, v) ∈ deriveWires σ

Within the ECIM context we can formulate an LTL logic
and prove all kinds of sanity theorems, such as:

1) If each block is persistent (e.g., will maintain a high
irdy signal once it is set, until a transfer occurs [10])
then the network as a whole is persistent.

2) If each block is correctly typed, e.g., does not assign
colors to irdy/trdy wires, then this property holds al-
ways globally.

3) Each xMAS primitive is an ECIM building block. We
provide a shallow embedding of a DSL that can be
used to model xMAS-like primitives into ECIM.

4) Block- and idle equations [10] can be proven correct,
e.g., the incoming channel of a queue is permanently
blocked if and only if the queue is full and its outgoing
channel is permanently blocked.

2.3. Some ECIM building blocks

Routing Logic

Arbitration

i0
i1
i2
i3

o0
o1
o2

LI LO

(a) Router

GetX!

LI LO

PutX!

DataX?

WBAck?

I M

M II

M

(b) IO Automaton

a

b

c

d

k

(c) Credit-counter

out

0

1

2

3

4

0 5 10 15 20

(d) Source

in

0

1

2

3

4

0 5 10 15 20

(e) Sink

Figure 2. ECIM Building Blocks

Figure 2 shows some of the ECIM blocks that we use.
First, we supply a router that has n inputs and m outputs.
Based on a given routing logic, incoming messages will
either be forwarded to some output, or – if they have arrived
at their destination – be sent to the local out-port. Injection
of messages can occur via the local in-port. The router
is statefull: both the queues and the arbiter who resolves
contention are part of the state.

Secondly, an IO automaton can be used to model proto-
cols. Injection of a message (!) causes the LO·irdy to be set
to high and LO·data to be set to, e.g., a GetX. Consumption
of a message (?) is done by setting LI ·trdy high whenever
LI ·data is, e.g., a DataX.

A credit-counter can be used to limit the amount of
incoming packets “between” channels b and c. It is statefull,
since it stores some integer less than k that indicates the
number of counted messages.

Finally, sources and sinks can be used to generate traffic
patterns. The next section discusses their implementation.

For all these blocks, we have implemented monotonic
eval functions that determine when they consume and inject
messages. Also, for each statefull block, we implement a
tick function.

3. ECIM simulator

Assuming we have an ECIM built of efficiently ex-
ecutable blocks, a simulation algorithm is easily defined.
We have implemented the pseudo code of Algorithm 3 in
Java. The current state σ is an object with a method step.
Each block is an object that implements a tick function
that computes a next state. After each step, the clock is
incremented.

function σ.STEP
deriveWires
for all block b do

b.tick
end for
t++

end function

Figure 3. ECIM simulation

In order to simulate a communication network, how-
ever, it is additionally required that traffic patterns can be
efficiently simulated. For the case of average case latency
analysis, one might use Poisson distributions to simulate
random injections at sources and random consumptions at
sinks. This has several major drawbacks when worst-case
latency is considered. Firstly (regarding the sources) this
does not accurately reflect the burstiness present in common
traffic patterns, such as multimedia components [11]. Sec-
ondly, even with a low Poisson rate, the network might be
flooded with traffic, even though the behavior of the source
would not allow this. Thirdly (regarding the sinks) this does
not provide a lower bound to the amount of consumptions:
it theoretically allows for sinks to be dead for any period of
time, thereby producing any worst-case latency as long as
simulation is continued sufficiently long.

To this end, we use concepts of the network calculus
to provide simulations for worst-case latency analysis [5],
[6], [12]. We provide an efficient implementation to simulate
linear arrival curves. Such curves are widely used to model
traffic flows in a network and provide bursty traffic. For
the sinks, we provide an efficient implementation of linear

service curves to model the consumption behavior of sinks.
Service curves (or LR servers) model an extensive class of
network servers.

We only provide the definitions of the network calcu-
lus that are relevant to our simulator; for an introduction
and more in-depth details, see [6], [12]. Network calculus
concerns flows of traffic in the network. An input flow is
characterized by function R(t) which returns, given the
current time t, the total cumulative amount of incoming
traffic in the interval [0, t]. An output flow is characterized
by cumulative function R∗(t). We use fnc to denote the
noncumulative version of a cumulative function f , i.e.,:

f(t) =
∑
t′≤t

fnc(t
′)

3.1. Source simulation with linear arrival curves

An arrival curve can be defined by a function α that
provides an upperbound to the amount of traffic.

Definition 1. A source injects traffic adhering to arrival
curve α, if and only if, for any time slot t:

∀0 ≤ s ≤ t ·R(t)−R(s) ≤ α(t− s)

A linear arrival curve is defined by a natural number
burst b and a real number arrival rate r: α(t) = rt + b.
Here b is a measure of burstiness, i.e., the amount of traffic
that can be injected at once, and r is a maximally sustainable
injection rate.

We provide an implementation that simulates linear
arrival curves in time O(1) (see Figure 4). In this algorithm,
we use the following variables:

Rt the cumulative flow up to the current time slot
(note that we only need to store the total flow up
to the last time slot, and not per time slot).

Rtnc the non-cumulative flow in the current time slot,
i.e., the number of injections

Mt the current minimum value of α(t−s)+R(s) for
all s < t

Require: t > 0 −→Mt = min
s<t

[α(t− s) +R(s)]

1: function COMPUTEARRIVAL
2: if t == 0 then
3: Rtnc ← 0
4: else
5: choose Rtnc ≤ ⌊Mt+ r⌋ −Rt
6: end if
7: Rt += Rtnc
8: Mt← t == 0 ? b : min(Mt+ r, b+Rt)
9: t++

10: return Rtnc
11: end function
Ensure: Mt = min

s<t
[α(t− s) +R(s)]

Figure 4. Simulation for linear arrival curves

After each call of function computeArrival, variable Rtnc
provides the number of packets that can be injected by
the source in the current time slot. At Line 5, this value
is computed by randomly choosing a value bounded by
the current minimum value of α(t − s) + R(s), plus the
rate, minus the current cumulative flow. Line 7 then updates
variable Rt, so that it contains the current cumulative flow.
Line 8 recomputes variable Mt, to preserve the invariant that
variable Mt stores the minimum value of α(t− s) + R(s)
for all s < t when t is incremented at Line 9.

We prove correctness of this algorithm, by showing that
Definition 1 holds invariably.

Theorem 1. Let R(0) = 0 and let R(t + 1) be the value
of variable Rt after the tth call of function computeArrival.
At any time slot t, we have:

∀0 ≤ t′ ≤ t ·R(t)−R(t′) ≤ α(t− t′)

The proof is omitted, but an Isabelle formalization can
be found online.

3.2. Sink simulation with linear service curves

Service curves model a server that provides a minimal
amount of service. When incoming traffic arrives at a sink,
the service curve may model a delay before packets are
consumed, but eventually the sink will provide a service with
some rate (as long as there is sufficient incoming traffic). A
linear service curve β is defined by a natural number delay
d and a real number service rate r:

β(t) =
0 t ≤ d
r(t− d) t > d

The definition of a service curve is based on the notion of
min-plus convolution.

Definition 2. Let f and g be two weakly increasing func-
tions. The min-plus convolution of f and g, notation f ⊗ g,
is defined as:

(f ⊗ g)(t) = inf
0≤s≤t

[f(s) + g(t− s)]

Definition 3. A sink consumes traffic adhering to service
curve β for the cumulative input flow R, if and only if, for
any t:

R∗(t) ≥ (R⊗ β)(t)

Our algorithm is based on Propositions 1.3.1 and 1.3.2
from [6]. We here provide a corollary of these propositions:

Lemma 1. Assume β is convex. There exists a weakly
increasing function τ :: N 7→ N such that for any time
slot t:

R∗(t) ≥ R(τ(t)) + β(t− τ(t))

It is crucial that function τ is weakly increasing, and we
leverage that fact to compute a lower bound for the service
for the current time slot in amortized time O(1).

Remark. For some service curves, the value of τ is com-
putable: for a constant rate server without delay, and for
strict service curves (modelling work-conserving sinks), the
value of τ is the beginning of the last busy period. For linear
service curves with delay that does not hold; the value of τ
is unknown [6]. In the proof of Theorem 2 we will prove
that in each time slot, only under a certain condition is it
necessary to search for a new value for τ , and that the size
of the range in which we have to search is constant.

In the algorithm, we use the following variables:

τ the current value such that τ < t and R(τ) +
β(t− 1− τ) is minimal

Rshifted a linked list storing values of function R, in
such a way that R(t) = Rshifted(t − τ). The
last value in this list always stores the total cu-
mulative input flow R(t), the first value stores
R(τ). Lemma 1 shows that we can forget any
value prior to τ .

Rt∗ the cumulative output flow up to the current
time slot, i.e., the total number of consump-
tions

Rt∗nc the non-cumulative output flow, i.e., the num-
ber of consumptions in the current time slot

Function computeService takes as input the current non-
cumulative amount of incoming traffic in the current time
slot t. It first stores that value in list Rshifted , by adding a
new value to the end of that list (Lines 2 to 6). Then, we
determine the value of the min-plus convolution by finding
a value τ ′ for which R(τ ′)+β(t−τ ′) is minimal. Currently,
variable τ stores the value for which R(τ) + β(t − 1 − τ)
is minimal. Only if t − τ > d (Line 8) it is necessary to
search for a new value for τ ′. The search can be limited to
a certain range (Lines 9 to 13). Otherwise, τ ′ remains the
same as τ , since R(τ) + β(t− τ) remains minimal.

If a new value for τ is found, we pop the elements in list
Rshifted until we have reached that value (Lines 15 to 18).
Line 19 then computes the minimum amount of service
that is to be provided in the current time slot. The ac-
tual service is then some random value greater than that
amount, but bounded by the amount of incoming traffic
(Lines 20 and 21). Finally, the current cumulative amount
of outgoing traffic (i.e., the total cumulative amount of
consumptions) is updated, and the clock is increased.

We prove correctness of this algorithm, by showing that
Definition 3 holds invariably.

Theorem 2. Let R∗
nc(0) = 0 and let R∗

nc(t+1) be the value
of variable Rt∗nc after the tth call of function computeSer-
vice. At any time slot t, we have:

R(t) ≥ R∗(t) ≥ (R⊗ β)(t)

Proof: We first prove that for any n, the postcondi-
tion holds after the nth call of the algorithm:

R(τ) + β(t− 1− τ) = min
s<t

[R(s) + β(t− 1− s)]

Require: R(τ)+β(t−1− τ) = min
s<t

[R(s)+β(t−1−s)]

1: function COMPUTESERVICE(int Rtnc)
2: if t == 0 then
3: Rshifted .add(Rtnc)
4: else
5: Rshifted .add(Rtnc + Rshifted .last())
6: end if
7: τ ′ ← τ
8: if t− τ > d then
9: for s ← t− d to t do

10: if f(s) ≤ f(τ ′) then
11: τ ′ ← s
12: end if
13: end for
14: end if
15: while τ ̸= τ ′ do
16: Rshifted .removeF irst()
17: τ++
18: end while
19: min ← max(0, f(τ)−Rt∗)
20: max ← Rshifted .last()−Rt∗

21: choose Rt∗nc st.: min ≤ Rt∗nc ≤ max
22: Rt∗ += Rt∗nc
23: t++
24: return Rt∗nc
25: where
26: f(x) = Rshifted [x− τ] + β(t− x)
27: end function
Ensure: R(τ)+β(t− 1− τ) = min

s<t
[R(s)+β(t− 1− s)]

Figure 5. Simulation for linear service curves

The proof is by induction over n. For the base case, after
the 0th call of the algorithm, we have τ = 0 and t = 1 and
the property holds trivially.

For the inductive case, the induction hypothesis is the
precondition. We show that at Line 18, the algorithm has
found a value for τ such that:

R(τ) + β(t− τ) = min
s≤t

[R(s) + β(t− s)]

This implies that after incrementing time t (Line 23), the
postcondition holds.

Assume there exists some τ ′ ≤ t, such that (A):

R(τ ′) + β(t− τ ′) < R(τ) + β(t− τ)

We first assume the case where (B): t − τ > d (Line 8).
Assume (C): t− τ ′ > d. Then:

R(τ ′) + β(t− τ ′) < R(τ) + β(t− τ) (A)
R(τ ′) + β(t− τ ′ − 1) + r < R(τ) + β(t− τ) (C)
R(τ ′) + β(t− τ ′ − 1) + r < R(τ) + β(t− τ − 1) + r (B)
R(τ ′) + β(t− τ ′ − 1) < R(τ) + β(t− τ − 1)

The induction hypothesis then implies that τ ′ = t. This
implies that d < 0, and thus assumption (C) is false. This
implies that t − τ ′ ≤ d. Hence: t − d ≤ τ ′ ≤ t. Thus, in

Case Latency Time (µs) #cycles #packets
A 14 1.5 109 3.0 · 108
B 23 23 109 1.8 · 108
C ∞ 110 < 103 N/A
D ∞ 200 < 104 N/A
E 91 187 107 1.5 · 106

TABLE 1. SIMULATION RESULTS.

case (B), only this range of values has to be searched for
candidates for a new value of τ (if any).

Now we consider the case where (B) is false. By
Lemma 1, we have (D): τ ′ ≥ τ . Then:

R(τ ′) + β(t− τ ′) < R(τ) + β(t− τ) (A)
R(τ ′) < R(τ) ¬(B) ∧ (D)

However, since R is weakly increasing, this is a contradic-
tion. Hence, if (B) is false, then (A) is false, meaning that
there exists no τ ′ such that R(τ ′) + β(t − τ ′) < R(τ) +
β(t− τ). Hence R(τ)+β(t− τ) = min

s≤t
[R(s)+β(t− s)].

From this inductive proof, the theorem follows. It has
been proven that at Line 18, the algorithm has found a value
for τ such that R(τ) + β(t − τ) is minimal ∀τ ≤ t. Thus,
the number of consumptions in the current time slot Rt∗nc is
minimally that value minus the current cumulative incoming
traffic, and maximally the current backlog.

4. Experimental results

We present 5 case studies. All results (see Table 1) have
been obtained on a 1,6 GHz Intel Core i5 (4 cores). For
each case study we have twice run 4 simulations in parallel.
Column “Latency” shows the measured maximum latency.
Column “Time” shows the average time of simulating 4
clock cycles on 4 cores in microseconds. The last two
columns show the number of clock cycles and the number
of packets per simulation.

A) Source, queue, queue, sink. Figure 6 shows the first
80 clock cycles of in- and output flows for a simple example
with one source, two consecutive queues q0 and q1 (resp.
sizes 5 and 10) and a sink. In this example, the sink has a
delay of 4 but is eventually sufficiently fast to consume the
injected input flow (i.e., the service curve “overtakes” the
arrival curve). We have modelled a sink that can consume
from q1 more than one packet per clock tick, so that there
is no gap between the intended output flow and the actual
output flow. The source injects at most 1 packet per clock
tick and can thus lag behind the intended arrival flow. The
maximum measured latency in the first 80 clock ticks is 9,
measured between clock ticks 9 to 18.

We have run eight simulations of 109 clock ticks (tak-
ing about 25 minutes per four) and measured a maximum
latency of 14 (see Table 1).

B) Two agents. Section 1 presents the “two agents” ex-
ample of Intel. We have modelled the xMAS example using
more abstract ECIM blocks such as counters and delays. We
enabled the following heuristic: let the sources and sinks
remain irregular but maximize the nondeterministic delay.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

Arrival Curve
Input flow

Output flow
Service Curve

Figure 6. Source with α(5, 0.3), two queues, and a sink with β(4, 0.4)

All 8 simulations found a worst-case scenario that causes
the 23 latency. On average, the worst-case scenario is found
after about 300 million clock cycles. If the nondeterministic
delay is increased to 10, simulation quickly finds a deadlock.

Spidergon case study. Figure 7 presents a Spidergon archi-
tecture with 8 nodes [13]. Packets consist of 2 bits that store
a message type (GetX, DataX, PutX, or WBAck) and 3 bits
that store the address of a node. The routing logic is across
first meaning that if the shortest route to a packet requires
an across channel, that channel is taken first. At each router,
whenever two packets compete for the same output, a FIFO
arbiter decides which packet can proceed and which not.

The protocol is a simple directory-based MI cache proto-
col. Caches 0 to 6 inject GetX messages to request exclusive
access to a cache block. A GetX packet is accompanied
by the address of the node that injects it. Its destination is
always 7 and thus need not be stored in the packet. After
injection of a GetX, a cache waits for data in state I M .
When a DataX is received, the cache moves to the M state
where is has exclusive access to that block. To write back
data, a PutX is injected, again accompanied with the address
of the injecting node, and the cache moves to state M I .
Once a WBAck is received, the cache returns to state I .

Nodes 0 to 6 run this protocol; node 7 is a directory. It
has two states I and M . In state I , upon receiving a GetX
from node n, it injects a DataX with as destination n and
moves to state M . In state M , upon receiving a PutX from
node n, it injects a WBAck with destination n and returns
to state I .

Finally, as shown in Figure 7, the cache protocol is con-
nected to a source and a sink. Injection of GetX and PutX
is done only when the source has a high irdy signal. We
set the injection rate of the source to a Poisson distribution
with λ = 0.25. This models that on average it takes 4 clock
ticks for a cache to inject a packet. Dually, consumption of
a packet is done only when the sink has a high trdy signal.
We have set the sink to a linear service curve with d = 4
and r = 0.5, modelling that consumption of a packet can
maximally be delayed 5 clock ticks, but after 6 clock ticks
minimally one packet is consumed.

Note that this routing logic for the Spidergon architec-
ture suffers from a routing deadlock. If simultaneously each
node n injects packets destined for n+ 2 mod 8, then the
clockwise circle becomes full and a circular wait occurs. The

snk

0
1

2

3
4

5

6

7

Routing Logic

Arbitration

CW
CCW
ACR

CW
CCW
ACR

GetX! PutX!

WBAck?

I M

M II

M

src

DataX?

Dir

Cache

Cache

Cache

Cache

Cache

Cache Cache

Figure 7. Spidergon Architecture with MI protocol

protocol prohibits that injection pattern and therefore – in
this setup – no routing deadlock can occur. Moreover, there
is no protocol deadlock. However, cross-layer deadlocks
may occur.

We measure the latency for a round trip of a GetX to
return back to its source as a DataX. Note that this means
that the measured latency includes cases where the GetX
has to wait since another cache is currently owner. We
modelled three cases C, D, and E described below. For the
first two cases, runs are found in which the latency grows
– seemingly – to infinity, i.e., for a long period of time
the latency grows linearly with time. For the third case, the
maximum measured latency is 91.

C) With deadlock. Consider the case where (at least)
two caches inject a GetX, say caches n and m. The directory
receives 7 packets and is only able to accept the first one,
say from node n. It injects a DataX and moves to state
M . The cache receives the data, and moves to state M as
well. The only way progression is possible, is when cache
n moves to state M I by injecting PutX. However, the
local queue from router 7 to the directory currently stores
a GetX packet from cache m. Since queues are FIFO, the
PutX cannot overtake the GetX and a cross-layer deadlock
occurs.

D) Recycling packets: no deadlock, but starvation.
The deadlock can be prevented by recycling packets: when-
ever a protocol cannot consume a packet it will be recycled
to the end of the queue. This allows packets that can
be consumed to overtake others. Indeed, this prevents the
deadlock, if the size of the local queue from the router to the
node is large enough. Worst case, that queue contains a PutX
from the current sharer and 6 other GetX packets. Therefore
the size of the queue has to be 8 to prevent the deadlock.
Recycling, however, does introduce a starvation scenario.
Since the packets in the local queue are no longer handled in
FIFO order, it might be the case that a GetX is continuously
overtaken by other GetX packets. This starvation scenario
occured on average within 10.000 clock cycles.

E) Adding a VC: no deadlock or starvation. The
starvation can be resolved by splitting the local queue of the
directory into two virtual channels: one for GetX packets
and one for the others. Moreover, GetX packets are not

recycled, and thus handled in FIFO order. This resolves both
the deadlock and the starvation. Note that to prevent both
the deadlock and the starvation, only one virtual channel
is required: the remainder of the network needs none. The
size of the virtual channel should be sufficient to store six
packets.

5. Related work

Simulation of NoCs is an extensive research area: vari-
ous cycle-accurate tools exist that target heterogeneous and
generic NoC architectures. BookSim [2] is a detailed, router-
based simulator for NoCs, whose underlying network model
has been validated to RTL implementations. OMNeT++ [1]
is a framework where generic and high-level blocks can be
simulated. It has been used to simulate among others the
Spidergon architecture [14]. Generally, these tools generate
synthetic traffic patterns. In contrast, our approach allows
modelling of the cache coherence protocol deployed by the
nodes, to more accurately model realistic traffic patterns.
Also, we simulate a formal model, which has been defined
in such a way that blocks can be derived from Verilog, or
each block can be used to generate Verilog [4].

Zhao and Lu use network calculus to analyse xMAS
models and use RTL simulation to verify tightness of their
bounds [15]. In [12], Zhao uses the tool Simulink of Math-
Works to simulate xMAS. Zhao derives Verilog from xMAS
and uses that to find a worst-case latency bound for the two
agents example. The presented results show simulation of
about 10.000 packets. Since we simulate a high-level model
instead of Verilog, we are able to simulate significantly more
packets.

Salamat et al. use Noxim [3] to analyse both latency- and
fault-tolerance of a 3D chip architecture [16]. Noxim takes
more properties into account such as a power and thermal
model. In contrast, our approach solely focusses on worst-
case latency, which allows for more efficient execution.

6. Conclusion

This paper presents an approach for finding worst-case
latency estimates based on simulation of formal models.
The models – whose semantics have been formalized in
Isabelle/HOL – consist of generic building blocks. Each
block is high-level and therefore efficiently executable. The
formal semantics ensure that the blocks can be implemented
in Verilog, or that they can be extracted from Verilog.

We use novel implementations of simulating latency-rate
servers to generate bursty traffic patterns. We implement
some simple heuristics aimed at finding the worst case, such
as maximizing delays whenever possible. We did, however,
find that for some examples irregular traffic was necessary to
get to the worst-case scenario, and that only after simulation
of millions of packets the worst case was found.

In the near future, we aim to address the gap between the
Isabelle model and the implementation, by using Isabelle’s
code generation to generate an implementation from the

model. We expect this will impact performance, but it will
enable a formally verified simulator for NoCs, where the
model that is simulated can be used for theorem proving or
model-based testing.

References

[1] A. Varga, “OMNeT++,” in Modeling and Tools for Network Simula-
tion, K. Wehrle, M. Güneş, and J. Gross, Eds., 2010, pp. 35–59.

[2] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Mich-
elogiannakis, and J. Kim, “A detailed and flexible cycle-accurate
network-on-chip simulator,” in 2013 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), April
2013, pp. 86–96.

[3] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti,
“Noxim: An open, extensible and cycle-accurate network on chip sim-
ulator,” in 2015 IEEE 26th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), July 2015, pp.
162–163.

[4] S. J. Joosten and J. Schmaltz, “Automatic extraction of micro-
architectural models of communication fabrics from register transfer
level designs,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2015. IEEE, 2015, pp. 1413–1418.

[5] D. Stiliadis and A. Varma, “Latency-rate servers: a general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Transactions
on Networking (ToN), vol. 6, no. 5, pp. 611–624, 1998.

[6] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Springer-Verlag,
2001.

[7] S. Chatterjee, M. Kishinevsky, and U. Y. Ogras, “xMAS: Quick
formal modeling of communication fabrics to enable verification,”
IEEE Design & Test of Computers, vol. 29, no. 3, pp. 80–88, 2012.

[8] F. Verbeek, P. M. Yaghini, A. Eghbal, and N. Bagherzadeh, “Advocat:
Automated deadlock verification for on-chip cache coherence and
interconnects,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2016. IEEE, 2016, pp. 1640–1645.

[9] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: a proof
assistant for higher-order logic. Springer Science & Business Media,
2002, vol. 2283.

[10] A. Gotmanov, S. Chatterjee, and M. Kishinevsky, Verifying Deadlock-
Freedom of Communication Fabrics, 2011, pp. 214–231.

[11] A. E. Kiasari, Z. Lu, and A. Jantsch, “An analytical latency model
for networks-on-chip,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 21, no. 1, pp. 113–123, 2013.

[12] X. Zhao, “Network on Chip: Performance Bound and Tightness,”
Ph.D. dissertation, KTH Royal Institute of Technology, 2015.

[13] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra,
“Spidergon: a novel on-chip communication network,” in System-on-
Chip, 2004. Proceedings. 2004 International Symposium on. IEEE,
2004, p. 15.

[14] L. Bononi and N. Concer, “Simulation and analysis of network on
chip architectures: ring, spidergon and 2D mesh,” in Proceedings of
the conference on Design, automation and test in Europe: Designers’
forum. European Design and Automation Association, 2006, pp.
154–159.

[15] X. Zhao and Z. Lu, “Per-flow delay bound analysis based on a
formalized microarchitectural model,” in 2013 Seventh IEEE/ACM
International Symposium on Networks-on-Chip (NoCS), April 2013,
pp. 1–8.

[16] R. Salamat, M. Khayambashi, M. Ebrahimi, and N. Bagherzadeh, “A
resilient routing algorithm with formal reliability analysis for partially
connected 3D-NoCs,” IEEE Transactions on Computers, vol. 65,
no. 11, pp. 3265–3279, Nov 2016.

	Introduction
	Executable communication interconnect modeling
	Definition of a generic building block
	Composition of building blocks
	Some ECIM building blocks

	ECIM simulator
	Source simulation with linear arrival curves
	Sink simulation with linear service curves

	Experimental results
	Related work
	Conclusion
	References

