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Abstract—We study verification problems for autonomous
swarms of mobile robots that self-organize and cooperate to solve
global objectives. In particular, we focus in this paper on the
model proposed by Suzuki and Yamashita of anonymous robots
evolving in a discrete space with a finite number of locations
(here, a ring). A large number of algorithms have been proposed
working for rings whose size is not a priori fixed and can be
hence considered as a parameter. Handmade correctness proofs
of these algorithms have been shown to be error-prone, and recent
attention had been given to the application of formal methods
to automatically prove those. Our work is the first to study the
verification problem of such algorithms in the parameterized case.
We show that safety and reachability problems are undecidable
for robots evolving asynchronously. On the positive side, we show
that safety properties are decidable in the synchronous case,
as well as in the asynchronous case for a particular class of
algorithms. Several properties on the protocol can be decided
as well. Decision procedures rely on an encoding in Presburger
arithmetics formulae that can be verified by an SMT-solver.
Feasibility of our approach is demonstrated by the encoding of
several case studies.

I. INTRODUCTION

We consider sets of mobile oblivious robots evolving in a
discrete space (modeled as a ring shaped graph). For our
purpose, rings are seen as discrete graphs whose vertices
represent the different positions available to host a robot, and
edges model the possibility for a robot to move from one
position to another. Robots follow the seminal model by Suzuki
and Yamashita [23]: they do not remember their past actions,
they cannot communicate explicitly, and are disoriented.

However, they can sense their environment and detect the
positions of the other robots on the ring. If several robots share
the same position on the ring (forming a tower, or multiplicity
point), other robots may or may not detect the tower. If robots
have strong multiplicity detection, as assumed in this paper,
they are able to count the exact number of robots on a given
position.

Robots are anonymous and execute the same deterministic
algorithm to achieve together a given objective. Different
objectives for ring shaped discrete spaces have been studied
in the literature [17]: gathering – starting from any initial
configuration, all the robots must gather on the same node,
not known beforehand, and then stop [18], exploration with
stop – starting from any initial configuration, the robots reach
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a configuration where they all are idle and, in the meanwhile,
all the positions of the ring have been visited by a robot [16],
exclusive perpetual exploration – starting from any tower-free
configuration, each position of the ring is visited infinitely
often and no multiplicity point ever appears [6], [11].

Each robot behaves according to the following cycle: it takes
a snapshot of its environment, then it computes its next move
(either stay idle or move to an adjacent node in the ring), and
at the end of the cycle, it moves according to its computation.
Such a cycle is called a look-compute-move cycle.

Since robots cannot rely on a common sense of direction,
directions that are computed in the compute phase are only
relative to the robot. To tell apart its two sides, a robot
relies on a description of the ring in both clockwise and
counter-clockwise direction, which gives it two views of the
configuration. There are two consequences to this fact. First,
if its two views are identical, meaning that the robot is on an
axis of symmetry, it cannot distinguish the two directions and
thus either decides to stay idle, or to move. In the latter case,
the robot moves becomes a non-deterministic choice between
the two available directions. Second, when two robots have
the same two views of the ring, the protocol commands them
to move in the same relative direction, but this might result in
moves in actual opposite directions for the two robots. Such a
symmetrical situation is pictured in Figure 1.



Existing execution models consider different types of syn-
chronization for the robots: in the fully synchronous model
(FSYNC), all robots evolve simultaneously and complete a
full look-compute-move cycle. The semi-synchronous model
(SSYNC) consider runs that evolve in phases: at each phase,
an arbitrary subset of the robots is scheduled for a full look-
compute-move cycle, which is executed simultaneously by
all robots of the subset. Finally, in the asynchronous model
(ASYNC), robots evolve freely at their own pace: in particular,
a robot can move according to a computation based on an
obsolete observation of its environment, as others robots
may have moved in between. Algorithms in the literature
are typically parameterized by the number of robots and/or
number of positions in the ring. In this work we focus on
formally verifying algorithms parameterized by the number of
ring positions only, assuming a a fixed number of robots.

A. Related work

Designing and proving mobile robot protocols is notoriously
difficult. Formal methods encompass a long-lasting path of
research that is meant to overcome errors of human origin. Un-
surprisingly, this mechanized approach to protocol correctness
was successively used in the context of mobile robots [7], [13],
[5], [2], [20], [9], [4], [22], [3].

When robots are not constrained to evolve on a
particular topology (but instead are allowed to move
freely in a bidimensional Euclidian space), the Pactole
(http://pactole.lri.fr) framework has been proven useful.
Developed for the Coq proof assistant, Pactole enabled the
use of high-order logic to certify impossibility results [2] for
the problem of convergence: for any positive ε, robots are
required to reach locations that are at most ε apart. Another
classical impossibility result that was certified with Pactole
is the impossibility of gathering starting from a bivalent
configuration [9]. Recently, positive certified results for SSYNC
gathering with multiplicity detection [10], and for FSYNC
gathering without multiplicity detection [3] were provided.
However, as of now, no Pactole library is dedicated to robots
that evolve on discrete spaces.

In the discrete setting that we consider in this paper, model-
checking proved useful to find bugs in existing literature [5],
[14] and assess formally published algorithms [13], [5], [22].
Automatic program synthesis (for the problem of perpetual
exclusive exploration in a ring-shaped discrete space) is due
to Bonnet et al. [7], and can be used to obtain automatically
algorithms that are “correct-by-design”. The approach was
refined by Millet et al. [20] for the problem of gathering in
a discrete ring network. As all aforementioned approaches
are designed for a bounded setting where both the number of
locations and the number of robots are known, they cannot
permit to establish results that are valid for any number of
locations.

Recently, Aminof et al. [22] presented a general framework
for verifying properties about mobile robots evolving on graphs,
where the graphs are a parameter of the problem. While our
model could be encoded in their framework, their undecidability

proof relies on persistent memory used by the robots, hence is
not applicable to the case of oblivious robots we consider here.
Also, they obtain decidability in a subcase that is not relevant
for robot protocols like those we consider. Moreover, their
decision procedure relies on MSO satisfiability, which does not
enjoy good complexity properties and cannot be implemented
efficiently for the time being.

B. Contributions

In this work, we tackle the more general problem of verifying
protocols for swarms of robots for any number of locations.

We provide a formal definition of the problem, where the
protocol can be described as a quantifier free Presburger
formula. This logic, weak enough to be decidable, is however
powerful enough to express existing algorithms in the literature.
Objectives of the robots are also described by Presburger
formulae and we consider two problems: when the objective
of the robots is a safety objective – robots have to avoid the
configurations described by the formula (SAFE), and when it
is a reachability objective (REACH). We show that if REACH
is undecidable in any semantics, SAFE is decidable in FSYNC
and SSYNC. We also show that when the protocol is uniquely-
sequentializable, safety properties become decidable even in
the asynchronous case.

Finally, we show practical applicability of this approach
by using an SMT-solver to verify safety properties for some
algorithms from the literature.

Hence, we advocate that our formalism should be used when
establishing such protocols, as a formal and non-ambiguous
description, instead of the very informal and sometimes
unclear definitions found in the literature. Moreover, if totally
automated verification in the parameterized setting seems
unfeasible, our method could be used as a “sanity check” of
the protocol, and to automatically prove intermediate lemmas,
that can then be used as formally proved building blocks of a
handmade correction proof.

II. MODEL OF ROBOTS EVOLVING ON A RING

A. Formal model

In this section we present the formal language to describe
mobile robots protocols as well as the way it is interpreted.

1) Preliminaries: For a,b ∈ Z such that a≤ b, we denote
by [a,b] the set {c ∈ Z | a≤ c≤ b}. For a ∈ Z and b ∈ N, we
write a� b the natural d ∈ [0,(b− 1)] such that there exists
j ∈ Z and a = b. j+d (for instance −1�3 = 2). Note that �
corresponds to the modulo operator, but for sake of clarity we
recall its definition when a is negative.

We recall the definition of Existential Presburger (EP)
formulae. Let Y be a countable set of variables. First we
define the grammar for terms t ::= x | t+ t | a · t | t

mod a, where a ∈ N and x ∈ Y and then the grammar for
formulae is given by φ ::= t ./ b | φ∧φ | φ∨φ | ∃x.φ where
./ ∈ {=,≤,≥,<,>}, x ∈ Y and b ∈ N. We sometimes write
a formula φ as φ(x1, . . . ,xk) to underline that x1, . . . ,xk are
the free variables of φ. The set of Quantifier Free Presburger
(QFP) formulae is obtained by the same grammar deleting the
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elements ∃x.φ. Note that when dealing with QFP formulae, we
allow as well negations of formulae.

We say that a vector V = 〈d1, . . . ,dk〉 satisfies an EP formula
φ(x1, . . . ,xk), denoted by V |= φ, if the formula obtained
by replacing each xi by di holds. Given a formula φ with
free variables x1, . . . ,xk, we write φ(d1, . . . ,dk) the formula
where each xi is replaced by di. We let [[φ(x1, . . . ,xk)]] =
{〈d1, . . . ,dk〉 ∈ Nk | φ(d1, . . . ,dk) |= φ} be the set of models
of the formula. In the sequel, we use Presburger formulae to
describe configurations of the robots, as well as protocols.

2) Configurations and robot views: In this paper, we
consider a fixed number k > 0 of robots and, except when
stated otherwise, we assume the identities of the robots are
R = {R1, . . . ,Rk}. We may sometimes identify R with the
set of indices {1, . . . ,k}. On a ring of size n ≥ k, a (k,n)-
configuration of the robots (or simply a configuration if n and
k are clear from the context) is given by a vector p∈ [0,n−1]k

associating to each robot Ri its position p(i) on the ring. We
assume w.l.o.g. that positions are numbered in the clockwise
direction.

A view of a robot on this configuration gives the distances
between the robots, starting from its neighbor, i.e. the robot
positioned on the next occupied node (a distance equals to
0 meaning that two robots are on the same node). A view
V = 〈d1, . . . ,dk〉 ∈ [0,n]k is a k-tuple such that ∑

k
i=1 di = n and

d1 6= 0. We let Vn,k be the set of possible views for k robots
on a ring of size n. Notice that all the robots sharing the same
position should have the same view. For instance, suppose that,
on a ring of size 10, 2 robots R1, and R2 are on the same
position of the ring (say position 1), R3 is at position 4, R4 is
at position 8, and R5 is at position 9 (see Figure 1b). Then, the
view of R1 and R2 is 〈3,4,1,2,0〉. It is interpreted by the fact
that there is a robot at a distance 3 (it is R3), a robot a at distance
3+4 (it is R4) and so on. We point out that all the robots at the
same position share the same view. We as well suppose that in
a view, the first distance is not 0 (this is possible by putting 0 at
the ‘end’ of the view instead). As a matter of fact in the example
of Figure 1b, there is a robot at distance 3+ 4+ 1+ 2 = 10
from R1 (resp. R2), which is R2 (resp. R1). The sum of the di
corresponds always to the size of the ring and here the fact
that in the view of R1 we have as last element 0 signifies that
there is a distance 0 between the last robot (here R2) and R1.
When looking in the opposite direction, their view becomes:
〈2,1,4,3,0〉. Formally, for a view V = 〈d1, . . . ,dk〉 ∈ [0,n]k,
we note

←−
V = 〈d j, . . . ,d1,dk, . . . ,d j+1〉 the corresponding view

when looking at the ring in the opposite direction, where j is
the greatest index such that d j 6= 0.

Given a configuration p ∈ [0,n− 1]k and a robot Ri ∈ R ,
the view of robot Ri when looking in the clockwise direction,
is given by Vp[i→] = 〈di(i1),di(i2)−di(i1), . . . ,n−di(ik−1)〉,
where, for all j 6= i, di( j)∈ [1,n] is such that (p(i)+di( j))�n=
p( j) and i1, . . . , ik are indexes pairwise different such that
0 < di(i1)≤ di(i2)≤ ·· · ≤ di(ik−1). When robot Ri looks in the
opposite direction, its view according to the configuration p is
Vp[← i] =

←−−−−−
Vp[i→].

3) Protocols: In our context, a protocol for networks of k
robots is given by a QFP formula respecting some specific
constraints.

Definition 1 (Protocol): A protocol is a QFP formula
φ(x1, . . . ,xk) such that for all views V the following holds:
if V |= φ and V 6=←−V then

←−
V 6|= φ

A robot uses the protocol to know in which direction it
should move according to the following rules. As we have
already stressed, all the robots that share the same position
have the same view of the ring. Given a configuration p and
a robot Ri ∈ R , if Vp[i→] |= φ, then the robot Ri moves in
the clockwise direction, if Vp[← i] |= φ then it moves in the
opposite direction, if none of Vp[i→] and Vp[← i] satisfies φ

then the robot should not move. The conditions expressed in
Definition 1 imposes hence a direction when Vp[i→] 6=Vp[← i].
In case Vp[i→] = Vp[← i], the robot is disoriented and it can
hence move in one direction or the other. For instance, consider
the configuration p pictured on Figure 1a. Here, Vp[1→] =
〈3,1,3〉= Vp[← 1]. Note that such a semantics enforces that
the behavior of a robot is not influenced by its direction. In fact
consider two symmetrical configurations p and p′ such that
Vp[i→] =

←−−−−−
Vp′ [i→] for each robot Ri. If Vp[i→] |= φ (resp.

Vp[← i] |= φ), then necessarily Vp′ [← i] |= φ (resp. Vp′ [i→] |=
φ), and the robot in p′ moves in the opposite direction than in
p (and the symmetry of the two configurations is maintained).

We now formalize the way movement is decided. Given
a protocol φ and a view V, the moves of any robot whose
clockwise direction view is V are given by:

move(φ,V ) =


{+1} if V |= φ and V 6=←−V
{−1} if

←−
V |= φ and V 6=←−V

{−1,+1} if V |= φ and V =
←−
V

{0} otherwise

Here +1 (resp. −1) stands for a movement of the robot in
the clockwise (resp. anticlockwise) direction.

B. Different possible semantics

We now describe different transition relations between
configurations. Robots have a two-phase behavior : (1) look at
the ring and (2) according to their view, compute and perform
a movement. In this context, we consider three different modes.
In the semi-synchronous mode, in one step, some of the robots
look at the ring and move. In the synchronous mode, in one step,
all the robots look at the ring and move. In the asynchronous
mode, in one step a single robot can either choose to look at
the ring, if the last thing it did was a movement, or to move, if
the last thing it did was to look at the ring. As a consequence,
its movement decision is a consequence of the view of the
ring it has in its memory. In the remainder of the paper, we
fix a protocol φ and we consider a set R of k robots.

1) Semi-synchronous mode: We begin by providing the
semantics in the semi-synchronous case. For this matter we
define the transition relation ↪→φ⊆ [0,n− 1]k × [0,n− 1]k

(simply noted ↪→ when φ is clear from the context) between
configurations. We have p ↪→ p′ if there exists a subset I ⊆ R
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of robots such that, for all i ∈ I, p′(i) = (p(i)+m)�n, where
m ∈ move(φ,Vp[i→]), and for all i ∈ R \ I, p′(i) = p(i).

2) Synchronous mode: The transition relation ⇒φ⊆ [0,n−
1]k × [0,n− 1]k (simply noted ⇒ when φ is clear from the
context) describing synchronous movements is very similar
to the semi-synchronous case, except that all the robots
have to move. Then p⇒ p′ if p′(i) = (p(i) + m)� n with
m ∈ move(φ,Vp[i→]) for all i ∈ R .

3) Asynchronous mode: The definition of transition relation
for the asynchronous mode is a bit more involved, for two
reasons: first, the move of each robot does not depend on the
current configuration, but on the last view of the robot. Second,
in one step a robot either look or move. As a consequence,
an asynchronous configuration is a tuple (p,s,V) where p ∈
[0,n−1]k gives the current configuration, s ∈ {L,M}k gives,
for each robot, its internal state (L stands for ready to look
and and M stands for compute and move) and V ∈V k

n,k stores,
for each robot, the view (in the clockwise direction) it had the
last time it looked at the ring.

The transition relation for asynchronous mode is hence
defined by a binary relation  φ (or simply  ) working on
[0,n−1]k×{L,M}k×V k

n,k and defined as follows: 〈p,s,V〉 
〈p′,s′,V′〉 iff there exist Ri ∈ R such that the following
conditions are satisfied:

• for all R j ∈ R such that j 6= i, p′( j) = p( j), s′( j) = s( j)
and V′( j) = V( j),

• if s(i) = L then s′(i) = M, V′(i) = Vp[i→] and p′(i) =
p(i), i.e. if the robot that has been scheduled was about
to look, then the configuration of the robots won’t change,
and this robot updates its view of the ring according to
the current configuration and change its internal state,

• if s(i) =M then s′(i) =L, V′(i) =V(i) and p′(i) = (p(i)+
m)�n, with m∈move(φ,V(i)), i.e. if the robot was about
to move, then it changes its internal state and moves
according to the protocol, and its last view of the ring.

4) Runs: A semi-synchronous (resp. synchronous) φ-run
(or a run according to a protocol φ) is a (finite or infinite)
sequence of configurations ρ = p0p1 . . . where, for all 0≤ i <
|ρ|, pi ↪→φ pi+1 (resp. pi⇒φ pi+1). Moreover, if ρ = p0 · · ·pn is
finite, then there is no p such that pn ↪→φ p (respectively pn⇒φ

p). An asynchronous φ-run is a (finite or infinite) sequence
of asynchronous configurations ρ = 〈p0,s0,V0〉〈p1,s1,V1〉 · · ·
where, for all 0≤ i < |ρ|, 〈pi,si,Vi〉 φ 〈pi+1,si+1,Vi+1〉 and
such that s0(i) = L for all i ∈ [1,k]. Observe that the value
of V0 has no influence on the actual asynchronous run, since
any robot starts its computation by a look, hence changing the
value of V0.

We let Postss(φ,p) = {p′ | p ↪→φ p′},
Posts(φ,p) = {p′ | p ⇒φ p′} and Postas(φ,p) = {p′ |
there exist V,s′,V′ s.t. 〈p,s0,V〉  φ 〈p′,s′,V′〉}, with

s0(i) = L for all i ∈ [1,k]. Note that in the asynchronous case
we impose all the robots to be ready to look. We respectively
write ↪→∗

φ
, ⇒∗

φ
and  ∗

φ
for the reflexive and transitive closure

of the relations ↪→φ, ⇒φ and  φ and we define Post∗ss(φ,p),
Post∗s (φ,p) and Post∗as(φ,p) by replacing in the definition

Postss(φ,p),Posts(φ,p) and Postas(φ,p) the relations ↪→φ, ⇒φ

and  φ by their reflexive and transitive closure accordingly.
We now come to our first result that shows that when the

protocols have a special shape, the three semantics are identical.
Definition 2: A protocol φ is said to be uniquely-

sequentializable if, for all configuration p, there is at most one
robot Ri ∈ R such that move(φ,Vp[i→]) 6= {0}.

When φ is uniquely-sequentializable at any moment at most
one robot moves. Consequently, in that specific case, the three
semantics are equivalent as stated by the following theorem.

Theorem 1: If a protocol φ is uniquely-sequentializable,
then for all configuration p, Post∗s (φ,p) = Post∗ss(φ,p) =
Post∗as(φ,p).

C. Problems under study

In this work, we aim at verifying properties on protocols
where we assume that the number of robots is fixed (equals to
k > 0) but the size of the rings is parameterized and satisfies a
given property. Note that when executing a protocol the size
of the ring never changes. For our problems, we consider a
ring property that is given by a QFP formula Ring(y), a set
of bad configurations given by a QFP formula Bad(x1, . . . ,xk)
and a set of good configurations given by a QFP formula
Goal(x1, . . . ,xk). We then define two general problems to
address the verification of such algorithms: the SAFEm problem,
and the REACHm problem, with m ∈ {ss,s,as}.

The SAFEm problem is to decide, given a protocol φ and
two formulae Ring and Bad whether there exists a size n ∈ N
with n ∈ [[Ring]], and a (k,n)-configuration p with p /∈ [[Bad]],
such that Post∗m(φ,p)∩ [[Bad]] 6= /0.

The REACHm problem is to decide given a protocol φ and
two formulae Ring and Goal whether there exists a size n ∈
N with n ∈ [[Ring]] and a (k,n)-configuration p, such that
Post∗m(φ,p)∩ [[Goal]] = /0. Note that the two problems are not
dual due to the quantifiers.

As an example, we can state in our context the SAFEm
problem that consists in checking that a protocol φ working
with three robots never leads to collision (i.e. to a configuration
where two robots are on the same position on the ring) for rings
of size strictly bigger than 6. In that case we have Ring := y> 6
and Bad := x1 = x2 ∨ x2 = x3 ∨ x1 = x3.

III. UNDECIDABILITY RESULTS

In this section, we present undecidability results for the two
aforementioned problems. The proofs rely on the encoding of a
deterministic k-counter machine run. A deterministic k-counter
machine consists of k integer-valued registers (or counters)
called c1, . . . , ck, and a finite list of labelled instructions L.
Each instruction is either of the form ` : ci = ci+1;goto `′, or
` : if ci > 0 then ci = ci−1;goto `′;else goto `′′, where
i ∈ [1,k]. We also assume the existence of a special instruction
`h : halt. Configurations of a k-counter machine are elements
of L× Nk, giving the current instruction and the current
values of the registers. The initial configuration is (`0,0, . . . ,0),
and the set of halting configurations is HALT = {`h}×Nk.
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Given a configuration (`,n1, . . . ,nk), the successor configu-
ration (`′,n′1, . . . ,n

′
k) is defined in the usual way and we

note (`,n1, . . . ,nk) ` (`′,n′1, . . . ,n
′
k). A run of a k-counter

machine is a (finite or infinite) sequence of configurations
(`0,n0

1, . . . ,n
0
k),(`1,n1

1, . . . ,n
1
k) · · · , where (`0,n0

1, . . . ,n
0
k) is the

initial configuration, and, for all i ≥ 0, (`i,ni
1, . . . ,n

i
k) `

(`i+1,ni+1
1 , . . . ,ni+1

k ). The run is finite if and only if it ends in
a halting configuration, i.e. in a configuration in HALT.

Theorem 2: SAFEas is undecidable.
Sketch of proof. The proof relies on a reduction from the
halting problem of a deterministic two-counter machine M
to SAFEas with k = 42 robots. It is likely that an encoding
using less robots might be used for the proof, but for the
sake of clarity, we do not seek the smallest possible amount
of robots. The halting problem is to decide whether the run
of a given deterministic two-counter machine is finite; this
problem is undecidable [21]. The idea is to simulate the run
of M in a way that ensures that a collision occurs if and
only if M halts. Positions of robots on the ring are used to
encode values of counters and the current instruction of the
machine. The k-protocol makes sure that movements of the
robots simulate correctly the run of M. Moreover, one special
robot moves only when the initial configuration is encoded,
and another only when the final configuration is encoded. The
collision is ensured in the following sequence of actions of the
robots: when the initial configuration is encoded, the first robot
computes its action but does not move immediately. When the
halting configuration is reached, the second robot computes
its action and moves, then the first robot finally completes
its move, entailing the collision. Note that if the ring is not
big enough to simulate the counter values then the halting
configuration is never reached and there is no collision.

Instead of describing configurations of the robots by
applications giving positions of the robots on the ring, we
use a sequence of letters F or R, representing respectively
a free node and a node occupied by a robot. When a letter
A ∈ {F,R} is repeated i times, we use the notation Ai, when
it is repeated an arbitrary number or times (including 0), we
use A∗. To distinguish between the two representations of the
configurations, we use respectively the terms configurations
or word-configurations. The correspondence between a
configuration and a word-configuration is obvious. A machine-
like (word-)configuration is a configuration of the form
B3F

∗RF∗B4F
∗RF∗B5F

∗RF∗B6F
∗RF∗B7F

∗RF∗B8P1P2P3P4P5
RFR, where Bi is a shorthand for FRiF, and P1P2 ∈ {RF,FR}
and exactly one Pi = R for i ∈ {3,4,5}, Pj = F for
j ∈ {3,4,5} \ {i} (see Table I for a graphic representation
of the section P1P2P3P4P5 of the ring). Observe that the
different blocks Bi yield for every robot in the ring a distinct
view, since it allows the robots to locate their position on
the ring. Hence, in the rest of the proof we abuse notations
and describe the protocol using different names for the
different robots, according to their position in the ring,
even if they are formally anonymous. We let R be the set
of robots involved. A machine-like (word-)configuration
B3F

n1Rc1F
∗B4F

n2Rc2F
∗B5F

mRcF
nB6F

iR`F
i′B7F

pR`′F
rB8

RttFRtFFRgFRd is said to be stable because of the positions
of robots Rt and Rtt (see Table I). Moreover, it encodes the
configuration (`i,n1,n2) of M (due to the relative positions of
robots Rc1 , Rc2 and R` respectively to B3, B4 and B6). We
say that a configuration p is machine-like, stable, etc. if its
corresponding word-configuration is machine-like, stable, etc.
In the following, we distinguish configurations of the 2-counter
machine, and configurations of the robots, by calling them
respectively M-configurations and φ-(word)-configurations.
For a stable and machine-like φ-configuration p, we let M(p)
be the M-configuration encoded by p. We first present the
part of the algorithm simulating the behavior of M. We call
this algorithm φ′. Since the machine is deterministic, only
one instruction is labelled by `i, known by every robot. The
simulation follows different steps, according to the positions
of the robots Rt and Rtt , as pictured in Table I.

TABLE I: Different types of configurations

stable configuration RttFRtFF

moving1 configuration FRttRtFF

moving2 configuration FRttFRtF

moving3 configuration FRttFFRt

stabilizing1 configuration RttFFFRt

stabilizing2 configuration RttFFRtF

We explain the algorithm φ′ on the configuration
(`i,n1,n2) with the transition `i : if c1 > 0 then c1 = c1−
1;goto ` j;else goto ` j′ .

• When in a stable configuration, robot Rtt first moves to
obtain a moving1 configuration.

• In a moving1 configuration, robot Rc moves until it
memorizes the current value of c1. More precisely, in
a moving1 configuration where n1 6= m, robot Rc moves :
if n1 > m, and n 6= 0, Rc moves towards B6, if n1 < m, it
moves towards B5, if n1 > m and n = 0, it does not move.

• In a moving1 configuration where n1 = m, Rt moves to
obtain a moving2 configuration.

• In a moving2 configuration, if n1 =m 6= 0, then Rc1 moves
towards B3, hence encoding the decrementation of c1.

• In a moving2 configuration, if n1 = m = 0 or if n1 6= m,
(then the modification of c1 is either impossible, or already
done), robot R`′ moves until it memorizes the position of
robot R`: if p < i, and r 6= 0, R`′ moves towards B8; if
p > i, R`′ moves towards B7.

• In a moving2 configuration, if p = i, then Rt moves to
obtain a moving3 configuration.

• In a moving3 configuration, if n1 = m = 0, and robot R`′

encodes `i (i.e. p = i), then c1 = 0 and robot R` has to
move until it encodes ` j′ . If on the other hand n1 < m,
then robot R` moves until it encodes ` j. More precisely,
if n1 = m = 0, and the position encoded by R` is smaller
than j′ (i < j′), and if i′ 6= 0, then R` moves towards B7.
If n1 = m = 0, and the position encoded by R` is greater
than j′, R` moves towards B6. If n1 < m, then robot R`
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moves in order to reach a position where it encodes ` j
(towards B6 if i > j, towards B7 if i < j and i′ 6= 0).

• In a moving3 configuration, if the position encoded by
R`′ is `i, if n1 = m = 0 and the position encoded by R`

is ` j′ , or if n1 6= m, and the position encoded by R` is
` j, then the transition has been completely simulated :
the counters have been updated and the next transition is
stored. The robots then return to a stable configuration:
robot Rtt moves to obtain a stabilizing1 configuration.

• In a stabilizing1 configuration, robot Rt moves to obtain
a stabilizing2 configuration.

• In a stabilizing2 configuration, robot Rt moves to obtain
a stable configuration.

For other types of transitions, the robots move similarly.
When in a stable configuration encoding a configuration in
HALT, no robot moves. We describe now the algorithm φ

that simply adds to φ′ the two following rules. Robot Rg
(respectively Rd) moves in the direction of Rd (respectively in
the direction of Rg) if and only if the robots are in a stable
machine-like configuration, and the encoded configuration of
the machine is (`0,0,0) (respectively is in HALT), (since the
configuration is machine-like, the distance between Rg and
Rd is 2). Observe that if the sub-algorithm φ′ is uniquely-
sequentializable, φ is not.

On all configurations that are not machine-like, the algorithm
makes sure that no robot move. This implies that once Rg or Rd
has moved, no robot with a view up-to-date ever moves. One
can easily be convinced that the algorithm can be expressed
by a QFP formula φ.

Let the formulae Bad(p1, . . . ,p42) =
∨

i, j ∈ [1,42]
i 6= j

(pi = p j) that

is satisfied by all the configurations where two robots share
the same position and Ring(y) = y≥ 0. We can show that M
halts if and only if there exits a size n ∈ [[Ring]], a (42,n)-
configuration p with p /∈ [[Bad]], such that Rg and Rd eventually
collide, i.e., Post∗as(φ,p)∩ [[Bad]] 6= /0. Note that Rg and Rd can
collide only in an asynchronous run.

�
Theorem 3: REACHm is undecidable, for m ∈ {ss,s,as}.

Sketch of proof. The proof relies on a reduction from the
repeated reachability problem of a deterministic three-counter
zero-initializing bounded-strongly-cyclic machine M, which
is undecidable [19]. A counter machine is zero-initializing
if from the initial instruction `0 it first sets all the counters
to 0. Moreover, an infinite run is said to be space-bounded
if there is a value K ∈ N such that all the values of all the
counters stay below K during the run. A counter machine
M is bounded-strongly-cyclic if every space-bounded infinite
run starting from any configuration visits `0 infinitely often.
The repeated reachability problem we consider is expressed as
follows: given a 3-counter zero-initializing bounded-strongly-
cyclic machine M, does there exist an infinite space-bounded
run of M? A configuration of M is encoded in the same fashion
than in the proof of Theorem 2, with 3 robots encoding the
values of the counters. A transition of M is simulated by the
algorithm in the same way than above except that if a counter

is to be increased, the corresponding robot moves accordingly
even if there is no room to do it, yielding a collision. Since
the machine is bounded-strongly-cyclic and zero-initializing,
any infinite run will eventually visit (`0,0,0,0), so any infinite
execution of the robots encode an infinite space-bounded run
of M starting in (`0,0,0,0).

�

IV. DECIDABILITY RESULTS AND CASE STUDY

In this section, we show that even if SAFEas, REACHas,
REACHss and REACHs are undecidable, the other cases SAFEs
and SAFEss can be reduced to the satisfiability problem for
EP formulae, which is decidable and NP-complete [8].

A. Reducing safety to successor checking

The first step towards decidability is to remark that to
solve SAFEs and SAFEss it is enough to look at the one-step
successor. Let φ be a protocol over k robots and Ring and Bad
be respectively a ring property and a set of bad configurations.
We have then the following lemma.

Lemma 1: Let n ∈ N such that n ∈ [[Ring]] and m ∈ {s,ss}.
There exists a (k,n)-configuration p with p /∈ [[Bad]], such that
Post∗m(φ,p)∩ [[Bad]] 6= /0 iff there exists a (k,n)-configuration
p′ with p′ /∈ [[Bad]], such that Postm(φ,p′)∩ [[Bad]] 6= /0.

This last result may seems strange at a first sight but it can
easily be explained by the fact that robots protocols are most
of the time designed to work without any assumption on the
initial configuration, except that it is not a bad configuration.

B. Encoding successor computation in Presburger

We now describe various EP formulae to be used to express
the computation of the successor configuration in synchronous
and semi-synchronous mode.

First we show how to express the view of some robot Ri in
a configuration p, with the following formula:

ConfigViewi(y, p1, . . . , pk,d1, . . . ,dk) :=
∃d′1, . . . ,d′k−1.i1, . . . , ik−1 ·

∧k−2
j=1 d′j ≤ d′j+1∧∧k−1

`=1(
∨k

j=1, j 6=i p j = (pi +d′` mod y)∧ i` = j)∧
0 < d′1∧

∧k−1
j=1 d′j ≤ y∧

∧
6̀= j i` 6= i j∧

d1 = d′1∧
∧k−1

j=2 d j = d′j−d′j−1∧dk = y−d′k−1,

Note that this formula only expresses in the syntax of
Presburger arithmetic the definition of Vp[i →] where the
variable y is used to store the length of the ring, p1, . . . , pk
represent p and the variables d1, . . . ,dk represent the view.

We also use the formula ViewSym(d1, . . . ,dk,d′1, . . . ,d
′
k) that

is useful to compute the symmetric of a view.

ViewSym(d1, . . . ,dk,d′1, . . . ,d
′
k) :=∨k

j=1(
∧k

`= j+1(d` = 0∧d′` = 0)∧
∧ j

`=1 d′` = d j−`+1∧d j 6= 0)

We are now ready to introduce the formula
Move

φ

i (y, p1, . . . , pk,d1, . . . ,dk, p′), which is true if and
only if, on a ring of size n (represented by the variable y), the
move of robot Ri according to the protocol φ(d1, . . . ,dk) from
the configuration p yields to the new position p′. Here the
variables p1, . . . , pk characterizes p and d1, . . . ,dk the view of
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process i. Note that in the asynchronous semantics, the view
of i might completely differ from the current configuration.

Move
φ

i (y, p1, . . . , pk,d1, . . . ,dk, p′) :=
∃d′1, · · · ,d′k ·ViewSym(d1, . . . ,dk,d′1, . . . ,d

′
k)∧(

φ(d1, . . . ,dk)∧
(
(pi < y−1∧ p′ = pi +1)

∨(pi = y−1∧ p′ = 0)
))
∨(

φ(d′1, . . . ,d
′
k)∧

(
(pi > 0∧ p′ = pi−1)∨ (pi = 0∧ p′ = y−1)

))
∨
(
¬φ(d1, . . . ,dk)∧¬φ(d′1, . . . ,d

′
k)∧ (p′ = pi)

)
Now, given two (k,n)-configurations p and p′, and a

k-protocol φ, it is easy to express the fact that p′ is a
successor configuration of p according to φ in a semi-
synchronous run (resp. synchronous run); for this we define
the two formulae SemiSyncPostφ(y, p1, . . . , pk, p′1, . . . , p′k) and
SyncPostφ(y, p1 . . . , pk, p′1, . . . , p′k)) as follows:

SemiSyncPostφ(y, p1, . . . , pk, p′1, . . . , p′k) := ∃d1
1 , . . . ,d

1
k , . . .

dk
1, . . . ,d

k
k ·

∧k
j=1 ConfigView j(y, p1, . . . , pk,d

j
1, . . . ,d

j
k)∧∨k

i=1
(
Move

φ

i (y, p1, . . . , pk,di
1, . . . ,d

i
k, p′i)∧∧k

j=1, j 6=i((p′j = p j)∨Moveφ

j (y, p1, . . . , pk,d1, . . . ,dk, p′j))
)

aa
SyncPostφ(y, p1, . . . , pk, p′1, . . . , p′k) := ∃d1

1 , . . . ,d
1
k , . . . ,

dk
1, . . . ,d

k
k ·

∧k
i=1
(
ConfigViewi(y, p1, . . . , pk,di

1, . . . ,d
i
k)∧

Move
φ

i (y, p1, . . . , pk,di
1, . . . ,d

i
k, p′i)

)
Lemma 2: For all n ∈ N and all (k,n)-configurations p and

p′, we have:
1) p ↪→ p′ if and only if n,p,p′ |= SemiSyncPostφ,
2) p⇒ p′ if and only if n,p,p′ |= SyncPostφ.

C. Results

Now since to solve SAFEss and SAFEs, we only need to
look at the successor in one step, as stated by Lemma 1, and
thanks to the formulae SemiSyncPostφ and SyncPostφ and
their properties expressed by Lemma 2, we deduce that these
two problems can be expressed in Presburger arithmetic.

Theorem 4: SAFEs and SAFEss are decidable and in NP.
Proof: We consider a ring property Ring(y), a protocol φ for k
robots (which is a QFP formula) and a set of bad configurations
given by a QFP formula Bad(x1, . . . ,xk). We know that there
exists a size n ∈N with n ∈ [[Ring]], and a (k,n)-configuration
p with p /∈ [[Bad]], such that Post∗s (φ,p)∩ [[Bad]] 6= /0 if and only
if there exists a (k,n)-configuration p′ with p′ /∈ [[Bad]], such
that Postm(φ,p′)∩ [[Bad]] 6= /0. By Lemma 2, this latter property
is true if and only if the following formula is satisfiable:

SyncPostφ(y, p1, . . . , pk, p′1, . . . , p′k)∧
Ring(y)∧¬Bad(p1, . . . , pk)∧

Bad(p′1, . . . , p′k)

For the semi-synchronous case, we replace the formula
SyncPostφ by SemiSyncPostφ. The NP upper bound is
obtained by the fact that the built formula is an EP formula.
�

When the protocol φ is uniquely-sequentializable, i.e. when
in each configuration at most one robot make the decision to
move then Theorem 1 leads us to the following result.

Corollary 1: When the protocol φ is uniquely-
sequentializable, SAFEas is decidable.

D. Expressing other interesting properties

Not only the method consisting in expressing the successor
computation in Presburger arithmetic allows us to obtain the
decidability for SAFEs and SAFEss, but they also allow us
to express other interesting properties. For instance, we can
compute the successor configuration in asynchronous mode
for a protocol φ working over k robots thanks to the formula
AsyncPostφ(y, p1, . . . , pk,s1, . . . ,sk,v1 . . . ,vk, p′1, . . . , p′k,s

′
1, . . . ,

s′k,v
′
1, . . . ,v

′
k), which is given by:

AsyncPostφ := ∃d1, . . . ,dk·∨k
i=1

(∧
j 6=i(p′j = p j ∧ s′j = s j ∧ v′j = v j)∧

s′i = 1− si∧
(
(si = 0∧ v′i = 〈d1, . . . ,dk〉∧

ConfigViewi(y, p1, . . . , pk,d1, . . . ,dk)∧ p′i = pi)∨
(si = 1∧ v′i = vi∧Moveφ

i (y, p1, . . . , pk,d1, . . . ,dk, p′i)
))

To prove the correctness of this formula for an asynchronous
configuration (p,s,V) with k robots we make the analogy
between the flags L and M and the naturals 0 and 1, which
means that in the definition of the vector s ∈ {L,M}k, we
encode L by 0 and M by 1 and we then apply the definition
of →as.

One can also express the fact that one configuration is a
predecessor of the other in a straightforward way.

It is as well possible to check whether a protocol φ over k
robots fits into the hypothesis of Corollary 1, i.e. whether it
is uniquely-sequentializable. We define the formula UniqSeqφ

that is satisfiable if and only if φ is uniquely-sequentializable.

UniqSeqφ := ¬∃y.p1, . . . , pk, p′1, . . . , p′k·∨
i 6= j,1≤i, j≤k(Move

φ

i (n, p1, . . . , pk, p′i)∧Move
φ

j (n, p1, . . . , pk, p′j)
∧p′i 6= pi∧ p′j 6= p j.

Hence we deduce the following statement.
Theorem 5: Checking whether a protocol φ is uniquely-

sequentializable is decidable.

E. Applications

We have considered the exclusive perpetual exploration
algorithms proposed by Blin et al. [6], and generated the
formulae to check that no collision are encountered for different
cases. We have used the SMT solver Z3 [12] to verify whether
the generated formulae were satisfiable or not. We have been
able to prove that, in the synchronous case, the algorithm using
a minimum of 3 robots was safe for any ring of size greater than
10 and changing a rule of the algorithm has allowed us to prove
that we could effectively detect bugs in the Algorithm. In fact,
in this buggy case, the SMT solver provides a configuration
leading to a collision after one step. We have then looked
for absence of collision for the algorithms using a maximum
number of robots, always in the synchronous case. Here, the
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verification was not parametric as the size of the ring is fixed
and depends on the number of robots (it is exactly 5 plus
the number of robots). The algorithm in [6] was designed to
work for any number of robots k odd and co-prime with k+5.
However, we found bugs for k = 7,9. Note that for 11 robots,
the SMT solver Z3 was taking more than 10 minutes and we
did not let him finish its computation. We observe that when
there is a bug, the SMT solver goes quite fast to generate
a bad configuration but it takes much more time when the
algorithm is correct. The files containing the SMT formulae
are all available on the webpage [15] in the SMTLIB format.

V. CONCLUSION

We have addressed two main problems concerning formal
verification of protocols of mobile robots, and answered the
open questions regarding decidability of the verification of such
protocols, when the size of the ring is given as a parameter
of the problem. Note that in such algorithms, robots can
start in any position on the ring. Simple modifications of
the proofs in this paper allow to obtain undecidability of both
the reachability and the safety problem in any semantics, when
the starting configuration of the robots is given. Hence we
give a precise view of what can be achieved in the automated
verification of protocols for robots in the parameterized setting,
and provide a means of partially verifying them. Of course, to
fully demonstrate the correctness of a tentative protocol, more
properties are required (like, all nodes are visited infinitely
often) that are not handled with our approach. Nevertheless, as
intermediate lemmas (for arbitrary n) are verified, the whole
process of proof writing is both eased and strengthened.

An application of Corollary 1 and Theorem 5 deals with
robot program synthesis as depicted in the approach of Bonnet
et al. [7]. To simplify computations and save memory when
synthesizing mobile robot protocols, their algorithm only
generates uniquely-sequentializable protocols (for a given k
and n). Now, given a protocol description for a given n, it
becomes possible to check whether this protocol remains
uniquely-sequentializable for any n. Afterwards, regular safety
properties can be devised for this tentative protocol, for all
models of computation (that is, FSYNC, SSYNC, and ASYNC).
Protocol design is then driven by the availability of a uniquely-
serializable solution, a serious asset for writing handwritten
proofs (for the properties that cannot be automated).

Last, we would like to mention possible applications of our
approach for problems whose core properties seem related
to reachability only. One such problem is exploration with
stop [5]: robots have to explore and visit every node in a
network, then stop moving forever, assuming that all robots
initial positions are distinct. All of the approaches published
for this problem make use of towers, that is, locations that
are occupied by at least two robots, in order to distinguish
the various phases of the exploration process (initially, as all
occupied nodes are distinct, there are no towers). Our approach
still makes it possible to check if the number of created towers
remains acceptable (that is below some constant, typically 2
per block of robots that are equally spaced) from any given

configuration in the algorithm, for any ring size n. As before,
such automatically obtained lemmas are very useful when
writing the full correctness proof.
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