
Debugging and Verifying Programs
CS 340d, Fall 2019

Unique Number: 50960

Lab Assignment 3: Floating-Point Rounding
Assigned: Monday, April 22, 2019

Due: Wednesday, May 8, 2019, by 5:00 pm

Introduction

The purpose of this assignment is to become more familiar with floating-point representation. This lab
asks you to write C code that implements the rounding (round-to-even) for single-precision, floating-point
addition. In this lab, you will need to think very carefully about the answer that must be produced exactly.

Logistics

You are to work alone on this project, but you may discuss programing tricks and bit-manipulation code
with your peers. The entire “hand-in” will be electronic. Any clarifications and revisions to the assignment
will be posted on our course Web page.

Hand Out Instructions

You will find the file fplab-handout.tar referenced on the homework page of the class
website. You will need to download this file so you can use its contents.

Start by copying fplab-handout.tar to a (protected) directory in which you plan to do your work.
Then give the command: tar xvf fplab-handout.tar. This will cause a number of files to be
unpacked in the directory. The only file you will be modifying and turning in is fp-round.c.

Looking at the file fp-round.c you’ll notice a place to include your name and UTCS UserID into which
you should insert the requested identifying information about yourself. Do this right away so you don’t
forget.

1



The fp-add.c file contains a skeleton of code to check your solution. Your assignment is to complete the
fp add function by adding code to the file fp-round.c using only straight-line code (i.e., no loops, but
single-level IF statements are OK) and a limited number of C arithmetic and logical operators. Specifically,
you are only allowed to use the following eight operators:

! ˜ & ˆ | + << >>

For this laboratory, you may also use one-level-deep IF statements; there is an example usage in the
fp-add.c file. You are not allowed to use any constants longer than 8 bits. See the comments in
fp-add.c for detailed rules and a discussion of the desired coding style.

Rounding Challenge

You have been given a template for a single-precision, floating-point addition instruction. Before there were
floating-point co-processors, microprocessors implemented floating-point computations with a collection of
integer instructions. We have given you a template for your solution, and a test harness so you may check
your solution. All that you need to do is to implement the rounding code. You may assume that both input
numbers will be positive and that they will both have an exponent of 0–254; thus, no infinite or NaN inputs
will be provided. One or both of the inputs may be denormalized. You need to complete the fp add
function so that it correctly implements round to even.

In the main procedure, you may wish to reduce the initial value of the number of tests variable. We
will certainly check your code on a very large number of tests, but when getting started such a large value
may print a huge amount of output. During our evaluation of your solution, we may also choose to give the
random function a different seed.

Do not write lots of code! We were able to achieve the rounding code in 15 statements (about 20 lines of
code). The main thing you need to do is to think carefully about how rounding works. Remember, the only
time round-to-even is subtle is when the remainder is exactly 1/2 of the least significant answer bit. You
will only submit the fp-round.c file – put your rounding code there.

Evaluation

Your code will be compiled with GCC and run and tested on one of the public Linux machines. Your score
will be computed out of a maximum of 100 points based on the following distribution:

40 Correctness of code running on one of the public Linux machines.

30 Performance of code, based on number of operators used.

30 Description of your solution; this description should be source-code comments.

Regarding performance, our main concern at this point in the course is that you can get the right answer.
However, we want to instill in you a sense of keeping things as short and simple as you can.

2



Your solution should be as clean and straightforward as possible. Your comments should be precise and
informative, but they need not be extensive.

Advice

You are welcome to do your code development using any system or compiler you choose. Just make sure
that the version you turn in compiles and runs correctly on our UT CS public Linux machines. If it doesn’t
compile, we can’t grade it.

Hand In Instructions

Instructions for submitting your assignment will appear on Piazza.

3


