
The CS340d Manual
Version (month.week.day): 4.3.21

Updated 22 April 2023, early afternoon

Continue reading the Recursion and Induction notes through topic r-and-i-definitions-revisited.
You may start by jumping to “recursion-and-induction ...” (http://acl2.org/manual)

Suggested viewing:
2021 Summer School Video (J Moore), at

https://youtu.be/pVRfeu8MbgE

See new Lab: Complete

See new homework: Complete

Warren A. Hunt, Jr. (hunt@cs.utexas.edu)

http://acl2.org/manual
https://youtu.be/pVRfeu8MbgE
mailto:hunt@cs.utexas.edu

Texinfo version of the documentation for UTCS CS340d; originally by Warren A. Hunt, Jr.

1

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.

Copyright c© 2023 Warren A. Hunt, Jr.

i

Short Contents

1 Introduction . 2
2 Basic Logic Review . 18

3 Lectures . 39
4 CS340d Quizzes . 70
5 CS340d Homework . 102

6 CS340d Laboratories . 129
Doc Index . 148

ii

Table of Contents

1 Introduction . 2
1.1 Course Announcement . 2
1.2 Class Syllabus . 5
1.3 Writing Flag . 7
1.4 Homework . 8
1.5 Laboratory Projects . 8
1.6 Quizzes . 8
1.7 Class Assessment . 8
1.8 Class Advice . 9
1.9 Electronic Class Delivery . 9
1.10 Code of Conduct . 10
1.11 Scholastic Dishonesty . 16
1.12 Students with Disabilities . 16
1.13 Religious Holidays . 16
1.14 Emergency Evacuation . 16
1.15 UT Required Notices . 17

2 Basic Logic Review . 18
2.1 Axiomatic Logic Systems . 18
2.2 Propositional Logic . 19
2.3 Properties of a Logic . 21
2.4 Natural Deduction . 21
2.5 Predicate Logic . 22
2.6 Proof Techniques . 22

2.6.1 Proving Axioms . 23
2.6.2 Inference Rules of E . 25
2.6.3 Direct Proof . 26
2.6.4 Mutual Implication Proof . 26
2.6.5 Truth Implication Proof . 26
2.6.6 Proof by Contradiction . 26
2.6.7 Proof by Contrapositive . 27
2.6.8 Proof by Case Analysis . 27
2.6.9 Mathematical Induction . 27

2.7 Review of Linear Temporal Logic . 28
2.7.1 Axiomatic Logic System for LTL . 29
2.7.2 Stating Properties in LTL . 29
2.7.3 Temporal Deduction . 32
2.7.4 Proof techniques and Proofs in LTL . 32

2.7.4.1 Proving Axioms in LTL . 32
2.7.4.2 Direct Proof . 33
2.7.4.3 Mutual Implication Proof . 33
2.7.4.4 Truth Implication Proof . 33
2.7.4.5 Proof by Contradiction . 33

iii

2.7.4.6 Proof by Contrapositive . 33
2.7.4.7 Proof by Case Analysis . 34
2.7.4.8 Mathematical Induction . 34

2.7.5 How to Prove it - Tips . 35
2.7.6 Example: Program Properties and a Proof 36

3 Lectures . 39
3.1 Lecture 0 – Introduction course overview and fibonacci example . . 39
3.2 Lecture 1 – The course syllabus rules UT disclosures 40
3.3 Lecture 2 – Introduction to functional programming 40
3.4 Lecture 3 – Introduction to tracing and debugging 40
3.5 Lecture 4 – Continue introduction to
functional programming in ACL2 . 40

3.6 Lecture 5 – Build an expression evaluator . 40
3.7 Lecture 6 – ACL2 function definition . 41
3.8 Lecture 7 – General correctness principles . 41
3.9 Lecture 8 – Presentation and use of the ACL2 Logic 41
3.10 Lecture 9 –Terms and functions revisited . 42
3.11 Lecture 10 – Terms and functions revisited . 42
3.12 Lecture 11 – ACL2 revisited . 42
3.13 Lecture 12 – ACL2 Theory repeated . 42
3.14 Lecture 13 – ACL2 Axioms . 45
3.15 Lecture 14 – Proof by Induction . 45
3.16 Lecture 15 – Assoc of App . 47
3.17 Lecture 16 – Storing values in variables . 52
3.18 Lecture 17 – Problem 43 and Proof process 54
3.19 Lecture 18 – Verification of iSort . 58
3.20 Lecture 19 – Array-based iSort . 58
3.21 Lecture 20 – The Method . 58
3.22 Lecture 21 – Proof Automation . 60
3.23 Lecture 22 – The Method . 65
3.24 Lecture 23 – Peano Arithmetic . 65
3.25 Lecture 24 – Structural Induction . 68
3.26 Lecture 25 – popcount . 68
3.27 Lecture 26 – Verification and Validation . 68
3.28 Lecture 27 – The Last Class . 68

4 CS340d Quizzes . 70
4.1 Quiz 0 Welcome Questionnaire . 70
4.2 Quiz 1 Checkout Canvas Quiz Submission . 73
4.3 Quiz 2 Propositional Calculus . 74
4.4 Quiz 3 Propositional Calculus . 76
4.5 Quiz 4 Propositional Calculus . 77
4.6 Quiz 5 Functional programming in ACL2 . 78
4.7 Quiz 6 Functional programming in ACL2 . 79
4.8 Quiz 7 A Quiz Poll . 81

iv

4.9 Quiz 7a An ACL2 Lisp Function . 82
4.10 Quiz 8 Terms . 83
4.11 Quiz 9 Dot Notation . 84
4.12 Quiz 10 More on Terms . 85
4.13 Quiz 11 The Definitional Principle . 87
4.14 Quiz 12 Concepts Review . 89
4.15 Quiz 13 Prove it . 91
4.16 Quiz 14 Prove it . 93
4.17 Quiz 15 Prove it . 97
4.18 Quiz 16 Is this a defthm . 98
4.19 Quiz 17 The Method . 100

5 CS340d Homework . 102
5.1 Homework 0 . 102
5.2 Homework 1 . 105
5.3 Homework 2 . 107
5.4 Homework 3 . 111
5.5 Homework 4 . 112
5.6 Homework 5 . 114
5.7 Homework 6 . 115
5.8 Homework 7 . 118
5.9 Homework 8 . 121
5.10 Homework 9 . 122
5.11 Homework 10 . 124
5.12 Homework 11 . 125

6 CS340d Laboratories . 129
6.1 Lab 0 . 130
6.2 Lab 0 General Comments . 130
6.3 Lab 0 Requirements . 130
6.4 Lab 0 Documentation . 131
6.5 Lab 0 Grading . 131
6.6 Lab 0 Turn-in . 132
6.7 Lab 0 Code Template . 132
6.8 Lab 1 . 134
6.9 Lab 1 General Comments . 134
6.10 Lab 1 Requirements . 134
6.11 Lab 1 Documentation . 134
6.12 Lab 1 Grading . 135
6.13 Lab 1 Turn-in . 135
6.14 Lab 1 Code Template . 135
6.15 Lab 2 . 138
6.16 Lab 2 General Comments . 138
6.17 Lab 2 Requirements . 138
6.18 Lab 2 Documentation . 138
6.19 Lab 2 Grading . 139

v

6.20 Lab 2 Turn-in . 139
6.21 Lab 2 Code Template . 139
6.22 Lab 3 . 143
6.23 Lab 3 General Comments . 143
6.24 Lab 3 Requirements . 143
6.25 Lab 3 Documentation . 143
6.26 Lab 3 Grading . 144
6.27 Lab 3 Turn-in . 144
6.28 Lab 3 Code Template . 144

Doc Index . 148

2

1 Introduction

This course, Debugging and Verifying Programs (CS340d), introduces students to rigorous
(sometimes formal) specification and (analytic) analysis techniques that should help them
be better programmers. We will introduce, analyze and apply tools for confirming program
correctness by proof methods. Some of our methods will be practical — rules of thumb, or
just suggestions for successful coding. Other methods will involve using mathematics to
write specifications; and subsequently, performing proofs to assure that code is meeting its
specification.

This document template will be populated throughout the course and contains information
to help students navigate the UT CS340d course, Debugging and Verifying Programs. This
information is arranged in a hierarchical manner and will be updated as the semester proceeds.
We would appreciate receiving suggestions for improvements in all aspects of our course,
including this information, classroom activities, presentations, assignments, laboratories, and
anything else related to this class. Thus, comments, criticisms, assistance, ideas, examples,
and improvements are welcome.

1.1 Course Announcement

In this class, we will consider how sequential programs are specified and how the correctness
of their implementations are confirmed. This class will require careful thought as we will
be pushing the boundaries of what the academic community considers to be an adequate
specification and sufficient confirmation evidence that a program meets its specification.
Typically, some form of testing is the only mechanism that is used to see if a program meets
its specification – this class will investigate both testing and other verification methods.

To develop skill in program specification, analysis, verification, and debugging, we will assign
a litany of problems where students will be expected to write specifications, write code that
meets these specifications, produce arguments that defend their claim that their solutions
meet the specifications, and write reports about their efforts.

Note that this course carries a writing flag, and students will write more often than is typical
in other CS courses. Students will also be asked to address problems where they will need
to decide whether various implementations produced by others are correct, and to debug
these programs when they are not correct.

To be able to debug programs, we will investigate common debugging and analysis tools.
To be able to use such tools effectively, it will be necessary for students to understand how
binary is used to direct a processor. Students will need to understand how binary programs
are organized and also how to inspect such binary programs during their execution.

Another component of debugging and verification is a well-organized method for program
development. Version control for code and documentation is widely used and is generally
necessary – especially in multi-person teams. It can also be necessary and effective tool for
a single person dealing with a complex project structure or very large numbers of software
components in a system.

In many cases, we will use proof-based techniques to determine the correctness of our code.
At first, we will investigate hand proofs; that is, we will use some informal notation to
compare a specification program to an implementation program. We will also convert the

Chapter 1: Introduction 3

behavior of some programs into a form that will allow a mechanical comparison of the
behavior of two programs.

This class will be taught in an “inverted” style. That is, we will concentrate class time on
examples, working through code, describing challenges, and exploring problems being faced
by students working on homework sets or larger laboratory projects. Thus, it is important
that you bring your laptop to everyclass. There will be lectures to introduce various topics,
but primarily, we will use class time for problem solving, demonstrating how to use various
tools, and exchanging information.

Most of the information needed for this course will be provided; however, we do expect
students to have internalized information from their algorithms and data structure courses.
In addition, we will make use of the material in “Computer Systems, A Programmer’s Per-
spective”, 3rd Edition (the CS429 textbook). In our use of the Y86 ISA, we may occasionally
refer to Intel’s specification for the X86. Information not provided we be readily available on
web, such as the programming information available from Agner Fog http://www.agner.

org/optimize/ website. And, students may wish to have occasional access to “Hacker’s
Delight, 2nd Edition” by Henry S. Warren, Jr.

In addition to being a UTCS undergraduate student, the prerequisite for CS340D is the
successful completion of CS429. There is no textbook required for CS340D, but we will
sometimes refer to your CS429 textbook (“Computer Systems, A Programmer’s Perspective”
Third Edition, by Randal E. Bryant and David O’Hallaron, Prentice Hall). In addition, we
will sometimes make use of the second edition of the book “Hacker’s Delight” by Henry
S. Warren, Jr. This book will be used for various background problems, and some of the
homework and programming assignments may be based on the material from this book. We
will make use of other web-based material as needed and references will be provided in class.
There is a website (https://github.com/lancetw/ebook-1/blob/master/02_algorithm/
Hacker%27s%20Delight%202nd%20Edition.pdf) associated with the “Hacker’s Delight”
book. And another great source of problems is the Hakmem website (http://www.inwap.
com/pdp10/hbaker/hakmem/hakmem.html).

Tests and quizzes are open-book, open-notes affairs – however, no electronic devices (laptops,
cell phones, tablets, PDAs, calculators, etc.) of any kind are allowed during test and quiz
events. As such, you may wish to have a physical copy of any materials that you believe will
be helpful. Remember, cell phones are not allowed during exams.

This course will require students to write programs in Lisp, and occasionally C. Knowledge of
assembler will also be critical as it is the binary code that really determines what programs
do – and it is during binary execution on physical hardware that code will fail. It is recom-
mended that you have access to “The C Programming Language” (https://en.wikipedia.
org/wiki/The_C_Programming_Language), Second Edition, by Brian Kernighan and Den-
nis Ritchie, Prentice Hall Software Series. For examples and help with C-language use, you
will find that there are many Web pages devoted to C-language programming.

Why do we use C, or its extension, C++? C is the language that is used to implement many
systems, such as FreeBSD, Linux, MacOS, Windows, as well as many user tools (e.g., wc,
grep, ed, sed, emacs,...). Java programmers should have no problem with the subset of
C that we will use, but Java programs are not generally used to interface with assembly
language programs. Students might be introduced to processor-specific-language capabilities,
such as referencing x86 processor-specific counters, that lie outside of the official C-language

http://www.agner.org/optimize/
http://www.agner.org/optimize/
https://github.com/lancetw/ebook-1/blob/master/02_algorithm/Hacker%27s%20Delight%202nd%20Edition.pdf
https://github.com/lancetw/ebook-1/blob/master/02_algorithm/Hacker%27s%20Delight%202nd%20Edition.pdf
http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html
http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html
https://en.wikipedia.org/wiki/The_C_Programming_Language
https://en.wikipedia.org/wiki/The_C_Programming_Language

Chapter 1: Introduction 4

definition. Students will be introduced briefly to the GNU Debugger (“gdb”) program; we
will use a tiny subset of “gdb” as a model for one of the class laboratories.

While C will be used intermittently throughout this course, most of our programming will
be done in ACL2. ACL2 is a subset of Common Lisp that can be used to develop models
of digital systems and prove properties of these models using a theorem prover included
with the system. Depending on time, and the skills and interests of the students in this
class, students may wish to develop a BDD (binary decision diagram) package. We will also
investigate and use a SAT solver. For such analysis tools, we will use the Z3 and ACL2
systems, and work on several examples of using logic to verify hardware circuits or assembler
program models.

In some cases, it may be helpful to reference documentation about the x86 architecture.
In some cases, students may be asked to read small sections of x86 documentation. Note
that these documents are large – these documents are indicative of the complexity of the
x86 architecture and, in general, of modern computer systems. Companies other than
Intel (AMD and VIA) that develop and market x86 processors must fully comprehend
the information contained in these documents. Unfortunately, the information contained
in these documents is insufficient to develop a competitive x86 processor implementation.
AMD offers their own manuals, which can be a place to look if the Intel documentation
isn’t sufficient. VIA doesn’t publish any specification for their X86 implementations. Note,
there are many undocumented features (e.g., caching read-ahead strategies, I/O ordering
behavior, virtualization, context-switch mechanisms, encryption-and-decryption instructions,
etc.) that are necessary to make an x86 processor perform well on a litany of common
benchmarks. For an x86 processor to be competitive, it will need to contain some of these
features. Although many x86 implementation mechanisms are protected by patents, anyone
is now free to build their own 32-bit x86 implementation using Intel’s IP as all of Intel’s
patents specific to the (32-bit x86) Pentium have expired.

For the adventurous student, special projects are possible. The content of a special project is
pretty flexible – so long as it has to do with specification and validation. For instance, we are
interested in the development of an ISA (instruction set architecture) model of IBM’s Harvest
computer, which was a extension of IBM’s Stretch computer. Another possible specification
project might involve some older microprocessor, e.g., the Motorola 68030 or the National
Semiconductor NS32032. Or, a student might wish to formally specify RISC-V. Another
project of high interest concerns booting FreeBSD or Linux on our evolving ACL2-based x86
ISA emulator. Other independent study projects are possible; please discuss your particular
interest in one of the above projects or some new ideas with the instructor.

The value you get from this class will be directly related to the effort you (as a student) put
forward. This class will require that you learn to work on your own. You may find this class
to be less structured than many of the classes you have previously taken. For instance, from
experience in teaching CS429 many times, we know that lecture time dominates the CS429
class. In this class, there will be one or two short (less than 15 minute) lectures, but not
nearly as many nor as long as is typical in CS429. The majority class time will be used to
directly address problems and seek their solutions. Students will need to have access to a
computer during class.

In class, we will be doing some real-time programming to support discussing various issues,
such as how the debugger or version control system functions. Eventually, all programming
assignment must work on the CS Department Linux machines, but being able to use your

Chapter 1: Introduction 5

own IDE (Integrated Development Environment) may speed up your work and you may end
up with more tools on your programming toolbox than when you started this class. When
we are discussing programming issues and working together on coding it may be helpful
for you to try things immediately. Note, if needed, it is possible to checkout a Linux-based
laptop from the UTCS Department. You can check with the instructor if you wish to borrow
such a laptop.

Students will be encouraged to give short (five- to ten-minute) presentations in class on
particular topics. When well done, these presentations can serve in place of a missed quiz
or homework. In fact, any student may be called upon to give a two- or three-minute
presentation on something being discussed in class or on their solution to a homework
problem. Please come to class prepared to work.

We will sometimes stop our classroom activities for a few minutes to give everyone a chance
to consolidate their thinking. During this time you might formulate questions that can help
you and your fellow students overcome problems of general concept understanding or with
questions about the in-class presentations.

Our office hours are listed on the main class web-page. In addition, if you need help, you may
certainly seek out and visit with the class TA and/or the instructor(s). You may arrange to
meet us at times other than those listed, but you will need to send E-mail to arrange a time.
If we become too busy during the scheduled office hours, we will expand our office hours
to meet the needs of the students. If you cannot come to the scheduled office hours due to
conflicts with other classes, let us know quickly so we can make arrangements to meet your
needs.

1.2 Class Syllabus

The following gives an outline of the topics we will cover in this course. We are open to
discussing other topics of general interest, and we will include some of our own experience
in hardware and software verification.

The syllabus below is approximate; the exact rate at which we will cover some of the material
is hard to predict. So the schedule may vary. All changes to this schedule will be announced
in class and broadcast to the course CANVAS page. Additional summary information
about the class laboratory and homework assignments will be made available as the course
progresses.

Schedule Below is Approximate, Lectures Dates/Topics May Change Slightly

*** NOTE: Bring Laptops to every class; we will access ACL2 on

*** UTCS Linux machines during class.

*** NOTE: Quizzes can and will occur during nearly every class period.

*** NOTE: At-Your-Desk Problems will be pursued during class.

*** NOTE: Due dates for Homework and Labs are tentative until assigned.

Week Class Date Short Description

Chapter 1: Introduction 6

0 00 Jan 10 Course Content Introduction,

Course Procedures and UT required disclosures

Lisp/ACL2 Introduction, Fibonacci function

0 01 Jan 12 Writing CS314/CS331 algorithms in Lisp. The

simplest kind of verification -- co-simulation.

1 02 Jan 17 Introduce DEFUN and TRACE$, use TRACE$ to investigate

control-flow during execution of a function.

1 03 Jan 19 More on using TRACE$ with ACL2 functions; LEN, APP,

FACT, TREE-COPY, MERGE-LISTS

2 04 Jan 24 Lookup and update. Duplicate detection. Set intersection,

union, and negation operations.

* * * * * Jan 25 Last Day to drop class without permission

2 05 Jan 26 Terms and evaluation. Mutual recursion.

3 06 Jan 31 Introduction to ACL2 ‘‘guards’’; data and

structure recognizers; well-formed inputs; trees

3 07 Feb 2 General correctness principles, assertions,

invariants

4 08 Feb 7 Presentation and use of the ACL2 logic

4 09 Feb 9 Basic ACL2 data types

5 10 Feb 14 ACL2 Terms

5 11 Feb 16 Substitution

6 12 Feb 21 Function definitions,

Model a memory using NTH and !NTH

6 13 Feb 23 ACL2 Axioms

7 14 Feb 28 Sorting with our memory model

Chapter 1: Introduction 7

7 15 Mar 2 Axioms, basic hand proofs

8 16 Mar 7 Terms

8 17 Mar 9 Structural Induction

Mar 12-18 Spring Break

9 18 Mar 21 Practice with list recursion

9 19 Mar 23 Practice with list-based memory modeling

10 20 Mar 28 Definitional Principle

10 21 Mar 30 Induction Principle

11 22 Apr 4 Relationship between recursion and induction

11 23 Apr 6 Tree-based algorithms

12 24 Apr 11 ACL2-based verification

12 25 Apr 13 Machine modeling

13 26 Apr 18 Function profiling

13 27 Apr 20 Construction of the various data types

14 28 Apr 25 Example uses of the ACL2 system

14 29 Apr 27 Two quizzes, stump the professor

1.3 Writing Flag

As a future employee, one of the most important things you will need to do is to be able to
communicate with your co-workers and your customers. Yes, you may be a programmer,
and your work output may be code, but you will need to write descriptions of what your

Chapter 1: Introduction 8

code does, write reports to document your efforts, write documentation for your code, or
write proposals for funding new projects.

As this course includes the writing-flag designation, students will be asked to write more
often than is typical in other CS courses. Students will be asked to address problems where
they will need to decide whether various implementations are correct, to debug the programs
when they are not correct, and to articulate clearly what they have done in a technical
report.

1.4 Homework

There will be ten to twelve homework assignments given during the semester. On most weeks,
homework will be assigned on Thursdays and due seven (7) days later (on the following
Thursday) by class time. No homework will be assigned the last two weeks of class, but
there may be a homework due the last week of class. The two lowest homework grades will
be dropped in the computation of the final homework grade.

Homework will not be accepted late! We repeat, no late homework!

1.5 Laboratory Projects

There will be four (0, 1, 2, and 3) Laboratory Projects assigned. Once a laboratory due
date has arrived, material addressed in that laboratory may appear on a quiz or exam.
Laboratory assignments are important; performing the work necessary to complete the class
laboratories is the means by which you will solidify your understanding of the class material
and the work that it takes to make you a better thinker and programmer.

Laboratory Projects may be turned in up to one week late, but no later than the last day of
class. Late laboratory project submissions suffer a 20% reduction of the grade given for the
content of the project. So a perfectly done laboratory assignment handed in late, can do no
better than a maximum grade of 80%.

For each laboratory, a lab report will be part of the requirement. Remember, this course
carries a writing flag, the quality and completeness of lab reports will count for 20% to 35%
of the grade for the laboratory. So, it is important that you allot time and make a serious
effort to provide the documentation required for each laboratory.

1.6 Quizzes

Over the course of the semester, there will be twenty, or more, in-class quizzes. Quizzes are
ten- to twenty-minute affairs. In this course, no long exams will be given.

The material on quizzes will be cumulative, and we might even have two quizzes within a
single class period. There will be no final exam.

1.7 Class Assessment

The weighting of the grades for the various aspects of the course are:

Component Percentage of Course Grade

Quizzes: 40% (any class period)

Homework: 30% (submitted to an on-line system)

Labs: 30% (see individual weighting just below)

Chapter 1: Introduction 9

The Laboratory Projects will be weighted as follows:

Laboratory Percentage of Course Grade

Lab 0: 5%

Lab 1: 5%

Lab 2: 10%

Lab 3: 10%

The grading for the entire course will be as follows:

Course Score Grade

[90 -- 100) A

[87 -- 90) A-

[85 -- 87) B+

[80 -- 85) B

[77 -- 80) B-

[75 -- 77) C+

[70 -- 75) C

[67 -- 70) C-

[65 -- 67) D+

[60 -- 65) D

[0 -- 60] F

Note the interval marks around the course-score column. For example, a course grade of B
will be assigned if your semester grade is greater than or equal to 80 and (strictly) less than
85. This also means that a course grade of at least 67 needs to be achieved for this course
to count toward a UTCS degree – a grade of D+ or D is not considered a passing grade for a
UTCS (student) major.

1.8 Class Advice

The students who do well in this class are survivors. This class is a fair amount of work,
and it is important to keep current. The material in this class is cumulative, and it can be
difficult to catch up if one falls behind. It is very important to keep turning in homework
and laboratories. Generally, homework grades are our most reliable indicator of how well
a student will do (or is doing) in this class. Note, it is very important to attend class, as
quizzes will be given, and material that is not available readily may be discussed.

Due to the continuing uncertainty of the pandemic, we will be prepared to move our class
to an online format – and this will require our use of Zoom. Any changes in how we will
conduct class will be announced as the semester progresses.

1.9 Electronic Class Delivery

In the past few years, during the pandemic, we have offered this class electronically. This
semester we will return to the more traditional “in-class” format. If you have any trouble
with accessing class materials, submitting work, connecting to our class session, or any other
issue that concerns your ability to function successfully, please do not hesitate to contact
us. We will provide office hours multiple times each week so students may continue to
engage with the Instructor and Teaching Assistant directly. In addition, some office hours
will be offered electronically if there is sufficient student interest in having those available.

Chapter 1: Introduction 10

Students should be able to use Zoom, as we may hold extra sessions or even remote sessions
by way of Zoom. Some office hours will also be held using Zoom; this allows us to schedule
non-standard (e.g., evening) office hours when otherwise we will not be available.

1.10 Code of Conduct

The core values of the University of Texas at Austin are learning, discovery, freedom,
leadership, individual opportunity, and responsibility. Each member of the University is
expected to uphold these values through integrity, honesty, trust, fairness, and respect
toward peers and community.

We believe that you belong here! Although UT is a very large organization, we are attempting
to foster a climate conductive to learning and creating knowledge; we believe this is a basic
tenant of people in our community. Bias, harassment and discrimination of any sort have no
place here in our community. If you notice an incident that causes concern, please contact
the Campus Climate Response Team (http://diversity.utexas.edu/ccrt).

In general, the information found in UT’s Code of Conduct (http://www.cs.utexas.edu/
users/hunt/class/2023-spring/cs340d/Disclosures/CodeOfConduct.html) is a good
guide on how to conduct yourself in this class. Additional general information about
College of Natural Sciences (CNS) class coursework and procedures can be found in
former Vice Provost Laude’s memorandum (http://www.cs.utexas.edu/users/hunt/
class/2023-spring/cs340d/Disclosures/CNS_Coursework_Routine_09-10.pdf) to the
CNS faculty.

This course attempts to comply with the requirements of the University and the State of
Texas. Texas House Bill 2504 specifies a number of items regarding course materials and
instructor qualifications (http://www.cs.utexas.edu/users/hunt/class/2023-spring/
cs340d/Disclosures/aug-2022.pdf).

In addition, the material contained here and referenced are designed to be compliant with
Gretchen Ritter’s (Vice Provost for Undergraduate Education and Faculty Governance)
August 3, 2012 memo (http://www.cs.utexas.edu/users/hunt/class/2023-spring/
cs340d/Disclosures/ritter-memo.txt).

Ritter’s memorandum also addresses issues concerning campus safety and security. Please
familiarize yourself with this information, and let us know if you believe the class Website
does not comply with any of these requirements.

Texas House Bill No. 2504

AN ACT

relating to requiring a public institution of higher education to

establish uniform standards for publishing cost of attendance

information, to conduct student course evaluations of faculty, and

to make certain information available on the Internet.

BE IT ENACTED BY THE LEGISLATURE OF THE STATE OF TEXAS:

SECTION 1. Subchapter Z, Chapter 51, Education Code, is

http://diversity.utexas.edu/ccrt
http://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/Disclosures/CodeOfConduct.html
http://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/Disclosures/CodeOfConduct.html
http://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/Disclosures/CNS_Coursework_Routine_09-10.pdf
http://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/Disclosures/CNS_Coursework_Routine_09-10.pdf
http://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/Disclosures/aug-2022.pdf
http://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/Disclosures/aug-2022.pdf
http://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/Disclosures/ritter-memo.txt
http://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/Disclosures/ritter-memo.txt

Chapter 1: Introduction 11

amended by adding Section 51.974 to read as follows:

Sec. 51.974. INTERNET ACCESS TO COURSE INFORMATION.

(a) Each institution of higher education, other than a medical

and dental unit, as defined by Section 61.003, shall make

available to the public on the institution’s Internet

website the following information for each undergraduate

classroom course offered for credit by the institution:

(1) a syllabus that:

(A) satisfies any standards adopted by the

institution;

(B) provides a brief description of each major

course requirement, including each major

assignment and examination;

(C) lists any required or recommended reading;

and

(D) provides a general description of the subject

matter of each lecture or discussion;

(2) a curriculum vitae of each regular instructor that

lists the instructor’s:

(A) postsecondary education;

(B) teaching experience; and

(C) significant professional publications; and

(3) if available, a departmental budget report of the

department under which the course is offered, from

the most recent semester or other academic term

during which the institution offered the course.

(a-1) A curriculum vitae made available on the

institution’s Internet website under Subsection (a)

may not include any personal information, including

the instructor’s home address or home telephone number.

(b) The information required by Subsection (a) must be:

(1) accessible from the institution’s Internet website

home page by use of not more than three links;

(2) searchable by keywords and phrases; and

(3) accessible to the public without requiring

registration or use of a user name, a password,

or another user identification.

(c) The institution shall make the information required by

Subsection (a) available not later than the seventh day

after the first day of classes for the semester or other

academic term during which the course is offered. The

institution shall continue to make the information

available on the institution’s Internet website until

Chapter 1: Introduction 12

at least the second anniversary of the date on which the

institution initially posted the information.

(d) The institution shall update the information required

by Subsection (a) as soon as practicable after the

information changes.

(e) The governing body of the institution shall designate an

administrator to be responsible for ensuring

implementation of this section. The administrator may

assign duties under this section to one or more

administrative employees.

(f) Not later than January 1 of each odd-numbered year, each

institution of higher education shall submit a written

report regarding the institution’s compliance with this

section to the governor, the lieutenant governor, the

speaker of the house of representatives, and the presiding

officer of each legislative standing committee with primary

jurisdiction over higher education.

(g) The Texas Higher Education Coordinating Board may adopt

rules necessary to administer this section.

(h) Institutions of higher education included in this

section shall conduct end-of-course student evaluations of

faculty and develop a plan to make evaluations available

on the institution’s website.

SECTION 2. Subchapter E, Chapter 56, Education Code, is

amended by adding Section 56.080 to read as follows:

Sec. 56.080. ONLINE LIST OF WORK-STUDY EMPLOYMENT

OPPORTUNITIES. Each institution of higher education shall:

(1) establish and maintain an online list of

work-study employment opportunities, sorted by

department as appropriate, available to students on

the institution’s campus; and

(2) ensure that the list is easily accessible to the

public through a clearly identifiable link that

appears in a prominent place on the financial aid

page of the institution’s Internet website.

SECTION 3. Subchapter C, Chapter 61, Education Code, is

Chapter 1: Introduction 13

amended by adding Section 61.0777 to read as follows:

Sec. 61.0777. UNIFORM STANDARDS FOR PUBLICATION OF COST OF

ATTENDANCE INFORMATION.

(a) The board shall prescribe uniform standards intended to

ensure that information regarding the cost of attendance

at institutions of higher education is available to the

public in a manner that is consumer-friendly and readily

understandable to prospective students and their

families. In developing the standards, the board shall

examine common and recommended practices regarding the

publication of such information and shall solicit

recommendations and comments from institutions of higher

education and interested private or independent

institutions of higher education.

(b) The uniform standards must:

(1) address all of the elements that constitute the

total cost of attendance, including tuition and

fees, room and board costs, book and supply costs,

transportation costs, and other personal expenses;

and

(2) prescribe model language to be used to describe

each element of the cost of attendance.

(c) Each institution of higher education that offers an

undergraduate degree or certificate program shall:

(1) prominently display on the institution’s Internet

website in accordance with the uniform standards

prescribed under this section information regarding

the cost of attendance at the institution by a

full-time entering first-year student; and

(2) conform to the uniform standards in any electronic

or printed materials intended to provide to

prospective undergraduate students information

regarding the cost of attendance at the institution.

(d) Each institution of higher education shall consider the

uniform standards prescribed under this section when

providing information to the public or to prospective

students regarding the cost of attendance at the

institution by nonresident students, graduate students, or

students enrolled in professional programs.

(e) The board shall prescribe requirements for an institution

of higher education to provide on the institution’s

Internet website consumer-friendly and readily

Chapter 1: Introduction 14

understandable information regarding student financial aid

opportunities. The required information must be provided

in connection with the information displayed under

Subsection (c)(1) and must include a link to the primary

federal student financial aid Internet website intended to

assist persons applying for student financial aid.

(f) The board shall provide on the board’s Internet website a

program or similar tool that will compute for a person

accessing the website the estimated net cost of attendance

for a full-time entering first-year student attending an

institution of higher education. The board shall require

each institution to provide the board with the information

the board requires to administer this subsection.

(g) The board shall prescribe the initial standards and

requirements under this section not later than January 1,

2010. Institutions of higher education shall comply with

the standards and requirements not later than April l,

2010. This subsection expires January 1, 2011.

(h) The board shall encourage private or independent

institutions of higher education approved under Subchapter

F to participate in the tuition equalization grant

program, to the greatest extent practicable, to

prominently display the information described by

Subsections (a) and (b) on their Internet websites in

accordance with the standards established under those

subsections, and to conform to those standards in

electronic and printed materials intended to provide to

prospective undergraduate students information regarding

the cost of attendance at the institutions. The board

shall also encourage those institutions to include on

their Internet websites a link to the primary federal

student financial aid Internet website intended to assist

persons applying for student financial aid.

(i) The board shall make the program or tool described by

Subsection (f) available to private or independent

institutions of higher education described by Subsection

(h), and those institutions shall make that program or

tool, or another program or tool that complies with the

requirements for the net price calculator required under

Section 132(h)(3), Higher Education Act of 1965 (20

U.S.C. Section 1015a), available on their Internet

websites not later than the date by which the institutions

are required by Section 132(h)(3) to make the net price

Chapter 1: Introduction 15

calculator publicly available on their Internet websites.

SECTION 4. Section 51.974, Education Code, as added by this

Act, applies beginning with the 2010 fall semester.

SECTION 5. As soon as practicable after the effective date

of this Act, each public institution of higher education shall

establish an online list of work-study employment opportunities for

students as required by Section 56.080, Education Code, as added by

this Act.

SECTION 6. This Act takes effect immediately if it receives

a vote of two-thirds of all the members elected to each house, as

provided by Section 39, Article III, Texas Constitution. If this

Act does not receive the vote necessary for immediate effect, this

Act takes effect September 1, 2009.

______________________________ ______________________________

President of the Senate Speaker of the House

I certify that H.B. No. 2504 was passed by the House on May 8,

2009, by the following vote: Yeas 138, Nays 0, 2 present, not

voting; and that the House concurred in Senate amendments to H.B.

No. 2504 on May 29, 2009, by the following vote: Yeas 143, Nays 0,

1 present, not voting.

Chief Clerk of the House

I certify that H.B. No. 2504 was passed by the Senate, with

amendments, on May 27, 2009, by the following vote: Yeas 31, Nays

0.

Secretary of the Senate

APPROVED: __________________

Date

Governor

Chapter 1: Introduction 16

1.11 Scholastic Dishonesty

Any scholastic dishonesty will be referred to the Dean of Students Office. The following
passage is taken from the University of Texas at Austin Information Handbook for Faculty.

The Discipline Policies Committee believes that in most cases of scholastic dishonesty the
student forfeits the right to credit in that course, and that a penalty of "F" for the course
may be warranted. In addition to the academic penalties assigned by a faculty member, the
Dean of Students or the hearing officer may assign one or more of the University discipline
penalties listed in the "General Information" bulletin, Appendix C, Sections 11-501 and
11-502. Certain types of misconduct, such as a student substituting for someone else on an
exam or having someone substitute for the student, submitting a purchased term paper, or
altering academic records, have usually involved a penalty of suspension from the University.

As a reminder, the “UT Code of Conduct” is available (http://catalog.utexas.edu/
general-information/the-university/#universitycodeofconduct) where plagiarism,
cheating, and other issues are described. If there are any questions, please see the UT General
Information document about the Academic Policies and Procedures of UT Austin (http://
catalog.utexas.edu/general-information/academic-policies-and-procedures/).

We fully support the University’s scholastic honesty policies, and we will follow the Univer-
sity’s policies in the event of any scholastic dishonesty. If you are ever unsure whether some
act would be considered in violation of the University’s policies, do not hesitate to ask your
instructors or other University academic representatives.

1.12 Students with Disabilities

Students with disabilities (http://ddce.utexas.edu/disability/) may request appropri-
ate academic accommodations from the Division of Diversity and Community Engagement,
Services for Students with Disabilities, 512-471-6259.

1.13 Religious Holidays

A notice regarding accommodations for religious holidays. By UT Austin policy, you must
notify your instructor(s) of your pending absence at least fourteen days prior to the date
of observance of a religious holy day. If you must miss a class, an examination, a work
assignment, or a project in order to observe a religious holy day, you will be given an
opportunity to complete the missed work within a reasonable time after the absence.

1.14 Emergency Evacuation

The following recommendations regarding emergency evacuation from the Office of Campus
Safety and Security, 512-471-5767, or see the safety office website (http://www.utexas.
edu/safety/).

Although not likely pertinent for on-line courses, occupants of buildings on The University
of Texas at Austin campus are required to evacuate buildings when a fire alarm is activated.
Alarm activation or announcement requires exiting and assembling outside. Familiarize
yourself with all exit doors of each classroom and building you may occupy. Remember that
the nearest exit door may not be the one you used when entering the building. Students
requiring assistance in evacuation shall inform their instructor in writing during the first
week of class. In the event of an evacuation, please follow the instruction of faculty or class

http://catalog.utexas.edu/general-information/the-university/#universitycodeofconduct
http://catalog.utexas.edu/general-information/the-university/#universitycodeofconduct
http://catalog.utexas.edu/general-information/academic-policies-and-procedures/
http://catalog.utexas.edu/general-information/academic-policies-and-procedures/
http://ddce.utexas.edu/disability/
http://www.utexas.edu/safety/
http://www.utexas.edu/safety/

Chapter 1: Introduction 17

instructors. Do not re-enter a building unless given instructions by one of the following:
Austin Fire Department, The University of Texas at Austin Police Department, or the UT
Fire Prevention Services office.

Information regarding emergency evacuation routes and emergency procedures is available
(http://www.utexas.edu/emergency).

1.15 UT Required Notices

The University of Texas (UT) requires that we provide a significant amount of information
about the organization, operation, and grading of our course. We believe this document
provides the information required by UT; please let us know if we need to include something
more.

http://www.utexas.edu/emergency
http://www.utexas.edu/emergency

18

2 Basic Logic Review

This is going to be a quick review of some content you should have encountered in your
previous courses. In particular, the following words should invoke some (hopefully pleasant)
memories:

• Axiomatic Logic Systems

• Propositional Logic

• Properties of a Logic

• Natural Deduction

• Predicate Logic

• Proof Techniques

2.1 Axiomatic Logic Systems

All axiomatic logic systems have three components – inference rules, axioms, and theorems.
Both inference rules and axioms are assumed. Theorems are proved from axioms using
inference rules. From a computational systems perspective, the inference rules process
axioms as input and produce theorems as output. There is a strong analogy one can draw
between traditional computational systems and axiomatic logic systems. In the same way
that a processor executes program statements with inputs to produce outputs, a prover
(human or machine) uses inference rules with axioms to produce theorems.

In a conventional computational system, placement of the hardware/software boundary is a
design decision. Any given computational task can be implemented either in hardware or in
software. The tradeoff in such systems is usually between speed of execution and flexibility.
Usually, a task implemented in hardware executes faster than if it is implemented in software.
However, once implemented in hardware a task is more difficult to modify or extend than
if it is implemented in software. One goal of RISC design is to simplify the hardware by
moving tasks from hardware to software. For example, CISC machines provide complex
addressing modes with hardware circuits to compute array cell addresses. The equivalent
address computation is done in software in a RISC machine.

A similar design decision exists in axiomatic logic systems with the placement of the inference
rule/axiom boundary. It is possible to have two different logic systems produce equivalent
sets of theorems but with different sets of inference rules and axioms. What is an inference
rule in one system might be a corresponding theorem or axiom in the other. The tradeoff is
more subjective in logic systems, as there is apparently no metric of goodness that can be
quantified as objectively as can the speed of execution in computational systems. It can be
harder to prove that an inference rule is sound than it is to prove that an axiom is sound.
Deductive systems often arrange for fewer inference rules to make the soundness proof easier.

This lecture presents a logic system that places the boundary between inference rules and
axioms to minimize the number of inference rules. We maintain that the primary advantage
of such a system is a human one. That is, manual proofs in such systems are easier to
understand and to design than in other systems.

This lecture borrows heavily on material from the textbook by Gries and Schneider A Logical
Approach to Discrete Math (https://www.cs.cornell.edu/info/people/gries/Logic/

https://www.cs.cornell.edu/info/people/gries/Logic/LogicalApproach.html
https://www.cs.cornell.edu/info/people/gries/Logic/LogicalApproach.html

Chapter 2: Basic Logic Review 19

LogicalApproach.html). The paper by Warford, Vega and Staley A Calculational De-
ductive System for Linear Temporal Logic (https://dl.acm.org/doi/10.1145/3387109)
builds directly on the work of Gries and Schneider and is also the source of much of this
lecture material.

2.2 Propositional Logic

Propositional calculus is a formal system of logic based on the unary operator negation
¬, the binary operators conjunction ∧, disjunction ∨, implies ⇒ (also written →), and
equivalence ≡ (also written ↔), variables (lowercase letters p, q, . . .), and the constants true
and false. Hilbert-style logic systems, H, are the deductive logic systems traditionally used
in mathematics to describe the propositional calculus. Typical of such descriptions with
applications to computer science is the text by Ben-Ari cite(Ben). A key feature of such
systems is their multiplicity of inference rules and the importance of modus ponens as one
of them.

In the late 1980’s, Dijkstra and Scholten cite, and Feijen cite developed a method of proving
program correctness with a new logic based on an equational style. This equational deductive
system, E, is the basis of books by Kaldewaij cite(Kald) and Cohen cite(Cohen). In contrast
to H systems, E has only four inference rules – Substitution, Leibniz, Equanimity, and
Transitivity. In E, modus ponens plays a secondary role. It is not an inference rule, nor
is it assumed as an axiom, but instead is proved as a theorem from the axioms using the
inference rules.

Gries and Schneider cite(Gries1995, Gries1995145) show that E, also known as a calculational
system, has several advantages over traditional logic systems. The primary advantage of E
over H systems is that the calculational system has only four proof rules, with inference rule
Leibniz as the primary one. Roughly speaking, Leibniz is “substituting equals for equals,”
hence the moniker equational deductive system. In contrast, H systems rely on a more
extensive set of inference rules. We find proofs in E easy to understand and to teach, because
the substitution of equals for equals is common in elementary algebraic manipulations.

Another major advantage of E over H systems is the sequential format of its proof syntax.
Proofs in H systems have a bottom-up tree structure, which is sequentialized with multiple
references to previously numbered lines. For example, a proof of formula f2 might begin by
establishing the validity of a formula f1 on lines 1 through 4. Then, on lines 5 through 9, it
might establish the validity of f1 ⇒ f2. Then, on line 10, it would refer back to lines 4 and
9 and invoke modus ponens to establish the validity of f2.

In contrast, proofs in E have a top-down structure and proceed sequentially with each step
self-contained. There is no need to number the lines in a proof in E because reference is
never made to a previous intermediate step of the proof. Instead, each line depends only on
the immediately preceding line by invoking a previously-proved theorem or an axiom.

There is an analogy between the proof style of H systems versus the proof style of E, and
the unstructured “ goto ” style of programming versus structured programming. In the same
way that the goto statement can produce spaghetti code that is more difficult to understand
than structured code, proofs in H systems are more difficult to understand than proofs in
E. It is perhaps not coincidental that Dijkstra, who ignited the goto controversy with his
famous CACM letter cite(Dijkstra:1968:LEG:362929.362947), was the prime developer of E.

https://www.cs.cornell.edu/info/people/gries/Logic/LogicalApproach.html
https://www.cs.cornell.edu/info/people/gries/Logic/LogicalApproach.html
https://dl.acm.org/doi/10.1145/3387109
https://dl.acm.org/doi/10.1145/3387109

Chapter 2: Basic Logic Review 20

Proof syntax is no guarantee of clarity. In the same way that a well-written assembly language
program can be easier to understand than a poorly-written program in a structured high-
order language, a well-written proof in H can be easier to understand than a poorly-written
proof in E.

We agree with Gries and Schneider cite(LADM) that, “We need a style of logic that can
be used as a tool in every-day work. In our experience, an equational logic, which is
based on equality and Leibniz’s rule for substitution of equals for equals, is best suited for
this purpose.” These advantages of E over H systems are primarily human advantages,
not necessarily machine advantages. That is, the motivation behind this work is based
on teaching and human understanding, as opposed to machine theorem provers or proof
assistants.

In 1994, Gries and Schneider published A Logical Approach to Discrete Math (LADM)
cite(LADM), in which they first develop E for propositional and predicate calculus, and
then extend it to a theory of sets, a theory of sequences, relations and functions, a theory of
integers, recurrence relations, modern algebra, and a theory of graphs. Using calculational
logic as a tool, LADM brings all the advantages of E to these additional knowledge domains.

Another excellent source of information on these topics can be found at An Introduc-
tion to teaching logic as a tool (https://www.cs.cornell.edu/home/gries/Logic/
Introduction.html). This a web-site set up and managed by Gries and Schneider.

Here are some review questions.

1. Recall that a formal logical system has four parts

1. a set of symbols,

2. a set of formulas constructed from the symbols,

3. a set of distinguished formulas, call axioms, and

4. a set of inference rules.

What distinguishes theorems from axioms? How do you prove that a formula of the
logic is a theorem?

2. For the equational logic E

1. the set of symbols are (,),=, 6=,≡, 6≡,¬,∨,∧,⇒,⇐, the constants true and false,
and boolean variables p, q, . . .

2. the set of formulas are constructed from these symbols, (e.g., p ∨ q, p ∧ q,¬p ∨ p)
3. the set of distinguished formulas, called axioms, contains 15 elements which are

identified on the available equation sheet, and

4. the set of four inference rules: (I1) Substitution, (I2) Leibniz, (I3) Equanimity, and
(I4) Transitivity.

The theorems of E are the formulas that are shown to be equivalent to an axiom using
the inference rules. Some of the theorems of E are listed in the equation sheet handout.
How many theorems are there in E?

3. One can also define an axiomatic system for propositional calculus with the following
(minimal?) foundation.

1. the set of symbols are (,)¬,⇒, the constants true and false, and boolean variables
p, q, . . .

https://www.cs.cornell.edu/home/gries/Logic/Introduction.html
https://www.cs.cornell.edu/home/gries/Logic/Introduction.html
https://www.cs.cornell.edu/home/gries/Logic/Introduction.html

Chapter 2: Basic Logic Review 21

2. the set of formulas are constructed from these symbols, (e.g., p⇒ q, p⇒ ¬q,¬p)
3. the set of distinguished formulas, called axioms, contains 3 elements which are as

follows, and

• Ax1. p⇒ (q ⇒ p) . . . (4.1)

• Ax2. (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) . . . (3.64)

• Ax3. (¬p⇒ ¬q)⇒ (q ⇒ p) . . . (3.61)

4. the set of one inference rule (Modus Ponens): P, P⇒Q
Q

. . . (3.77).

Can you find another propositional calculus system that is smaller (fewer axioms, fewer
inference rules) than this system? Can you find who is credited with first presenting
this system? Create definitions for the logical connectives ∨,∧,≡.
• Def. p ≡ q ?

• Def. p ∨ q ?

• Def. p ∧ q ?

2.3 Properties of a Logic

The following are some often discussed properties of a logic. We will not go into these topics
in cs340d, but list them here for your reference and follow-up investigation.

• Consistent: a logic is consistent if at least one formula is a theorem, and at least one
formula is not a theorem.

• Interpetation: an interpretation of a logic is the assignment of meaning to operators,
constants and variables of a logic.

• Model: an interpretation is a model if and only if every theorem is mapped to true by
the interpretation.

• Sound: a logic is sound if every theorem is valid.

• Complete: a logic is complete if every valid formula is a theorem.

• Decision Procedure: a decision procedure for a logic is an algorithm that determines the
validity of a formula in the logic. Given, as we will see in the material on truth-tables
coming up, that the decision procedure could require checking 2n different cases decision
procedures typically will return true or false or that it does not have the resources to
determine the answer. A data structure, called a binary decision diagram, is often used
to represent a boolean function for the purposes of computing its validity or satisfiablity.

2.4 Natural Deduction

Natural deduction is a Hilbert-style propositional logic due to Gerhard Gentzen. Natural
deduction has no axioms, but instead, has two inference rules for each operator and constant
(e.g., ≡,¬,∨,∧, true . . .). One rule introduces the symbol into a theorem and one rule
eliminates the symbol from a theorem.

Since we have just spent some time above arguing for the superiority of the logic E, we will
not go further into natural deduction, except to invite the student to look into proofs in
H and decide for themselves on an approach to proofs. Set your search engine looking for
David Hilbert, Gerhard Gentzen, ND, deduction, natural deduction, Hilbert-style, proof
theory, modus ponens, inference rules and so on.

Chapter 2: Basic Logic Review 22

2.5 Predicate Logic

As we have seen, propositional logic reasons with boolean variables and boolean operators.
Sometimes it’s useful to talk about propositions whose truth value depends on boolean
functions whose arguments are of types other than boolean. For example consider a function
called evenp(i) where i is an integer and evenp(i) returns T if i is even and F otherwise.

Objects, such as evenp, are called predicates. Predicates are functions which map custom
domains onto a boolean range. Predicate logic extends propositional logic to use these
functions.

To deal with the extent of the newly introduced predicates, (e.g., the set of i for which evenp(i)
= T is infinite), predicate logic has the additional concepts of universal quantification and
existential quantification which increase reasoning power and expressibility. These are
written as follows.

(∀x | R : P) and is read “for all x such that R holds, P holds”.

(∃x | R : P) and is read “there exists an x in the range R such that P holds”.

This is as far as we will take this topics in cs340d for now. The students are ecouraged to
look more into the literature of this topic as need and interest dictates.

Here are some review questions.

1. Predicate logic allows us to make statements about sets of objects. Write the predicate
logic formulas for the following claims.

• All prime numbers greater than 2 are odd numbers.

• All cs340d students are smart, happy and love zoom meetings.

• If it is Tuesday or Thursday, then at 9:30AM cs340d students are in a zoom meeting.

• There is no Real Number x for which x2 + 1 = 0.

2. (from LADM) Let the two-place predicate L(x, y) mean x loves y. Write the following
English sentences in predicate logic.

• Everybody loves somebody.

• Somebody loves somebody.

• Everybody loves everybody.

• Nobody loves everybody.

• Somebody loves nobody.

2.6 Proof Techniques

Now we do some proofs in the equational logic E. Recall a formal logical system has the
following parts, with the parts for E shown as a particular example.

1. a set of symbols, which for E are: (,),=, 6=,≡, 6≡,¬,∨,∧,⇒,⇐, the constants true and
false, and boolean variables p, q, . . .

2. a set of formulas constructed from these symbols, which for E include formula such as
(e.g., p ∨ q ⇒, p ∧ q ⇒ p,¬p ∨ p)

3. a set of distinguished formulas, called axioms, which for E contains 15 elements identified
on the available equation sheet, and

4. a set of inference rules, which for E are: (I1) Substitution, (I2) Leibniz, (I3) Equanimity,
and (I4) Transitivity.

Chapter 2: Basic Logic Review 23

2.6.1 Proving Axioms

Axioms are formulas in the logic that are accepted as valid without proof. However, they
still have to be true. If you can find one counterexample (assignment of a truth value to
each variable for which the axiom becomes false) for the axiom, it has to be dropped. The
validity of axioms can be established by appeal to intuition, appeal to a semantic model
of the system or elaboration of a truth-table. A truth-table shows the value of a boolean
expression for all values of it’s input varibles. If the formula is true under all conditions it is
said to be valid (also called a tautology).

For a propositional formula of 2 variables p, q all possible combinations of p and q would
create a truth-table structure as follows. In general a truth-table of n boolean variables will
have 2n rows.

p q propositional formula

T T ?
F T ?
T F ?
F F ?

Use the next two templates and construct truth-tables for confirming that Axioms (3.2) and
(3.3) are valid.

(3.2) Axiom, Symmetry of ≡

p q p ≡ q q ≡ p p ≡ q ≡ q ≡ p

T T T T ?
F T F F ?
T F F F ?
F F T T ?

(3.3) Axiom, Identity of ≡

p q true q ≡ q true ≡ q ≡ q

T T T T ?
F T T T ?
T F T T ?
F F T T ?

Now with the examples of confirming axioms 3.2 and 3.3 in hand, construct the truth-table
to confirm the validity of axiom 3.1.

Chapter 2: Basic Logic Review 24

(3.1) Axiom, Associativity of ≡: ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))

p q r (p ≡ q) (p ≡ q) ≡ r (axiom) proposition p ≡ (q ≡ r) (q ≡ r)

T T T
F T T
T F T
F F T
T T F
F T F
T F F
F F F

Finally, for the student who truly loves truth-table construction, prove the following formula
in E is a theorem using truth-tables. A template for 4 boolean variables is shown below.

(3.77.3) ((p⇒ (q ⇒ r)) ∧ (r ⇒ s))⇒ (p⇒ (q ⇒ s))

p q r s propositional formula (3.77.3)

T T T T
F T T T
T F T T
F F T T
T T F T
F T F T
T F F T
F F F T
T T T F
F T T F
T F T F
F F T F
T T F F
F T F F
T F F F
F F F F

Here is an exercise for the interested student.

The last truth-table with 4 variables, and 16 rows is quite tedious most would agree. But
such a problem is tiny from an industrial perspective. You could still do the following
formula with 5 variables and 32 rows with truth-tables, but instead take a look at using
ACL2 to convince yourself that (3.77.2) is a theorem.

(3.77.2) ((p⇒ q)⇒ (r ⇒ s)) ∧ (s⇒ t)⇒ ((p⇒ q)⇒ (r ⇒ t))

Chapter 2: Basic Logic Review 25

p q r s t propositional formula (3.77.2)

T T T T T
F T T T T
T F T T T
F F T T T
T T F T T
F T F T T
T F F T T
F F F T T
T T T F T
F T T F T
T F T F T
F F T F T
T T F F T
F T F F T
T F F F T
F F F F T
T T T T F
F T T T F
T F T T F
F F T T F
T T F T F
F T F T F
T F F T F
F F F T F
T T T F F
F T T F F
T F T F F
F F T F F
T T F F F
F T F F F
T F F F F
F F F F F

2.6.2 Inference Rules of E

Here we list the inferrence rules of E. For more information see section 2.1.2 of A Calcula-
tional Deductive System for Linear Temporal Logic (https://dl.acm.org/doi/10.1145/
3387109).

(I1) Substitution : E
E[z:=F]

(I2) Leibniz : X=Y
E[z:=X]=E[z:=Y]

https://dl.acm.org/doi/10.1145/3387109
https://dl.acm.org/doi/10.1145/3387109
https://dl.acm.org/doi/10.1145/3387109

Chapter 2: Basic Logic Review 26

(I3) Equanimity : X, X=Y
Y

(I4) Transitivity : X=Y, Y=Z
X=Z

2.6.3 Direct Proof

Direct proofs are often concerned with proving conditionals; statements of the form P ⇒ Q.
Since the truth-table of a conditional tells us that if P is false, then P ⇒ Q is true, direct
proof is focused on showing that Q must be true if P is true.

This form of proof is also called deduction. We state the proof strategy as follows.

To prove P1 ∧ P2 ∧ . . .⇒ Q assume P1, P2, . . . and prove Q.

Ok, let’s do some direct proofs.

• Prove (3.4) true is a theorem.

• Prove (3.5) p ≡ p (Reflexivity of ≡)
• Prove (3.59) p⇒ q ≡ ¬p ∨ q (Implication)

• Prove (3.77) p ∧ (p⇒ q)⇒ q (Modus Ponens)

2.6.4 Mutual Implication Proof

To prove P ≡ Q, prove P ⇒ Q and Q⇒ P . This proof strategy is justified by metatheorem
(4.7) and theorem (3.80) Mutual implication.

Ok, let’s do some Mutual implication proofs.

• Prove (3.15) ¬p ≡ p ≡ false (This is better handled as a direct equivalence proof)

• Prove (3.81) (p⇒ q) ∧ (q ⇒ p)⇒ (p ≡ q) (Antisymmetry)

• Prove (141) p U []p ≡ []p (Absorption o f U into [])

2.6.5 Truth Implication Proof

To prove P , prove true⇒ P . This proof strategy is justified by metatheorem (4.7.1) and
theorem (3.73) Left identity of ⇒.

Ok, let’s do some Truth implication proofs.

• Prove (27) p ∧ ¬p Uq ⇒ q

• Prove (142) p U(q ∧ r)⇒ p U(q Ur) (Right ∧U strengthening)

• Prove (193) (p⇒ q)Wp

2.6.6 Proof by Contradiction

To prove P , prove ¬P ⇒ false. This proof strategy is justified by metatheorem (4.9) and
theorem (3.74.1) ¬P ⇒ false ≡ P
Ok, let’s do some Proof by Contradiction proofs.

• Prove (92) �p ∧ []¬p ≡ false (� contradiction)
• Prove (165) []((p ∨ []q) ∧ ([]p ∨ q)) ≡ []p ∨ []q

Chapter 2: Basic Logic Review 27

2.6.7 Proof by Contrapositive

To prove P ⇒ Q, prove ¬Q⇒ ¬P . This proof strategy is justified by metatheorem (4.12)
and theorem (3.61) Contrapositive.

Ok, let’s do some Proof by Contrapositive proofs.

• Prove (57) [](p⇒ ◦p)⇒ (p⇒ []p) ([] induction)

• Prove (58) [](◦p⇒ p)⇒ (�p⇒ p) (� induction)
• Prove (75) p ∧ �¬p⇒ �(p ∧ ◦¬p)
• Prove (75) is equivalent to (57) [] induction

2.6.8 Proof by Case Analysis

A proof by case analysis is based on the following theorem.

(4.6) (p ∨ q ∨ r) ∧ (p⇒ s) ∧ (q ⇒ s) ∧ (r ⇒ s)⇒ s

In general, a case analysis proof is not recommended. Therefore we will not cover it further
here. But the student should know that such a technique exists and they can explore it on
their own as needed.

2.6.9 Mathematical Induction

Mathematical induction is particularly useful when you want to prove countably many
statements that share a similar "form". For example, legend has it that Carl Friedrich Gauss
proved the following identity as a very young boy:

1 + 2 + · · ·+ 100 = 100(100 + 1)/2.

Generalising, this is
∀n ∈ N, 1 + 2 + · · ·+ n = n(n+ 1)/2,

which is really the following countably infinite statements

[1 = 1(1 + 1)/2] ∧ [1 + 2 = 2(2 + 1)/2] ∧ · · · ∧ [1 + 2 + · · ·n = n(n+ 1)/2] ∧ · · ·

With only the tools we’ve discussed up to now, proving each of these statements would
involve verifying each of these expressions by hand, which would take a very long time and
would be very annoying. Mathematical induction gives us a "shortcut".

There are two (equivalent) forms of mathematical induction. Let’s talk about weak induction
first. Let Pk denote a statement with k varying over the naturals. Weak induction says that
if we can just prove two particular statements, then Pk would be true for all naturals k. The
two statements are:

• P1 is true (base case);

• Pk → Pk+1 is true (inductive step).

So now something that has been would have taken literally forever to prove has been boiled
down into proving just two simple statements. This is so powerful, it’s almost like cheating.
Of course, to say "two simple statements" might be a bit disingenuous. While P1 is usually
simple enough, showing Pk → Pk+1 is usually a bit trickier. Luckily, strong induction
can make proving the inductive step a lot easier, making induction even more unfairly
overpowered. Strong induction says that if you can prove the following two statements, then
you have proven Pk for all naturals k:

• P1 is true (base case);

Chapter 2: Basic Logic Review 28

• (P1 ∧ P2 ∧ · · · ∧ Pk)→ Pk+1 is true (inductive step).

The only difference between strong induction and weak induction is that you have a lot
more "ammo" for proving the inductive step.

If you haven’t seen these definitions of induction before, don’t worry. As long apply induction
correctly to other problems, everything will be fine. As a test, make sure you can follow our
proof for the sum of n natural numbers. We will only use weak induction. Recall that our
statement, Pk, is now

k∑
n=1

n = k(k + 1)/2,

and, according to weak induction, it is sufficient to prove P1 and Pk → Pk+1, which is exactly
what we’ll do.

• P1 ≡ 1 = 1(1 + 1)/2:

Observe that 1 = 2/2 = 1(2)/2 = 1(1 + 1)/2.

• Pk → Pk+1 ≡ (1+2+ · · ·+k = k(k+1)/2)→ ((1+2+ · · ·+k+k+1) = (k+1)(k+2)/2):

Notice that the first k terms of the LHS of Pk+1 is equivalent to the LHS of Pk, which
validates the following substitution:

1 + 2 + · · ·+ k + (k + 1) = k(k + 1)/2 + (k + 1)

Then, using what we know about fractions and quadratics, we get

k(k + 1)/2 + (k + 1) = [k(k + 1) + 2(k + 1)]/2 = [k2 + 3k + 2]/2 = (k + 1)(k + 2)/2,

which completes the inductive step.

Here are some exercises for your enjoyment:

1. Reform our proof of the sum of n natural numbers to use strong induction instead of
weak induction.

2. Show that the two definitions of induction are equivalent.

3. Prove that the following program sets i to n:

i = 0

while i < n :

i = i + 1

2.7 Review of Linear Temporal Logic

In this section we provide a brief overview of the basics of Linear Temporal Logic (LTL). It
is recommended that the student read the paper by Warford, Vega and Staley A Calcula-
tional Deductive System for Linear Temporal Logic (https://dl.acm.org/doi/10.1145/
3387109) prior to the class lecture on this topic. This paper is freely available for download
on the ACM website. The paper is tutorial in nature and does not assume any prior
experience with LTL. It does however, assume some proficiency in proving theorems in
propositional calculus using the system E which was introduced in an earlier section titled
Review of Basic Logic. Also the document vega-equations-new.pdf will be made available to
anyone interested. This document is a collection of a large number of LTL theorems that
were collected in work on a survey of the LTL literature. Here are the topics to be covered
on LTL.

• Axiomatic Logic System for LTL

https://dl.acm.org/doi/10.1145/3387109
https://dl.acm.org/doi/10.1145/3387109
https://dl.acm.org/doi/10.1145/3387109

Chapter 2: Basic Logic Review 29

• Stating Properties in LTL

• Temporal Deduction

• Proof techniques and Proofs

• How to Prove it - Tips

• Example: Program Properties and a Proof

2.7.1 Axiomatic Logic System for LTL

We will do our LTL proofs in the equational logic E for propositional calculus, extended for
LTL. Recall a formal logical system has the following parts, with the parts for E shown as a
particular example.

1. a set of symbols, which for E are: (,),=, 6=,≡, 6≡,¬,∨,∧,⇒,⇐, the constants true and
false, and boolean variables p, q, . . .

2. a set of formulas constructed from these symbols, which for E includes formula such as
(e.g., p⇒ p ∨ q, p ∧ q ⇒ p, ¬p ∨ p)

3. a set of distinguished formulas, called axioms, which for E contains 15 elements identified
on the available equation sheet, and

4. a set of inference rules, which for E are: (I1) Substitution, (I2) Leibniz, (I3) Equanimity,
and (I4) Transitivity.

To this logic machinery we add the following to include LTL in E.

1. the additional symbols: ◦, �, [], U,W These symbols are the operators of LTL. There
are 3 unary operators: the next operator ◦, the eventually operator � and the always
operator []. There are two binary operators: the until operator U and the the wait
operator W .

2. the additional formulas that can be constructed with the new temporal operators denoted
by the symbols added above. (e.g. ◦p ≡ ¬◦¬p, �p ≡ p∨◦�p, p Uq ⇒ �q, []p⇒ p Wq)

3. the additional axioms and definitions used to define the behavior of the temporal logic
operators are added to the axiom set of E. LTL adds 14 axioms of behavior, and 3
definitions of operators to the existing set of distinguished formulas. This brings the
total for the combined set of propositional logic and LTL to 32 formulas for E.

4. there are no additions to the set of inference rules (which was a key goal of the work).

2.7.2 Stating Properties in LTL

As we have discussed throughout this course being able to specify intended program behavior
in a precise way (read mathematical and formal way) is a key enabler to program design.
But how are we to be sure our programs, (which may, e.g. be embedded in a pacemaker,
a nuclear power plant, a financial application, or an autonomous vehicle) will behave as
intended?

First, we must say what we intend in a specification language expressive enough to define
program behavior. And second, we must be able to prove that what we have created (the
program) satisfies all the required behaviors. This is accomplished through the selection of
a logic and a proof system respectively.

For the domain of concurrent programming, Amir Pneuli is generally credited with intro-
ducing the use of LTL for formal verification in 1977. Using LTL, a specification is a set of

Chapter 2: Basic Logic Review 30

properties, expressed as LTL formulas, which must be satisfied by every possible behavior
of the implementation. This formal specification then, in the next step of the engineering
process, supports a robust debugging and verification process leading to creation of a high
quality product.

Most documents defining the requirements for a software-intensive system, if they exist at
all, are written in natural language. While natural language is expressive and nuanced, it
is also imprecise, ambiguous and often verbose. On the other hand, formal languages are
precise, but not very expressive.

It appears that LTL has passed the test of time. Since its introduction for use in program
verification in 1977, it has become a widely used tool in academia and industry. As an
example LTL is used in the following systems: SPIN, MAUDE, SPOT, PVS, Isabelle, Formal
Check and this list is by no means exhaustive. The approach to program verification using
LTL is conceptually straigtht-forward. Write program requirements as a conjunction of LTL
formulas that comprise the specification. Show that each formula is valid over the program.
This can be done for each LTL formula expressing a property, one-by-one. Next we look at
the kinds of properties that are often specified for concurrent programs.

There are two often used categories of LTL property formulas: safety properties and liveness
properties.

Safety properties are properties of the form []p. They are often used to express an invariance
of some state property over all computations. They are commonly used to say “something
bad” does not happen. For example they could express non-termination of a concurrent
program using a formula such as []¬HALT in their specification.

A safety property can also be a precedence constraint. For example, one might want to
require that if some event q happens it is preceded by event p. Let q be the predicate (y = 2)
and p be the predicate (x = 1), then the LTL formula (y 6= 2)W (x = 1) specifies that the
negation of q either always holds or holds until p does, after which time q holds.

Examples of typical safety properties include

• Global invariants: [](p⇒ []p), which can be read as “once p, always p.”

• Partial correctness: p ⇒ [](HALT ⇒ q), where p is the pre-condition to running the
program, and q is the post-condition.

• Deadlock freedom: []¬HALT
• Mutual exclusion: []¬(CS1 ∧CS2), where CSn means process n is in the critical section.

• Wellformedness of data structures

A liveness property states that “something good” eventually happens using a formula such
as �q.
Examples of typical liveness properties include

• Termination: �HALT
• Starvation Freedom: [](p⇒ �q)
• Request-Grant: [](p⇒ �q)
• Request Until Grant: [](p⇒ p Uq)

• Fairness Requirements: (strong) [] � p⇒ [] � q. Every process that is enabled infinitely
often, get’s its turn to run infinitely often when it is enabled.

Chapter 2: Basic Logic Review 31

There is another classification of LTL property specifications that is widely known, and very
useful. It is called the temporal hierarchy of Manna and Pnueli and was first described in
their 1990 paper, A Hierarchy of Temporal Properties (ftp://www-cs.stanford.edu/cs/
theory/amir/hierarchy.ps). We finish this section by listing the classes of the Manna-
Pnueli hierarchy and giving some representative examples of the types of LTL formula that
express those properties. You will see many similarities and overlapw with the safety-liveness
categories that preceded it.

• Reactivity: these properties are boolean combinations of recurrence and persistence
properties. They are formulas of the form: [] � p ∨ �[]q. This formula says that either
there are infinitely many states where p holds, or there are finitely many states where q
does not hold.

• Recurrence: these properties are the dual of Persistence. They are formulas of the form:
[] � p. They express the notion that the trace of p contains infinitely many p-positions.
They are used in expressing properties of Justice and Fairness in LTL.

• Persistence: these properties are used to specify an eventual stabilization of a state or
property of the system. Once the stabilization occurs it persists. Persistence properties
are of the form �[]p. Another example expressing persistence is p⇒ �[]q.

• Obligation: these properties are boolean combinations of safety and guarantee properties.
They are formulas of the form: []p ∨ �q which is equivalent to p W � q.

• Safety: these properties are often used to express an invariance of some state property
over all computations. The negation of a safety property is a guarantee property. This
can be shown, e.g. with the safety property []¬BAD. Its negation is ¬[]¬BAD, which
is equivalent to �BAD which is a guarantee property

• Guarantee: these properties are expressed by formulas of the form �p. This formula
states that at least 1 position in a computation satisfies p. Typically used to ensure
that some event happens, e.g. termination. They are closest in meaning to the liveness
class of formulas. An example guarantee property is �[(x = 1) ∧ �(y = 2)]

ftp://www-cs.stanford.edu/cs/theory/amir/hierarchy.ps
ftp://www-cs.stanford.edu/cs/theory/amir/hierarchy.ps

Chapter 2: Basic Logic Review 32

2.7.3 Temporal Deduction

The Deduction metatheorem (4.4) for propositional calculus from cite(LADM) can be
extended in E for temporal deduction. This metatheorem (82) is stated in cite(Warford) as
follows.

(82) Temporal Deduction

To prove []P1 ∧ []P2 ⇒ Q, assume P1 and P2, and prove Q.

You cannot use textual substitution in P1 or P2.

Temporal deduction is Theorem (2.1.6) of Kröger and Merz cite(Kröger), who also give the
justification. Note that if you assume P in a step of an LTL proof of Q, you have not proved
that P ⇒ Q, but rather that []P ⇒ Q. We will see the application of this metatheorem in a
later section where it is used in a LTL proof.

2.7.4 Proof techniques and Proofs in LTL

As we have seen, propositional logic reasons with boolean variables. Predicate logic includes
reasoning with boolean functions over variables that are not necessarily themselves boolean
variables. LTL extends reasoning power further by reasoning with variables that are traces
(of finite or infinite length) of booleans that allow the truth-functional value of variables in
LTL to change over time, depending on the evolving computations of a set of concurrent
programs.

Similar to our approach to the axiomatic development of E for propositional calculus, we
start our study of proving theorems in LTL with a look at proving axioms can be trusted to
be true.

2.7.4.1 Proving Axioms in LTL

The issues are the same for accepting the axioms proposed for any LTL system as they were
for the axioms of a propositional logic system. The axioms are formulas in the logic that
are accepted as valid without proof. However they still have to be true. If you can find one
counterexample (assignment of a truth value to each variable for which the axiom becomes
false) for the axiom, it has to be dropped. The validity of axioms can be established by
appeal to intuition, appeal to a semantic model of the system or elaboration of a truth-table.

In the case of LTL, the truth-table is a more complex object. A variable in LTL is not a
boolean variable assigned one of two truth values, but a list or “trace” of boolean values
assigned to represent the evolution of the variable’s truth value over time. So for a boolean
variable of propositional calculus, say p, its value is either true or false. For a variable of
a LTL formula, it’s value could take on an infinite number of values for infinite traces. In
the case of finite traces a variable of trace length n could take on 2n different traces. A
truth-table shows the value of a boolean expression for all values of it’s input variables. If
the formula is true under all conditions it is said to be valid.

The following shows that the constant true evaluates to T in every state. And similarly for
false.

LTL formula s0 s1 s2 s3 s4 s5 s6 s7 s8 . . .

true T T T T T T T T T . . .

Chapter 2: Basic Logic Review 33

false F F F F F F F F F . . .

The next truth-table shows that (54) Definition of [] (always) is a valid LTL formula. The
last row of the truth-table shows the formula is always T. This LTL formula has only one
temporal variable, p. For traces of length n, there would be 2n different traces p could take
on as a value. However, in most LTL systems traces are assumed to be infinitely long.

[]p ≡ ¬ � ¬p s0 s1 s2 s3 s4 s5 s6 s7 s8 . . .

p T F F T F T T T T . . .
¬p F T T F T F F F F . . .
[]p F F F F F T T T T . . .
�¬p T T T T T F F F F . . .
¬ � ¬p F F F F F T T T T . . .
[]p ≡ ¬ � ¬p T T T T T T T T T . . .

2.7.4.2 Direct Proof

Ok, let’s do some direct proofs.

• Prove (83) Distributivity of ∧ over U : []p ∧ q Ur ⇒ (p ∧ q) U(p ∧ r)
This is a temporal deduction proof.

• Prove (153) Absorption of []�: []�[]�p ≡ []�p
• Prove (215) W induction [](p⇒ ◦p)⇒ (p⇒ p Wq)

• Prove (219) Absorption: p Wq ∧ q ≡ q

2.7.4.3 Mutual Implication Proof

See this same section under Logic Review. Propositional calculus and LTL example proofs
are listed together.

2.7.4.4 Truth Implication Proof

To prove P , prove true⇒ P . This proof strategy is justified by metatheorem (4.7.1) and
theorem (3.73) Left identity of ⇒.

Ok, let’s do some Truth implication proofs.

• Prove (254) Lemmon formula: []([]p⇒ q) ∨ []([]q ⇒ p)

2.7.4.5 Proof by Contradiction

See this same section under Logic Review. Propositional calculus and LTL example proofs
are listed together.

2.7.4.6 Proof by Contrapositive

See this same section under Logic Review. Propositional calculus and LTL example proofs
are listed together.

Chapter 2: Basic Logic Review 34

2.7.4.7 Proof by Case Analysis

See this same section under Logic Review. Propositional calculus and LTL example proofs
are listed together.

2.7.4.8 Mathematical Induction

Induction in E is handled implicitly by the structure of time in the logic. The Lemmon
formula (254) imposes linearity of the time line, and the Dummett formula (S111) establishes
the discreteness of time. Both of these formulas are theorems in the LTL we have presented.
To give a feel for the difference in proving a theorem with induction as implicit, see the
following proof of theorem (129).

An LTL proof with induction explicit, would follow a proof strategy like the one you see in
the following proof of (S64). This structure is likely much more familiar to you. It follows

Chapter 2: Basic Logic Review 35

the format the we used in section (2.22.6.9) earlier in the proof of famous theorem of Gauss.

2.7.5 How to Prove it - Tips

Here is a collection of thought starters to keep you going as you try to prove a formula is a
theorem. These are especially useful if the theorem is strongly resisting your best efforts.
Use this list of questions and assertions as a checklist of ideas to ponder as you push to
construct a successful proof.

• Are you sure the formula is a theorem? Why do you think so?

Chapter 2: Basic Logic Review 36

• Are you sure the formula is NOT a theorem? Can you prove it is NOT? Can you
produce a counterexample? Remember it only takes 1 counterexample to kill a proposed
theorem.

• Try all the different proof strategies you know: direct proof; mutual implication;
truth implication; proof by contradiction; contrapositive; case analysis; mathematical
induction; temporal deduction.

• Stay around the problem. Sleep on it. Visualize it. Play it like a movie in your mind’s
eye. Set it aside for a while, and come back later for a fresh attack.

• Can you prove formulas (syntactally) “close” to the one you want? What can you
prove?

• Do parts of the formula look familiar? Can you devise a lemma approach to prove some
supporting lemmas that will help you with proving the main formula?

• Get frustrated. It’s ok, it means you are engaged, working on it and motivated.

• Can you use an existing automated theorm proving system, like ACL2, to prove the
formula is a theorem?

• Can you do a simulation (or use model checking) to convince yourself that it is a
theorem, and that you should keep going.

• Look for a missing axiom. Axiom sets can be wrong. Check to see if there is some
logical structure that you know should exist, but does not follow from the axiom set.
Add to, or modify the axiom set as required.

• Never give up. If you have tried all the above, get on the internet and see what else
you can find out about the formula. If you are still convinced it is a theorem, go to the
top and start again.

2.7.6 Example: Program Properties and a Proof

This example is taken from the internet. It is based on class notes by Dr. Alessandro Artale,
Faculty of Computer Science, Free University of Bolzano, Lecture III: Linear Temporal Logic
(https://www.inf.unibz.it/~artale/FM/slide3.pdf). While the program specification
is from Dr. Artale, the formulation of the proof obligation and its proof are ours.

Problem Description:

A system has been created that should meet the following requirements, stated in LTL as
follows.

[](Requested⇒ �Received)
[](Received⇒ ◦Processed)
[](Processed⇒ �[]Done)

From the above show that it is not the case that the system continually re-sends a request,
but never sees it completed ([]¬Done). Another way to say this is that the statement

[]Requested ∧ []¬Done
should be inconsistent.

Formulate a proof obligation for this system in E and prove the system meets the requirement.

First some questions for the student.

https://www.inf.unibz.it/~artale/FM/slide3.pdf
https://www.inf.unibz.it/~artale/FM/slide3.pdf

Chapter 2: Basic Logic Review 37

1. Place each of the three requirements above in the Manna-Pneuli hierarchy. You might
find the following web page of some help in this task SPOT: On-line Translator
(https://spot.lrde.epita.fr/app/).

2. Place the overall program correctness criteria, []p⇒ �s, in the Manna-Pneuli hierarchy.

Solution:

We make the following abbreviations.

p ≡ Requested

q ≡ Received

r ≡ Processed

s ≡ Done

The system meets all of these requirements so we will say that the conjunction of the three
requirements imply that the completion requirement (Done) is met. In our E with LTL we
write the system requirements as

[](p⇒ �q) ∧ [](q ⇒ ◦r) ∧ [](r ⇒ �[]s)

Now, if these are true, then the following

[]p ∧ []¬s

should be false, or alternatively

¬([]p ∧ []¬s)

should be true. Since

¬([]p ∧ []¬s) ≡ ([]p⇒ �s),

we can state our proof obligation as follows:

[](p⇒ �q) ∧ [](q ⇒ ◦r) ∧ [](r ⇒ �[]s)⇒ ([]p⇒ �s)

Proof: (for the student to provide)

(Example Proof)

https://spot.lrde.epita.fr/app/
https://spot.lrde.epita.fr/app/

Chapter 2: Basic Logic Review 38

39

3 Lectures

Material for our in-class discussions and lectures will assist us in our cause: proving digital
systems hardware and software correct.

The lectures are approximately in the order we will discuss them, but we will no doubt
“jump” around as our class evolves. Remember this is a draft document that we are creating
together as the course proceeds.

Additional on-line materials that will be very helpful to you getting the most out of this
class have been recently created by two of the old Jedi-Masters of ACL2: Prof. J Moore and
Prof. Warren A. Hunt, Jr. Drs. Moore and Hunt taught a short course on ACL2 during the
period May 22-28, 2021 at the 10th Summer School on Formal Techniques. The material
includes video recordings of many (but not all) of the lectures presented, as well as copies of
the presentation slides and lecture notes. We will take on the task of connecting between
this course and that information resource by referring to the Summer School materials in
the appropriate places in this document.

To start this process we recommend you watch lecture 0 from the summer school after lecture
4 for cs340d. Introduction to the ACL2 Part of the Summer School (https://youtu.be/
xcXBOkp_w1s).

This summer school video gives a quick overview of the ACL2 lectures at the 2021 Summer
School on Formal Techniques.

3.1 Lecture 0 – Introduction course overview and fibonacci
example

There is an official website for CS 340d at the homepage (http://www.cs.utexas.edu/
users/hunt/class/2023-spring/cs340d/cs340d.html) where you can find this document,
an html version of it, and any information concerning the conduct of this course. In particular,
changes to due dates of homework or projects; meeting dates/times/location of office hours,
classes or exams; and general announcements about the conduct of the course can be found.

The lectures for CS340d will roughly follow the topics outlined in the following two documents.
The first document is a lightly revised version of J Moore’s Recursion and Induction Notes
available here (https://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/
papers-and-talks/class-lectures.pdf).

And the second document is a set of slides for classroom presentations available here
(https://www.cs.utexas.edu/users/hunt/class/2021-fall/cs389r/lecture-6.pdf).

We recommend you watch lecture 0 from the summer school now. Introduction to the ACL2
Project (https://youtu.be/912RcvJrlk0).

This summer school video provides a brief history of the development and application of
ACL2 over a nearly 50 year period.

Lecture 0 (January 10, 2023) has now been completed. You can access the files presented
during the lecture from the course homepage. at the homepage (http://www.cs.utexas.
edu/users/hunt/class/2023-spring/cs340d/cs340d.html)

https://youtu.be/xcXBOkp_w1s
https://youtu.be/xcXBOkp_w1s
http://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/cs340d.html
http://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/cs340d.html
https://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/papers-and-talks/class-lectures.pdf
https://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/papers-and-talks/class-lectures.pdf
https://www.cs.utexas.edu/users/hunt/class/2021-fall/cs389r/lecture-6.pdf
https://www.cs.utexas.edu/users/hunt/class/2021-fall/cs389r/lecture-6.pdf
https://youtu.be/912RcvJrlk0
https://youtu.be/912RcvJrlk0
http://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/cs340d.html
http://www.cs.utexas.edu/users/hunt/class/2023-spring/cs340d/cs340d.html

Chapter 3: Lectures 40

3.2 Lecture 1 – The course syllabus rules UT disclosures

Lecture 1 (January 12, 2023) has now been completed. Based on the survey taken as Quiz 0
we have added a Chapter to the CS340d on propositional logic called “Basic Logic Review”.
If you have any question on propositional logic and proving PC formula are theorems you
can bring those questions to class or see any of the course staff in office hours. Prof. Hunt
finished a review of course goals, syllabus and the state required UT disclosures (which can
be found in the CS340d course book). The course then started with a review of functional
programming (FP), building on the approach taken in the fibonacci lecture. Recall that the
slides for the fibonacci lecture are posted on the class webpage.

3.3 Lecture 2 – Introduction to functional programming

Lecture 2 (January 17, 2023) has now been completed. See slides for lecture 2 posted on the
class webpage. Lecture focus was on List Processing: definition of a proper list, recognizer
function called true-listp, functions len, app, and rev.

3.4 Lecture 3 – Introduction to tracing and debugging

Lecture 3 (January 19, 2023) has now been completed. See slides for lecture 3 posted on
the class webpage. Key, likely new, concepts include: TRACE$, using accumulators, tail
recursive functions, functions for operating on trees and the flatten function.

3.5 Lecture 4 – Continue introduction to functional
programming in ACL2

Lecture 4 (January 24, 2023) has now been completed. Focus for this lecture was set
operations on list representations of a set. Defined a predicate recognizer of set elements
(eqlablep x). Looked at the difference between sets and “bags”: no-dups (duplicates).
Set-union defined. Notice in the lecture how first functions are defined, and then properties
of those functions are stated and then proven mathematically in the ACL2 logic. A big topic
in this class is memory modeling. We can use lists as memory and define properties around
look-up and writing to memory. This lecture also looked at associative memory. This can
be modeled using assoc-list (or a-lists). There is likely to be a lot of memory modeling in
future lectures, so make sure you get these early examples understood.

3.6 Lecture 5 – Build an expression evaluator

Lecture 5 (January 26, 2023) has now been completed. An efficient flatten function, called
mc-flatten was defined. This function was invented by John McCarthy. Look him up, he
was a very influential computer scientist and you should be informed of his contributions. A
lot of this lecture was devoted to development of an expression evaluator. First we develop
code that “recognizes” valid input to the evaluator. Next we develop the evaluator for this
restricted expression language that evaluates correctly formed expressions and returns their
value. This could be considered a small subset of the Lisp REPL (read-eval-print-loop)

Chapter 3: Lectures 41

3.7 Lecture 6 – ACL2 function definition

Lecture 6 (January 31, 2023) on deck. This lecture was canceled as the University was closed
due to a winter storm. Changes to the C340d class syllabus will be made and posted on the
class website and in this document.

Lecture will cover introduction to ACL2 “guards”. Development of data and structure
recognizers which will check for well-formed input to a function. Some examples using trees
will be explored. Look for the connection between these recognizers and guards.

3.8 Lecture 7 – General correctness principles

Lecture 7 (February 2, 2023) on deck. This lecture was canceled as the University was closed
due to a winter storm. Changes to the C340d class syllabus will be made and posted on the
class website and in this document.

This lecture covers the principles and practical application of assertions, invariants in
establishing the correctness of a program. This might also include the use of tracing,
simulators, testing and setting breakpoints in the code.

3.9 Lecture 8 – Presentation and use of the ACL2 Logic

Lecture 8 (February 7, 2023) has now been completed. Over the next 3-4 weeks we will
get into the logic of ACL2, and how this can be used to model and analyze software and
hardware. A review of the expression evaluator that was presented in the last class was
presented again. Key points of the presentation were:

• the exprp code is called a recognizer and determines whether or not the input to the
function is well-formed, i.e. if the syntax of the expression is correct.

• the function evx (the evaluator) is guarded by exprp. This ensures that only valid
(syntactically) expressions are presented for evaluation.

• A constant folding function (fc) for optimization of expressions was defined. A correctness
property was defined for the behavior of fc, and proven correct.

(defthm fc-works-correctly

(implies (and (exprp x)

(integer-val-alistp a))

(equal (evx (fc x) a)

(evx x a))))

The remainder of the lecture moved into topics that relate to the reading in the on-line
documentation – Recursion and Induction. “Jump to” R-and-i-table-of contents to see
the individual topics that are listed below. We have covered ACL2 data types (numbers,
characters, strings, symbols and ordered pairs) in previous lectures. Now the key concepts
to understand include:

• Terms – A term is a variable symbol, or a QUOTED constant, or a function application
f of arity n, of n terms (f x1 x2 . . . xn)

• Abbreviations – “Jump to” R-and-i-abbreviations-for-terms to read the on-line docu-
mentation about abbreviations.

Chapter 3: Lectures 42

• Identity – the definition of identity is used to determine if two ACL2 objects are
equivalent. If you write two objects in their canonical form, and those canonical forms
are different, then the two objects are different. Each data type in ACL2 has a canonical
form defined.

• Six primitive functions: (cons x y), (car x), (cdr x), (consp x), (if x y z), (equal x y).

• Substitutions – is a set sigma, of bindings of variables to terms { x <– (car a), y <– (cdr
x) } Terms are substituted for variables in a term.

3.10 Lecture 9 –Terms and functions revisited

Lecture 9 (February 9, 2023) has now been completed. ACL2 Data types, working with
terms, substitutions and Function definition revisited.

3.11 Lecture 10 – Terms and functions revisited

Lecture 10 (February 14, 2023) has now been completed. More on working with terms,
substitutions and abbreviations and proof by case analysis. Function definition revisited and
homework problem 12 done in class. ACL2 functions evaluate arguments left-to-right and
are “call-by-value.” Slide 15 in lecture notes shows how standard PC logical connectives
(and, or, not, etc.) can all be written in terms of IF. Therefore the discussion in class of IF
as the only logical connective necessary for writing PC formulas. Started a discussion of the
components of a formal mathematical theory including: well-formed syntax for formulas, a
set of axioms, and inference rules that derive new theorems from old ones. Next lecture will
get into the details of the Axioms of ACL2, and begin looking at doing proofs by hand.

3.12 Lecture 11 – ACL2 revisited

Lecture 11 (February 16, 2023) has now been completed. Lab 0 discussion. Man page
specifications can be different between different Unix or Linux OSs. The Lab 0 will be
graded on its performance on UTCS linux machines. Some ACL2 lisp code was provided in
the Laboratory assignment document. Unfortunately it was a pdf, and some students had
trouble getting the code to run in ACL2. Prof. Hunt has now put the code up on the class
website for easy access by all students. Any code provided for Lab 1 will also be found on
the class website.

3.13 Lecture 12 – ACL2 Theory repeated

Lecture 12 (February 21, 2023) has now been completed. Prof. Hunt went back over many
of the key theoretical topics of the ACL2 system from Axioms, terms, formulas and proof to
the Definitional principle and Structural Induction. This covered roughly from axioms on
page 19 of the class-lectures.pdf up to structural induction on page 43. Another view of this
material can be found in the on-line documentation from section “r-and-i-axioms” to section
r-and-i-structural-induction.

There was considerable time spent describing ACL2 use of terms in proofs instead of formulas.
And it was pointed out that the homework assignments were not requiring students to do
proofs of the equivalence of terms vs formulas as in problems 18 - 26.

Chapter 3: Lectures 43

The student should nevertheless feel free to work out proofs of the problems 18 - 26 as time
permits. To help such an effort, we provide a proof of Problem 23 and Problem 20 as an
example of how to proceed.

Some Example Proofs

Solutions for some of the proofs in problems 18-23 are presented as extra examples of proving
theorems in the propositional logic. Lemma A is repeated here for easy reference. Numbers
like (3.14) below reference theorems from my favorite equations sheet which is available on
the class website. The file is “vega-equations-new.pdf” and it may be helpful in constructing
PC proofs.

Lemma A: (p 6≡ nil) ≡ p
Proof: Start with LHS and show LHS ≡ RHS.

(p 6≡ nil)

≡ 〈(3.14) (p 6≡ nil) ≡ p with q := nil〉

¬p ≡ nil

≡ 〈 (3.2) Symmetry of ≡ and (3.15) ¬p ≡ p ≡ nil〉

p

QED

Problem 23. Prove the following is a theorem.

(implies (and p (implies q r)) s) ≡ (p ∧ (q ⇒ r))⇒ s)

Proof: Start with LHS and show LHS ≡ RHS.

(implies (and p (implies q r)) s)

≡ 〈 Problem 20 and Lemma A with p := q, q := r〉

(implies (and p (q ⇒ r))s)

≡ 〈 Problem 18 and Lemma A with q := (q ⇒ r)〉

(implies (p ∧(q ⇒ r))s)

≡ 〈 Problem 20 and Lemma A with p := p ∧ (q ⇒ r), q := s〉

Chapter 3: Lectures 44

(p ∧ (q ⇒ r))⇒ s)

QED

Problem 20. Prove the following is a theorem.

(implies p q) 6= nil ≡ (p 6= nil)⇒ (q 6= nil)

Proof: By (4.7) Mutual Implication.

Proof in the first direction follows. Use (3.65) shunting to start.

((implies p q) 6= nil) ∧ (p 6= nil)⇒ (q 6= nil)

Start with LHS and show it implies the RHS.

((implies p q) 6= nil) ∧ (p 6= nil)

≡ 〈 Definition of implies 〉

(if p (if q t nil) t) 6= nil ∧ (p 6= nil)

≡ 〈 Semantics of if with (p 6= nil)〉

(if q t nil) 6= nil

≡ 〈 Semantics of if 〉

q 6= nil

QED

Proof in the second direction follows. Use (3.65) shunting again, to get

(p 6= nil) ∧ (q 6= nil)⇒ (implies p q) 6= nil)
By (4.4) Deduction, assume (p 6= nil), (q 6= nil)
and prove

(implies p q)6= nil

≡ 〈 Definition of implies 〉

(if p (if q t nil) t) 6= nil)

≡ 〈 Assumed conjuncts of antecedent: (p 6= nil), (q 6= nil)〉

Chapter 3: Lectures 45

t 6= nil — (Axiom 1)

QED

3.14 Lecture 13 – ACL2 Axioms

Lecture 13 (February 23, 2023) has now been completed. Key topics covered include: the
definitional principle (simpliifed). The measure variable and the car/cdr nest. Structural
induction as the key proof method.

3.15 Lecture 14 – Proof by Induction

Lecture 14 (February 28, 2023) has now been completed. The focus of this lecture and
indeed the attention of the whole course is directed on computation by recursion and proof
of properties of this computation by induction.

Given the function (f x) defined as follows:

(defun f (x)

(if (consp x)

(f (cdr x))

t))

Does this function meet the criteria in the Definitional Principle?

Let’s check.

1. The function symbol being defined is new. Yes.

2. The formal variables are distinct. There is only one formal variable, x.

3. The body is a term, and the only variable symbol, x, is a formal.

4. There is a ruler for the recursive call of F, (consp x). And, there is

a car/cdr nest around them measured formal, x.

So, Yes, we will admit this function definition into the logic.

And for the final check. ACL2 is always the final check on admissibility. Here

is what ACL2 has to say.

ACL2 !> (DEFUN F (X)

(IF (CONSP X)

(F (CDR X))

T))

The admission of F is trivial, using the relation O< (which is known

to be well-founded on the domain recognized by O-P) and the measure

(ACL2-COUNT X). We observe that the type of F is described by the

theorem (EQUAL (F X) T).

Chapter 3: Lectures 46

Summary

Form: (DEFUN F ...)

Rules: NIL

Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

F

ACL2 !>

Now we will prove: (equal (f x) t)

Perhaps we can prove it by induction.

As X is the only variable, we will induct on X.

Base Case:

(implies (not (consp x)) ;; Hyp1 - assume (not (consp x)) is true

(equal (f x) t))

< Def. of (f x) >

(implies (not (consp x)) ;; Hyp1

(equal (if (consp x)

(f (cdr x)) t) t))

< Hyp1 >

(implies (not (consp x)) ;; Hyp1

(equal (if NIL

(f (cdr x)) t) t))

< Axiom 3 >

(implies (not (consp x)) ;; Hyp1

(equal t t))

This proves the Base case.

QED

Induction Substitution: (x (cdr x))

Induction Step:

(implies (and (consp x) ;; hyp1

(equal (f (cdr x)) t)) ;; IH1

(equal (f x) t))

Chapter 3: Lectures 47

< Def. (f x) >

(implies (and (consp x) ;; hyp1

(equal (f (cdr x)) t)) ;; IH1

(equal (if (consp x)

(f (cdr x)) t) t))

< hyp1 >

(implies (and (consp x) ;; hyp1

(equal (f (cdr x)) t)) ;; IH1

(equal (f (cdr x)) t))

But this is just the Induction Hypothesis. Therefore this

reduces to

< IH1 >

(implies (and (consp x) ;; hyp1

(equal (f (cdr x)) t)) ;; IH1

t)

QED

3.16 Lecture 15 – Assoc of App

Lecture 15 (March 2, 2023) has now been completed. This lecture presented a detailed
walk-through of a hand proof of associativity of Append, shown below. To check your
understanding of the the logical steps of the proof, supply the justification for each step of
the proof below where you find a ** hint ** placeholder.

Proof of Associativity of Append

< Definition (Def.) of ap >

(ap x y)

=

(if (consp x)

(cons (car x)

(ap (cdr x) y))

y)

< Prove the following conjecture >

Conjecture: (equal (ap (ap x y) z)

(ap x (ap y z)))

Chapter 3: Lectures 48

Choose induction variable: X, and the

car/cdr substitution (sigma): ((x (cdr x))

(y y)

(z z))

Base case:

(implies (not (consp x)) ; hyp1

(equal (ap (ap x y) z) ; (equal LHS

(ap x (ap y z)))) ; RHS)

= < Def. ap - second ap on LHS >

(implies (not (consp x))

(equal (ap (if (consp x)

(cons (car x)

(ap (cdr x) y))

y) z)

(ap x (ap y z))))

= < hyp1 (consp x) = NIL >

(implies (not (consp x))

(equal (ap (if NIL

(cons (car x)

(ap (cdr x) y))

y) z)

(ap x (ap y z))))

= < ** hint ** >

(implies (not (consp x))

(equal (ap y z)

(ap x (ap y z))))

= < ** hint ** >

(implies (not (consp x))

(equal (ap y z)

(if (consp x)

(cons (car x)

(ap (cdr x) (ap y z)))

(ap y z))))

= < hyp1 (consp x) = NIL >

Chapter 3: Lectures 49

(implies (not (consp x))

(equal (ap y z)

(if NIL

(cons (car x)

(ap (cdr x) (ap y z)))

(ap y z))))

= < ** hint ** >

(implies (not (consp x))

(equal (ap y z)

(ap y z)))

QED

This completes the proof of the Base Case. Now for proof of the Induction Step.

Induction Step:

car/cdr substitution (sigma): ((x (cdr x))

(y y)

(z z))

(implies (and (consp x)

{(equal (ap (ap x y) z)

(ap x (ap y z)))/sigma}

)

(equal (ap (ap x y) z)

(ap x (ap y z))))

Second part of proof by Induction: Induction Step:

(implies (and (consp x) ; hyp1

(equal (ap (ap (cdr x) y) z) ; hyp2

(ap (cdr x) (ap y z))))

(equal (ap (ap x y) z) ; (equal LHS

(ap x (ap y z)))) ; RHS)

< Same goal with different notation >

(implies (and (consp x)

(equal (ap (ap (cdr x) y) z)

(ap (cdr x) (ap y z))))

(equal (ap (ap x y) z) ; 1

(ap x (ap y z)))) ; 2

Chapter 3: Lectures 50

< ;1 Start with LHS >

(ap (ap x y) z)

= < Def. ap - second ap on LHS >

(ap (if (consp x)

(cons (car x)

(ap (cdr x) y))

y)

z)

= < ** hint ** >

(ap (if T

(cons (car x)

(ap (cdr x) y))

y)

z)

= < ** hint ** >

(ap (cons (car x)

(ap (cdr x) y))

z)

= < Def. of ap with the following substitutions

x = (cons (car x) (ap (cdr x) y)) and y = z >

(if (consp (cons (car x) (ap (cdr x) y)))

(cons (car (cons (car x) (ap (cdr x) y)))

(ap (cdr (cons (car x) (ap (cdr x) y))) z))

z)

= < ** hint ** >

(if T

(cons (car (cons (car x) (ap (cdr x) y)))

(ap (cdr (cons (car x) (ap (cdr x) y))) z))

z)

= < ** hint ** >

(cons (car (cons (car x) (ap (cdr x) y)))

(ap (cdr (cons (car x) (ap (cdr x) y))) z))

= < ** hint ** >

Chapter 3: Lectures 51

(cons (car x)

(ap (cdr (cons (car x) (ap (cdr x) y))) z))

= < ** hint ** >

(cons (car x)

(ap (ap (cdr x) y) z))

= < hyp2 - Induction Hypothesis >

(cons (car x)

(ap (cdr x) (ap y z)))

< We hold here with our work on the LHS, and work with the RHS of the goal >

< ;2 Start with RHS >

(ap x (ap y z))

= < Def. of ap with the following substitution x = x and y = (ap y z) >

(if (consp x)

(cons (car x)

(ap (cdr x) (ap y z)))

(ap y z))

= < hyp1 (consp x) = T >

(if T

(cons (car x)

(ap (cdr x) (ap y z)))

(ap y z))

= < ** hint ** >

(cons (car x)

(ap (cdr x) (ap y z)))

< We hold here with our work on the RHS, and consider the state of the proof >

We have now shown on track ;1 that

(equal (ap (ap x y) z)

Chapter 3: Lectures 52

(cons (car x) (ap (cdr x) (ap y z)))) ; Is a theorem

And we have shown on track ;2 that

(equal (ap x (ap y z))

(cons (car x) (ap (cdr x) (ap y z)))) ; Is a theorem

So by the propositional calculus theorem, (3.51) Replacement we can say

that the

Conjecture: (equal (ap (ap x y) z)

(ap x (ap y z)))

holds. Therefore having completed the required proofs, our qoal

formula (conjecture) holds under the principle of structural induction.

QED

3.17 Lecture 16 – Storing values in variables

Lecture 16 (March 7, 2023) has now been completed. Prof. Hunt discussed the debug
helper macros (! x y), and (!! x y) that were included in code for working on the CS340d
Labs. These two macros provide a way to mimic storing global variables. For example, the
command (! x 10) works roughly like the Common Lisp expression (setq x 10). In ACL2,
the value stored in x is retrieved using the macro @ as follows. (@ x).

(defmacro ! (x y)

(declare (xargs :guard (symbolp x)))

‘(assign ,x ,y))

(defmacro !! (variable new-value)

;; Assign without printing the result.

(declare (xargs :guard t))

‘(mv-let

(erp result state)

(assign ,variable ,new-value)

(declare (ignore result))

(value (if erp ’Error! ’,variable))))

The macro @ gives convenient access to the value of such globals.

For example:

ACL2 >(! x 7)

7

ACL2 >(! y 10)

10

ACL2 >(+ (@ x) (@ y))

Chapter 3: Lectures 53

17

The use of defthm as a debugging and verifying tool was presented. Defthm is used to prove
properties of functions (which are components) of the solution you are developing. This
allows building and incrementally checking that parts of your system’s design are correct.
You will often see the following pattern in the modeling of systems using ACL2.

(defun f1 (x y ...))

(defthm property-1-of-f1 ...) ;; Prove f1 has this property

(defthm property-2-of-f1 ...)

.

.

.

(defthm property-x-of-f1 ...)

(defun f2 (x y ...))

(defthm property-1-of-f2 ...) ;; Prove f2 has this property

(defthm property-2-of-f2 ...)

.

.

.

(defthm property-x-of-f2 ...)

Here is a concrete example from Prof. Hunt’s Lab1 code.

Don’t worry about the details, just notice the pattern above

in the code.

(defun advance-to-space-and-collect (char-lst accum-list)

(declare (xargs :guard (and (character-listp char-lst)

(character-listp accum-list))))

(if (atom char-lst)

(mv char-lst (reverse accum-list))

(let ((char (car char-lst)))

(if (member char *space-seperators*)

(mv char-lst (reverse accum-list))

(advance-to-space-and-collect (cdr char-lst)

(cons char accum-list))))))

(defthm character-listp-car--advance-to-space-and-collect

(implies (and (character-listp char-lst)

(character-listp accum-list))

(character-listp (car (advance-to-space-and-collect

char-lst accum-list)))))

(defthm character-listp-cadr-advance-to-space-and-collect

(implies (and (character-listp char-lst)

Chapter 3: Lectures 54

(character-listp accum-list))

(character-listp (cadr (advance-to-space-and-collect

char-lst accum-list)))))

(defthm len-char-lst-after-advance-to-space-and-collect-<=

(<= (len (car (advance-to-space-and-collect char-lst accum-list)))

(len char-lst))

:rule-classes (:linear :rewrite))

The rest of the lecture time was spent introducing Lab2 and discussing the list set recognizer
setp and a binary tree recognizer bstp.

3.18 Lecture 17 – Problem 43 and Proof process

Lecture 17 (March 9, 2023) has now been completed. Problem 43 and Proof process. There
are many ways any proof challenge can be met. There is no one way to approach it. In
Problem 43, from the homework, if you go straight to opening up function definitions
and trying to simplify the resulting terms, you may be dealing with a lot of complexity.
Nevertheless, we can prove the base case in the usual way.

Problem 43.

Prove

(equal (rev (mapnil x)) (mapnil (rev x))) ;(equal LHS RHS)

; --

; Append function

(defun app (x y)

(if (consp x)

(cons (car x) (app (cdr x) y))

y))

; --

; Reverse function

(defun rev (x)

(if (consp x)

(app (rev (cdr x))

(cons (car x) nil))

nil))

; --

; mapnil function

(DEFUN MAPNIL (X)

(IF (CONSP X)

(CONS NIL (MAPNIL (CDR X)))

Chapter 3: Lectures 55

NIL))

;;

;; Some Lemmas that might be helpful, or not.

MAPNIL-APP

(DEFTHM MAPNIL-APP

(EQUAL (MAPNIL (APP A B))

(APP (MAPNIL A) (MAPNIL B))))

MAPNIL-CDR

(DEFTHM MAPNIL-CDR

(EQUAL (MAPNIL (CDR X))

(CDR (MAPNIL X))))

APP-NIL

(defthm app-nil

(implies (true-listp x)

(equal (app x nil)

x)))

APP-REV

(defthm app-rev

(equal (app (rev x) nil)

(rev x)))

REV-APP

(defthm rev-app

(equal (rev (app a b))

(app (rev b) (rev a))))

;;

;; Axioms created by the Definitional Principle.

;;

< Def. App >

(app x y)

=

(if (consp x)

(cons (car x)

(app (cdr x) y))

y)

Chapter 3: Lectures 56

< Def. rev >

(rev x)

=

(if (consp x)

(app (rev (cdr x))

(cons (car x) nil))

nil)

(MAPNIL X)

=

(IF (CONSP X)

(CONS NIL (MAPNIL (CDR X)))

NIL))

< Perhaps we can prove it by induction. >

Base Case:

(implies (not (consp x))

(equal (rev (mapnil x)) (mapnil (rev x)))) ;(equal LHS RHS)

= < Def. mapnil >

(implies (not (consp x)) ;; hyp1

(equal (rev (IF (CONSP X)

(CONS NIL (MAPNIL (CDR X)))

NIL))

(mapnil (rev x))))

= < hyp1 and Axiom 3 >

(implies (not (consp x)) ;; hyp1

(equal (rev NIL)

(mapnil (rev x))))

= < Def. rev >

(implies (not (consp x)) ;; hyp1

(equal (rev NIL)

(mapnil (if (consp x)

(app (rev (cdr x))

(cons (car x) nil))

nil))))

= < hyp1 and Axiom 3 >

Chapter 3: Lectures 57

(implies (not (consp x)) ;; hyp1

(equal (rev NIL)

(mapnil NIL)))

= < Def. rev and Def. mapnil >

(implies (not (consp x)) ;; hyp1

(equal NIL NIL))

T

QED

This proves the Base Case.

Now, normally we would formulate the induction step with an induction variable and a
car/cdr substitution to set up the induction hypothesis. However, in the proof provided by
Prof. Hunt he shows two lemmas that significantly simplifies the proof.

The first lemma is:

(equal (rev (mapnil x))

(mapnil x))

The second lemma is:

(equal (mapnil (rev x))

(mapnil x))

This makes the proof of the Main Result trivial.

(equal (rev (mapnil x))

(mapnil (rev x)))

= < Lemma 1 and Lemma 2 >

(equal (mapnil x)

(mapnil x))

= < Reflexivity of = >

T

QED

The last topic in this lecture was further discussion of Lab2. The six required functions to
be written for the lab were explained, along with the recognizers setp and bstp. Prof. Hunt
also showed how to write the insrt function. It was a Spring Break present.

Chapter 3: Lectures 58

(defun insrt (e X)

"Insert e into ordered set X."

(declare (xargs :guard (and (atom e)

(setp X))))

;; Replace X (below) with an Insert function body

(if (atom X)

(list e)

(if (<< e (car X))

(cons e X)

(cons (car X)

(insrt e (cdr X))))))

3.19 Lecture 18 – Verification of iSort

Lecture 18 (March 21, 2023) has now been completed. The slides for the presentation
“Verification of iSort” are available on the course webpage. Prof. Hunt spent time showing
the class how to approach the proof of Problem 61 (equal (rev2 x nil) (rev x)). See also
Lecture 21 for more on Problem 61.

3.20 Lecture 19 – Array-based iSort

Lecture 19 (March 23, 2023) has now been completed. Continued with the iSort talk,
extending it to in-place sorting. In the talk memory is modeled as a list of integers of length
n accessed through a natural number index 0 - n-1. Slides for the lecture are posted on the
course web site.

3.21 Lecture 20 – The Method

Lecture 20 (March 28, 2023) has now been completed. Maxine presented a review of the last
quiz. There was an argument of an IF function that was missing which made some questions
of the quiz ambiguous. The grading of the quiz will take this confusion into consideration.
The complete proof from the quiz is included under Quiz 14 section of the class notes.

Prof. Hunt began discussion on “The Method.” Your should read about The Method in the
online documentation. You can get to it by typing “The-Method” into the “Jump to” box.

You can also check out the “Proof-builder” in the online documentation. To get you started,
here is a short list of the most commonly used Proof-builder commands.

ACL2-pc::=

(atomic macro) attempt an equality (or equivalence) substitution

ACL2-pc::bash

(atomic macro) call the ACL2 theorem prover’s simplifier

ACL2-pc::bk

(atomic macro) move backward one argument in the enclosing term

ACL2-pc::cg

Chapter 3: Lectures 59

(macro) change to another goal.

ACL2-pc::claim

(atomic macro) add a new hypothesis

ACL2-pc::comm

(macro) display instructions from the current interactive session

ACL2-pc::contrapose

(primitive) switch a hypothesis with the conclusion, negating both

ACL2-pc::demote

(primitive) move top-level hypotheses to the conclusion

ACL2-pc::drop

(primitive) drop top-level hypotheses

ACL2-pc::dv

(atomic macro) move to the indicated subterm

ACL2-pc::exit

(meta) exit the interactive proof-builder

ACL2-pc::expand

(primitive) expand the current function call without simplification

ACL2-pc::goals

(macro) list the names of goals on the stack

ACL2-pc::in-theory

(primitive) set the current proof-builder theory

ACL2-pc::induct

(atomic macro) generate subgoals using induction

ACL2-pc::nx

(atomic macro) move forward one argument in the enclosing term

ACL2-pc::p

(macro) prettyprint the current term in the usual user-level (untranslated) syntax

ACL2-pc::p-top

(macro) prettyprint the conclusion, highlighting the current term

ACL2-pc::prove

(primitive) call the ACL2 theorem prover to prove the current goal

ACL2-pc::r

(macro) same as rewrite

ACL2-pc::replay

(macro) replay one or more instructions

ACL2-pc::restore

(meta) remove the effect of an UNDO command

ACL2-pc::retrieve

(macro) re-enter the proof-builder

ACL2-pc::runes

(macro) print the runes (definitions, lemmas, ...) used

ACL2-pc::s

(primitive) simplify the current subterm

ACL2-pc::s-prop

(atomic macro) simplify propositionally

ACL2-pc::save

(macro) save the proof-builder state (state-stack)

Chapter 3: Lectures 60

ACL2-pc::show-rewrites

(macro) display the applicable rewrite rules

ACL2-pc::split

(atomic macro) split the current goal into cases

ACL2-pc::sr

(macro) same as SHOW-REWRITES

ACL2-pc::th

(macro) print the top-level hypotheses and the current subterm

ACL2-pc::top

(atomic macro) move to the top of the goal

ACL2-pc::undo

(meta) undo some instructions

ACL2-pc::up

(primitive) move to the parent (or some ancestor) of the current subterm

ACL2-pc::use

(atomic macro) use a lemma instance

ACL2-pc::x

(atomic macro) expand and (maybe) simplify function call at the current subterm

ACL2-pc::x-dumb

(atomic macro) expand function call at the current subterm, without simplifying

3.22 Lecture 21 – Proof Automation

Lecture 21 (March 30, 2023) has now been completed.

Class TA reviewed one of our quiz problems. This can be found under the section entitled
“Quiz 14” in the Class Book. We discussed the ACL2 proof method and Prof. Hunt
demonstrated this method working on Prob. 61 (one of the homework problems).

;;;

;;;

;;; Problem 61. Prove (equal (rev1 x nil)(rev x))

;;

;; rev1 - tail recursive reverse

;;

(defun rev1 (x a)

(if (consp x)

(rev1 (cdr x) (cons (car x) a))

a))

;;

;; app - append

;;

(defun app (x y)

(if (consp x)

(cons (car x) (app (cdr x) y))

y))

Chapter 3: Lectures 61

;;

;; rev - reverse

;;

(defun rev (x)

(if (consp x)

(app (rev (cdr x))

(cons (car x) nil))

nil))

;;

;; How to find this key-lemma using

;; ‘‘The Method’’ is the art of ACL2

;;

(defthm key-lemma

(equal (rev1 x y)

(app (rev x) y)))

;;

;; The Main Result

;;

(defthm rev1-rev-equiv

(equal (rev1 x nil)

(rev x)))

The above 5 events product the following proof description output.

The admission of REV1 is trivial, using the relation O< (which is known

to be well-founded on the domain recognized by O-P) and the measure

(ACL2-COUNT X). We observe that the type of REV1 is described by the

theorem (OR (CONSP (REV1 X A)) (EQUAL (REV1 X A) A)). We used primitive

type reasoning.

Summary

Form: (DEFUN REV1 ...)

Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))

Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

REV1

ACL2 !>

The admission of APP is trivial, using the relation O< (which is known

to be well-founded on the domain recognized by O-P) and the measure

(ACL2-COUNT X). We observe that the type of APP is described by the

theorem (OR (CONSP (APP X Y)) (EQUAL (APP X Y) Y)). We used primitive

type reasoning.

Summary

Chapter 3: Lectures 62

Form: (DEFUN APP ...)

Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))

Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

APP

ACL2 !>

The admission of REV is trivial, using the relation O< (which is known

to be well-founded on the domain recognized by O-P) and the measure

(ACL2-COUNT X). We observe that the type of REV is described by the

theorem (OR (CONSP (REV X)) (EQUAL (REV X) NIL)). We used primitive

type reasoning and the :type-prescription rule APP.

Summary

Form: (DEFUN REV ...)

Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL)

(:TYPE-PRESCRIPTION APP))

Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

REV

ACL2 !>

*1 (the initial Goal, a key checkpoint) is pushed for proof by induction.

Perhaps we can prove *1 by induction. Two induction schemes are suggested

by this conjecture. Subsumption reduces that number to one.

We will induct according to a scheme suggested by (REV1 X Y). This

suggestion was produced using the :induction rules REV and REV1. If

we let (:P X Y) denote *1 above then the induction scheme we’ll use

is

(AND (IMPLIES (NOT (CONSP X)) (:P X Y))

(IMPLIES (AND (CONSP X)

(:P (CDR X) (CONS (CAR X) Y)))

(:P X Y))).

This induction is justified by the same argument used to admit REV1.

Note, however, that the unmeasured variable Y is being instantiated.

When applied to the goal at hand the above induction scheme produces

two nontautological subgoals.

Subgoal *1/2

Subgoal *1/1

Subgoal *1/1’

Subgoal *1/1’’

Subgoal *1/1’’’

Subgoal *1/1’4’

Subgoal *1/1’5’

([A key checkpoint while proving *1 (descended from Goal):

Subgoal *1/1’

(IMPLIES (AND (CONSP X)

Chapter 3: Lectures 63

(EQUAL (REV1 (CDR X) (CONS (CAR X) Y))

(APP (REV (CDR X)) (CONS (CAR X) Y))))

(EQUAL (REV1 (CDR X) (CONS (CAR X) Y))

(APP (APP (REV (CDR X)) (LIST (CAR X)))

Y)))

*1.1 (Subgoal *1/1’5’) is pushed for proof by induction.

])

So we now return to *1.1, which is

(EQUAL (APP RV (CONS X1 Y))

(APP (APP RV (LIST X1)) Y)).

Subgoal *1.1/2

Subgoal *1.1/1

*1.1 and *1 are COMPLETED!

Thus key checkpoints Subgoal *1/1’ and Goal are COMPLETED!

Q.E.D.

Summary

Form: (DEFTHM KEY-LEMMA ...)

Rules: ((:DEFINITION APP)

(:DEFINITION REV)

(:DEFINITION REV1)

(:ELIM CAR-CDR-ELIM)

(:EXECUTABLE-COUNTERPART CONSP)

(:FAKE-RUNE-FOR-TYPE-SET NIL)

(:INDUCTION APP)

(:INDUCTION REV)

(:INDUCTION REV1)

(:REWRITE CAR-CONS)

(:REWRITE CDR-CONS))

Time: 0.01 seconds (prove: 0.01, print: 0.00, other: 0.00)

Prover steps counted: 1419

KEY-LEMMA

ACL2 !>

ACL2 Warning [Subsume] in (DEFTHM REV1-REV-EQUIV ...): The previously

added rule KEY-LEMMA subsumes a newly proposed :REWRITE rule generated

from REV1-REV-EQUIV, in the sense that the old rule rewrites a more

general target. Because the new rule will be tried first, it may nonetheless

find application.

Goal’

Chapter 3: Lectures 64

([A key checkpoint:

Goal’

(EQUAL (APP (REV X) NIL) (REV X))

*1 (Goal’) is pushed for proof by induction.

])

Perhaps we can prove *1 by induction. Two induction schemes are suggested

by this conjecture. Subsumption reduces that number to one.

We will induct according to a scheme suggested by (REV X). This suggestion

was produced using the :induction rule REV. If we let (:P X) denote

*1 above then the induction scheme we’ll use is

(AND (IMPLIES (NOT (CONSP X)) (:P X))

(IMPLIES (AND (CONSP X) (:P (CDR X)))

(:P X))).

This induction is justified by the same argument used to admit REV.

When applied to the goal at hand the above induction scheme produces

two nontautological subgoals.

Subgoal *1/2

Subgoal *1/1

Subgoal *1/1’

Subgoal *1/1’’

Subgoal *1/1’’’

Subgoal *1/1’4’

Subgoal *1/1’5’

([A key checkpoint while proving *1 (descended from Goal’):

Subgoal *1/1’

(IMPLIES (AND (CONSP X)

(EQUAL (APP (REV (CDR X)) NIL)

(REV (CDR X))))

(EQUAL (APP (APP (REV (CDR X)) (LIST (CAR X)))

NIL)

(APP (REV (CDR X)) (LIST (CAR X)))))

*1.1 (Subgoal *1/1’5’) is pushed for proof by induction.

])

So we now return to *1.1, which is

(EQUAL (APP (APP RV (LIST X1)) NIL)

(APP (APP RV NIL) (LIST X1))).

Chapter 3: Lectures 65

Subgoal *1.1/2

Subgoal *1.1/1

*1.1 and *1 are COMPLETED!

Thus key checkpoints Subgoal *1/1’ and Goal’ are COMPLETED!

Q.E.D.

Summary

Form: (DEFTHM REV1-REV-EQUIV ...)

Rules: ((:DEFINITION APP)

(:DEFINITION REV)

(:ELIM CAR-CDR-ELIM)

(:EXECUTABLE-COUNTERPART APP)

(:EXECUTABLE-COUNTERPART CONSP)

(:EXECUTABLE-COUNTERPART EQUAL)

(:FAKE-RUNE-FOR-TYPE-SET NIL)

(:INDUCTION APP)

(:INDUCTION REV)

(:REWRITE CAR-CONS)

(:REWRITE CDR-CONS)

(:REWRITE KEY-LEMMA))

Warnings: Subsume

Time: 0.01 seconds (prove: 0.01, print: 0.00, other: 0.00)

Prover steps counted: 1572

REV1-REV-EQUIV

ACL2 !>

3.23 Lecture 22 – The Method

Lecture 22 (April 4, 2023) has now been completed. Presentation of Lab 3 requirements,
code templates, and timing.

3.24 Lecture 23 – Peano Arithmetic

Lecture 23 (April 6, 2023) has now been completed.

Discussed questions on the class piazza site about implementing the bst-del function. After
a delete operation, the tree must still be ordered. Next was a discussion of Peano arithmetic,
and how to implement arithmetic in ACL2. Defined a number of ACL2 functions to create
natural numbers as the length of certain lists. Then defined the operations of plus and times
to operate on these lists. Here is where we got with this exercise. Problem 67 is the times
function, which is part of homework 10 (Problems 67 - 73).

;;;

;;;

;;; Peano Arithmetic

Chapter 3: Lectures 66

;;

;; Here is how we will define natural numbers.

(defun nat (x)

(if (consp x)

(and (equal (car x) nil)

(nat (cdr x)))

(equal x nil)))

(defthm true-listp-nat

(implies (nat x)

(true-listp x)))

;;

;; app - append

;;

(defun app (x y)

(if (consp x)

(cons (car x) (app (cdr x) y))

y))

;;

;;

(defun mapnil (x)

(if (consp x)

(cons nil (mapnil (cdr x)))

nil))

(defthm true-listp-mapnil

(true-listp (mapnil x)))

;;

;; Here is the additon operation.

(defun plus (x y)

(if (atom x)

(mapnil y)

(cons nil (plus (cdr x) y))))

(defthm len-mapnil

(equal (len (mapnil x))

(len x)))

(defthm len-plus

(equal (len (plus x y))

(+ (len x) (len y))))

;;

Chapter 3: Lectures 67

;; Here is multiplication.

(defun times (x y)

(if (atom x)

nil

(plus y (times (cdr x) y))))

(defthm true-listp-times

(true-listp (times x y)))

(defthm times-is-commutative

(implies (and (nat x) (nat y))

(equal (times x y) (times y x))))

(defthm times-x-0

(implies (atom y)

(equal (times x y)

nil)))

;;

;; Here is an optimized multiplication,

;; suggested by a classmate.

(defun times-opt (x y)

(if (or (atom x) (atom y))

nil

(times x y)))

(defthm times-opt-equiv-times

(equal (times-opt x y)

(times x y)))

;;

;; Here is a multiplication that uses

;; the best definition for proving theorems,

;; and the best one for efficient execution

;; as a simulator.

(defun uber-times (x y)

(mbe :logic (times x y)

:exec (times-opt x y)))

(defthm true-listp-uber-times

(true-listp (uber-times x y)))

(defthm uber-times-equiv-times-opt

(equal (uber-times x y)

(times-opt x y)))

Chapter 3: Lectures 68

3.25 Lecture 24 – Structural Induction

Lecture 24 (April 11, 2023) has now been completed.

Prof. Hunt added a file to the class web-page called sets-definitions.lisp You can find a link
to the file under the links to Lab-0 through Lab-3 on the web-page. The lecture focused on
going through this file in some detail. This thorough recap of Lab-2 functions, and more,
should help with the work students are currently engaged in on Lab-3. You should feel
free to use the functions in the sets-definitions.lisp file as the basis for working the proofs
required for Lab-3.

3.26 Lecture 25 – popcount

Lecture 25 (April 13, 2023) has now been completed.

This lecture looked at aspects of the Peano arithmetic that the students are working on
for homework #10. The principle of structural recursion is extended beyond our current
definition that requires a car/cdr nest to guarantees that something gets smaller everytime
through the iteration so that it can be proved that the function terminates.

Prof. Hunt finished the class with an example of using ACL2 to model a C program called
popcount. Popcount counts the number of 1s in a computer word (32 or 64 bit). The
approach was to create a shallow-embedding of the C program into acl2. This was done
even though C does not have a formal semantics. The Popcount talk will be posted on the
class website.

3.27 Lecture 26 – Verification and Validation

Lecture 26 (April 18, 2023) has now been completed. This class had two parts. In the first
part, Prof. Hunt answered questions that students had on proving the theorems required to
complete Lab-3. In particular, there were some helper lemmas needed to prove some of the
theorems. Examples of how to identify the needed lemmas and prove them were given.

In the second part of the class, Scott presented some thoughts on how this class, CS340d,
fits into the larger topic of program verification and validation (V & V). Program V & V is
a field of its own with a big literature, textbooks, and even an IEEE standard for writing a
software requirements document. Some of the material that was discussed is available on
the class website.

3.28 Lecture 27 – The Last Class

Lecture 27 (April 20, 2023) has now been completed. This is the last class. Congratulations
on the new skills you have acquired by staying with the significant amount of work required
to complete the course. With your increased level of understanding of how to prove theorems
in ACL2, it is our recommendation that you now go back to where most people start their
learning of ACL2. Look at the frequently-asked-questions-by-newcomers and the tutorial
introduction-to-the-theorem-prover, both in the ACL2 online manual.

Prof. Hunt presented a collection of more advanced topics that ACL2 has for controlling at
a more granular level. This material came from a presentation that J Moore gave to the
Stanford Summer School that has been referenced many times in the Class Book.

Next, a 20 minute quiz was given. This was followed by a presentation on using ACL2 in
modeling and eventually building computer hardware. Many different types of hardware

Chapter 3: Lectures 69

have been modeled and proven to implement their specification. Some of this work goes on
daily in industry. You can conduct your own search and investigation to see the extent of
the use of this technology in application today.

70

4 CS340d Quizzes

Quizzes are designed to give us (and, you) a handle on your understanding of the various
concepts related to this course. Quizzes may be given at any time, and there may be multiple
quizzes in a class. Quizzes may involve writing some code so it is important that you bring
you laptop to every class. Quizzes also give the students insight into what types of questions
and problems are likely to be on exams.

4.1 Quiz 0 Welcome Questionnaire

Quiz 0

CS 340d

Unique Number: 52285

Spring, 2023

Given: January 10, 2023

Welcome to CS340d Debugging and Verifying Programs Spring 2023

Welcome

Welcome to CS340d: Debugging and Verifying Programs. We are glad you are joining us
this semester. In recent semesters past it has been a challenge to navigate life under the
COVID-19 pandemic. Particularly as it pertains to providing a world-class educational
experience. But, we have learned a lot through this challenge and are committed to applying
this experience working with you to achieve your learning goals at UTA. To start with, we
would like to get to know you a little better. Please fill out the following short questionnaire
which will give us some data and some feelings about where you are at the start of this
semester and course. WAHJr, VR, SMS.

OUR GET TO KNOW YOU QUESTIONNAIRE

Contact Information

Name:

Preferred Name (What do your friends call you?):

Contact information: (How can we contact you and get information

to you, during the semester e.g. e-mail,

mobile phone, fax, USPS mail?):

Pronouns:

A reminder: Please take the time to update your contact information in

CANVAS, Piazza, and Zoom.

Chapter 4: CS340d Quizzes 71

This can come in handy as the semester proceeds.

Academic Background

What are your favorite CS topics (e.g., Programming Languages,

Operating Systems, Databases, AI and ML, Algorithms, etc.)?

What CS, and other courses (math, science, engineering, etc.) have

you taken that you feel prepare you to take CS340d?

Do you have Lisp (or other functional programming languages)

programming experience?

Do you have experience in proving theorems in the propositional calculus?

Based on what you know so far about CS340d are you are ready to go?

University Experience

Based on your past experience with UTCS faculty and courses,

select the number below of the statement that reflects the

closest to how you feel about being a part of the UTCS community?

(select one answer from below)

1. What is UTCS?

2. I don’t feel that UTCS welcomes students.

3. I have no positive or negative feelings.

4. I feel good about being a part of UTCS.

5. I am a member in good standing of the UTCS community.

Course Expectations

What do you hope to learn from this class? (select one answer from below)

1. I am not exactly sure what this course is about.

2. How I can improved my ability to write correct code given user requirements.

3. The theoretical underpinnings of a mechanized logic.

4. How to use ACL2 to formally verify a digital system.

5. Using ACL2 across the fields of mathematics, software, hardware and systems.

What grade do you expect to achieve in CS340d? (select one answer from below)

1. Don’t know.

2. C

3. B

4. B+

Chapter 4: CS340d Quizzes 72

5. A

What are your concerns, if any, about CS340d? (select one answer from below)

1. No concerns, as I said above I’m ready to go!

2. Some concerns, but I am confident that working together we can have

a successful semester in CS340d.

3. Some concerns, but not about the course work itself.

4. Some concerns, mostly about work-load and managing all my classes.

5. I have many concerns about how the class will go for me

with the work-load in this challenging course.

If you answered any of 2 - 5 from the previous question,

please list some of your top concerns.

-

Other things

Complete the following sentence: ‘‘I wish my professor knew...’’

What is one surprising thing about you we would never have guessed?

(e.g., Scott worked in the Ford Research Labs on a project to

power cars with hydrogen fuel cells and Prof. Hunt visited Scott

at the Ford labs and drove a prototype fuel cell car.)

What is the one question we didn’t ask on this survey that we should have asked?

Again, please update your information in Canvas and Zoom so you are sure to receive

up-to-date course and university information and alerts.

Chapter 4: CS340d Quizzes 73

4.2 Quiz 1 Checkout Canvas Quiz Submission

Quiz 1

CS 340d

Unique Number: 52285

Spring, 2023

Given: January 12, 2023

Quiz 1: What have you heard so far?

Question 1: Indicate for each statement whether it is True or False

A.) ACL2 is a system for the automatic memoization of ACL2-Lisp functions.

B.) (OR (ZP x) (NOT (ZP x)))

C.) TRACE$ is going to be your debugging friend.

D.) ACL2 is a formal logic for modeling and reasoning about digital systems.

E.) ACL2 is an applicative (side-effect-free) subset of Common Lisp

Question 2:

Our classroom seems to smell like mold or mildew. Should we ask if another classroom is
available?

Chapter 4: CS340d Quizzes 74

4.3 Quiz 2 Propositional Calculus

Quiz 2

CS 340d

Unique Number: 52285

Spring, 2023

Given: January 26, 2023

Quiz 2: Propositional Calculus (PC)

Question 1: The definition of PC operators is often given using Truth Tables TT). For each
of the PC operators (logic name, ACL2 function, logic symbol):

• (Conjunction, AND, ∧)
• (Disjunction, OR, ∨)
• (Negation, NOT, ¬)
• (Implication, IMPLIES, ⇒)

• (Equivalence, EQUAL, ≡)

Fill in the Truth Tables below.

A.) (Conjunction, AND, ∧)
P Q P /\ Q

T T ?

F T ?

T F ?

F F ?

B.) (Disjunction, OR, ∨)
P Q P \/ Q

T T ?

F T ?

T F ?

F F ?

C.) (Negation, NOT, ¬)
P ¬ P

T ?

F ?

Chapter 4: CS340d Quizzes 75

D.) (Implication, IMPLIES, ⇒)

P Q P => Q

T T ?

F T ?

T F ?

F F ?

E.) (Equivalence, EQUAL, ≡)
P Q P == Q

T T ?

F T ?

T F ?

F F ?

Question 2:

A PC formula is a theorem, if its output is true for all values of the input variables. Using
the definitions of the PC operators given above, determine, if the following formula is a
theorem: P ∧Q⇒ P ∨Q

Chapter 4: CS340d Quizzes 76

4.4 Quiz 3 Propositional Calculus

Quiz 3

CS 340d

Unique Number: 52285

Spring, 2023

Given: January 24, 2023

Quiz 3: Propositional Calculus (PC): Is this a theorem?

Question 1: The formula p ∧ q ⇒ p is a theorem. (true or false)

Question 2: The formula ¬(p ⇒ q) ≡ (¬q ⇒ ¬p) is a theorem. (true or false)

Question 3: How could we write the formula p ∧ q ⇒ p in ACL2?

(select one)

• ((p and q) implies p)

• (p and q implies p)

• (implies (and (p q)) (p))

• (implies (and p q) p)

Question 4: How could we write the following formula in ACL2 ¬(¬q ⇒ ¬p) in ACL2?

(select one)

• (not (not q) implies (not p))

• (not (implies (not q p)))

• (not (implies (not q) (not p)))

• (not not q implies not p)

Chapter 4: CS340d Quizzes 77

4.5 Quiz 4 Propositional Calculus

Quiz 4

CS 340d

Unique Number: 52285

Spring, 2023

Given: January 26, 2023

Quiz 4: Yet More Propositional Calculus (PC): Is this a theorem?

Question 1: In an axiomatic logic system axioms and inference rules are assumed to be true.
They are taken to hold without proof. (true or false)

Question 2: The formula ¬(p ∧ q) ≡ ¬p ∨ ¬q is a theorem. (true or false)

Question 3: The formula nil ⇒ q is a theorem. (true or false)

Question 4: The formula p ∧ ¬p (called a contradiction) is a theorem. (true or false)

Question 5: The formula p ∨¬p (called the excluded middle) is a theorem. (true or false)

Chapter 4: CS340d Quizzes 78

4.6 Quiz 5 Functional programming in ACL2

Quiz 5

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 7, 2023

Quiz 5: Basic ACL2

Question 1: We draw the following “ascii-art” for the list (1 2). (true or false)

*

/ \

1 2

Question 2: (1 2) is a “cons pair”. (true or false)

Question 3: The ACL2 expression (quote (+ 1 2 3)) evaluates to (+ 1 2 3). (true or false)

Question 4: The ACL2 expression (equal (quote (+ 1 2 3)) ’(+ 1 2 3)) evaluates to T. (true
or false)

Question 5: The ACL2 expression (car ’(((a b (c)) d e (f)))) evaluates to. (select one)

• a

• (a b (c))

• ((a b (c)) d e (f))

• NIL

• (((a b (c)) d))

Chapter 4: CS340d Quizzes 79

4.7 Quiz 6 Functional programming in ACL2

Quiz 6

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 9, 2023

Quiz 6: Questions about ACL2 Terms

Question 1: Which of the following is not a nil-terminated list. (select one)

• (1 2 3)

• (1 2 . nil)

• (1 2 . 3)

• All of the above

• None of the above

Question 2: The COND macro is often used in lisp programming. This code will evaluate to
which of the following. (select one)

(let ((x 10))

(cond ((atom x) x)

((consp x) (car x))

(t nil)))

• nil

• (car 10)

• 10

• (10)

• None of the above.

Question 3: This code will evaluate to which of the following. (select one)

(let ((x ’(9 8 7 6)))

(cond ((atom x) x)

((consp x) (car x))

(t nil)))

• nil

• (9 8 7 6)

• 9

Chapter 4: CS340d Quizzes 80

• (9)

• None of the above.

Question 4: This code will evaluate to which of the following. (select one)

(let ((x "str"))

(cond ((atom x) x)

((consp x) (car x))

(t nil)))

• nil

• x

• "str"

• ("str")

• None of the above.

Question 5: The ACL2 expression ’(+ 1 NIL 2 NIL 3 NIL) evaluates to. (select one)

• 1

• (+ 1 NIL 2 NIL 3 NIL)

• 10

• NIL

• This produces a hard-error in ACL2 and enters a break-loop

Chapter 4: CS340d Quizzes 81

4.8 Quiz 7 A Quiz Poll

Quiz 7

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 9, 2023

The class was polled on the difficulty of quiz 6. The results were 40% felt it was too difficult,
and 60% did not feel it was too difficult. Thank you for your feedback.

Chapter 4: CS340d Quizzes 82

4.9 Quiz 7a An ACL2 Lisp Function

Quiz 7a

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 14, 2023

Quiz 7a: An ACL2 Lisp function.

As was indicated in the course materials and emphasized in the class lectures, you will be
working in a subset of Common Lisp this semester. Since some of you indicated in the survey
that you are new to Lisp, we will help you along with Lisp quizzes from time to time. This
is such a time.

Consider the following lisp function, which ACL2 admits into the logic.

(defun x (x)

(if (consp x)

(cons (len x)

(x (cdr x)))

nil))

What do each of the following function calls return?

ACL2 !> (x nil)

ACL2 !> (x 10)

ACL2 !> (x ’(a b c d))

ACL 2 !> (x ’(10 #\a "string" (22/7)))

ACL2 !> (x ’(a . (b . c)))

Chapter 4: CS340d Quizzes 83

4.10 Quiz 8 Terms

Quiz 8

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 16, 2023

Quiz 8: Terms.

Let g be a function with signature

(g * * *) => *

i.e., g has arity 3 and returns a single value.

Also recall that (equal ’3 3) returns T (and similarly for other numbers).

Q1: Which of the following are terms?

1. (g (car x) (cons (g x y z) z) z)

2. (g (car ’2) x z)

3. (g ’1 x (cons z))

4. (car (g ’1 ’2 ’3))

Q2: Which of the following is the result of the substitution

{x <- (car x), y <- (g ’1 ’2 ’3), z <- (g x y w)} applied to (g x y z):

1. (g (car x) (g ’1 ’2 ’3) (g x y w))

2. (g (car x) (g ’1 ’2 ’3) (g (car x) y w))

3. (g (car x) (g ’1 ’2 ’3) (g x (g ’1 ’2 ’3) w))

4. (g (car x) (g ’1 ’2 ’3) (g (car x) (g ’1 ’2 ’3) w))

Chapter 4: CS340d Quizzes 84

4.11 Quiz 9 Dot Notation

Quiz 9

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 21, 2023

Quiz 9: Dot Notation.

Q1: Which of the following expressions are equivalent to the expression ‘(A B C)?

Select all that apply.

1. ’(A . (B . (C)))

2. ’(A . (B . (C . nil)))

3. ’(A . (B C))

4. ’(A B (C . nil))

5. All the Above

Q2. Identify these equivalence statements as TRUE or FALSE.

__ ’(A B . C D) == ’(A (B . C) (D . nil))

__ ’(nil (nil nil)) == ’(nil (nil))

__ ’(A (B . C) D) == ’(A (B . C) . (D . nil))

__ ’(nil . (A . (B . C))) == ’(nil A B . C)

__ ’((nil . A) (nil . B) C) == ’((nil . A) (nil . B) . (C))

Chapter 4: CS340d Quizzes 85

4.12 Quiz 10 More on Terms

Quiz 10

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 23, 2023

Quiz 10: More on Terms.

Terms are an important concept in ACL2.

So far we have covered the definition of Terms; we have had homework on identifying Terms;
we have discussed abbreviations, substitutions and the relationship between Terms and
formulas.

This quiz should help you gauge how you are coming along in your understanding of terms.

Let h be a function with signature

(h * *) => *

i.e. h has arity 2 and returns a single value.

Also recall that (equal ’3 3) returns T (and similarly for other numbers).

Q1: Which of the following are terms?

1. (if (car (car x)) (cons ’t x) ’0)

2. (h (car ’2) x (cdr z))

3. (car (cons x y) ’nil v)

4. (car (h ’1 ’2))

5. (IF (IF X ’T ’NIL) Y Z)

Q2: Which of the following is the result of the substitution

{ x <- (first x), y <- (h ’1 ’2) } applied to (h x y):

1. (h (car x) (h ’1 ’2))

Chapter 4: CS340d Quizzes 86

2. (h (cons (car x) (h ’1 ’2)))

3. nil

4. (h (first x) (h ’1 ’2))

5. (h (car x) (h ’1 ’2 ’3) (h (car x) (h ’1 ’2 ’3) w))

Q3: Which of the following terms evaluate to nil

1. (equal ’ "Hello" ’Hello)

2. (binary-+ ’nil ’3)

3. (car ’nil)

4. (if ’nil ’1 ’2)

5. (equal (cons ’3 ’4) (cons ’three ’four))

Chapter 4: CS340d Quizzes 87

4.13 Quiz 11 The Definitional Principle

Quiz 11

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 23, 2023

Quiz 11: The Definitional Principle.

Indicate whether the following statements are True or False.

Q1: The following function meets the Definitional Principle. (True/False)

(defun F (e x)

(if (consp x)

(if (equal e (car x))

t

(F e x))

nil))

Q2: The following function meets the Definitional Principle. (True/False)

(defun G (e x)

(if (consp x)

(if (equal e (car x))

t

(G e (car x)))

nil))

Q3: The following function meets the Definitional Principle. (True/False)

(defun H (e x)

(if (consp x)

(if (equal e (car x))

t

(H h (cdr x)))

nil))

Q4: The following function H has x as a measured formal. (True/False)

(defun H (e x)

(if (consp x)

Chapter 4: CS340d Quizzes 88

(if (equal e (car x))

t

(H e (cdr x)))

nil))

Chapter 4: CS340d Quizzes 89

4.14 Quiz 12 Concepts Review

Quiz 12

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 23, 2023

Quiz 12: Concepts Review.

Q1: Which of the following are true-listp?

1. ’(a b c)

2. ’(a b . c)

3. ()

4. ’((a . b) c)

5. ’(() . nil)

6. ’(a . b c)

Q2: Which of the following are terms?

1. (if (car (car x)) (cons ’t x) ’0)

2. (h (car ’2) x (cdr z))

3. (car (cons x y) ’nil v)

4. (car (h ’1 ’2))

5. (IF (IF X ’T ’NIL) Y Z)

Q3: In Homework-4 we proved that: (equal (if 6 x y) x) is a theorem.

Using Axiom 2, and the substitution sigma = { x <-- 6, y <-- x, z <-- y}

we get the following theorem:

1. 6 6= nil ⇒ (if 6 x z) = x

2. 6 6= nil ⇒ (if 6 x y) = y

Chapter 4: CS340d Quizzes 90

3. t 6= nil

4. 6 6= nil ⇒ (if 6 x y) = x

5. None of the above

Q4: Q3 above is an example of using: (Select all that apply)

1. axiomatization

2. substitution

3. instantiation

4. referenciation

5. equalization

Chapter 4: CS340d Quizzes 91

4.15 Quiz 13 Prove it

Quiz 13

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 23, 2023

Quiz 13: Prove it!

The following function showed up in Lecture 7 where we

were checking to see if it meets the Definitional Principle.

We all agreed that it did meet the 4 requirements.

(defun f (x)

(if (consp x)

(f (cdr x))

t))

ACL2 has a function called booleanp which is defined as follows.

(defun booleanp (x)

(if (eq x t) t (eq x nil)))

Prove the following conjecture ψ: (booleanp (f x))

Perhaps we can prove it by induction.

Base Case:

(implies (not (consp x))

(booleanp (f x)))

< Def, f >

(implies (not (consp x)) ; hyp1

(booleanp (if (consp x)

(f (cdr x))

t)))

< hyp1 and Axiom 3>

(implies (not (consp x)) ; hyp1

(booleanp T))

Chapter 4: CS340d Quizzes 92

< Def. booleanp and Axiom 2>

T

QED

This completes the proof of the Base Case. Now for proof of the Induction Step.

Induction Step:

Choose induction variable: x, and the

car/cdr substitution (sigma): σ1 = (x (cdr x))

Now prove:

(implies (and (consp x) ; hyp1

(booleanp (f (cdr x))) ; hyp2 (IH)

)

(booleanp (f x)))

< Def. f >

(booleanp (if (consp x)

(f (cdr x))

t))

< hyp1 and Axiom 2 >

(booleanp (f (cdr x)))

< But this IS hyp2, the (IH) >

T

QED

This completes the proof of the Induction Step. Therefore by the Principle of Structural
Induction we have proved the conjecture ψ.

Chapter 4: CS340d Quizzes 93

4.16 Quiz 14 Prove it

Quiz 14

CS 340d

Unique Number: 52285

Spring, 2023

Given: March 23, 2023

From Quiz 14.

In lecture we defined nat as

(defun nat (x)

(if (consp x)

(and (equal (car x) nil)

(nat (cdr x)))

(equal x nil)))

Now we define min-nat that takes in two arbitrary

lists and return the nat representing the length of the shorter list.

(defun min-nat (x y)

(if (consp x)

(if (consp y)

(cons nil (min-nat (cdr x) (cdr y)))

nil)

nil))

Prove the following:

(defthm nat-min-nat

(nat (min-nat x y)))

Let’s attempt the proof by induction.

Let’s first prove the base case

(implies (not (consp x))

(nat (min-nat x y)))

By the definition of min-nat and substitution, we have

(implies (not (consp x)) ; hyp 1

(nat (if (consp x)

(if (consp y)

Chapter 4: CS340d Quizzes 94

(cons nil (min-nat (cdr x) (cdr y)))

nil)

nil)))

By hyp 1 and axiom 3, we have

(implies (not (consp x)) ; hyp 1

(nat nil))

By definition of nat, axiom 8, and axiom 3, we have

(implies (not (consp x)) ; hyp 1

(equal nil nil))

By axiom 5, we have T.

We’ve proven the base case:

(implies (not (consp x))

(nat (min-nat x y))).

Now let’s move on to the inductive step.

Choose induction variable x, and substitution \phi = {(x (cdr x)), (y (cdr y))}.

For the inductive step, we need to prove:

(implies (and (consp x) ; hyp 2

(nat (min-nat (cdr x) (cdr y)))) ; IH (inductive hypothesis)

(nat (min-nat x y))).

By definition of min-nat, we have

(implies (and (consp x) ; hyp 2

(nat (min-nat (cdr x) (cdr y)))) ; IH (inductive hypothesis)

(nat (if (consp x)

(if (consp y)

(cons nil (min-nat (cdr x) (cdr y)))

nil)

nil)))

By hyp 2 and axiom 2, we have

(implies (and (consp x) ; hyp 2

(nat (min-nat (cdr x) (cdr y)))) ; IH

Chapter 4: CS340d Quizzes 95

(nat (if (consp y)

(cons nil (min-nat (cdr x) (cdr y)))

nil))).

Now let’s do a case split on y: (not (consp y)) and (consp y).

Consider the case where (not (consp y)):

(implies (and (consp x) ; hyp 2

(not (consp y)) ; hyp 2a

(nat (min-nat (cdr x) (cdr y)))) ; IH

(nat (if (consp y)

(cons nil (min-nat (cdr x) (cdr y)))

nil)))

By hyp 2a and axiom 3, we have

(implies (and (consp x) ; hyp 2

(not (consp y)) ; hyp 2a

(nat (min-nat (cdr x) (cdr y)))) ; IH

(nat nil))

Following what we did in the base case, we will reach T eventually.

Now onto the case where (consp y):

(implies (and (consp x) ; hyp 2

(consp y) ; hyp 2b

(nat (min-nat (cdr x) (cdr y)))) ; IH

(nat (if (consp y)

(cons nil (min-nat (cdr x) (cdr y)))

nil)))

By hyp 2b and axiom 2, we have

(implies (and (consp x) ; hyp 2

(consp y) ; hyp 2b

(nat (min-nat (cdr x) (cdr y)))) ; IH

(nat (cons nil

(min-nat (cdr x) (cdr y))))).

Chapter 4: CS340d Quizzes 96

(defun nat (x)

(if (consp x)

(and (equal (car x) nil)

(nat (cdr x)))

(equal x nil)))

By definition of nat, we have

(implies (and (consp x) ; hyp 2

(consp y) ; hyp 2b

(nat (min-nat (cdr x) (cdr y)))) ; IH

(if (consp (cons nil (min-nat (cdr x) (cdr y))))

(and (equal (car (cons nil (min-nat (cdr x) (cdr y)))) nil)

(nat (cdr (cons nil (min-nat (cdr x) (cdr y))))))

(equal (cons nil (min-nat (cdr x) (cdr y)))

nil)))

By axiom 9, and axiom 10, we have

(implies (and (consp x) ; hyp 2

(consp y) ; hyp 2b

(nat (min-nat (cdr x) (cdr y)))) ; IH

(if (consp (cons nil (min-nat (cdr x) (cdr y))))

(and (equal nil nil)

(nat (min-nat (cdr x) (cdr y))))

(equal (cons nil (min-nat (cdr x) (cdr y)))

nil)))

By axiom 2 and axiom 7, we have

(implies (and (consp x) ; hyp 2

(consp y) ; hyp 2b

(nat (min-nat (cdr x) (cdr y)))) ; IH

(and (equal nil nil)

(nat (min-nat (cdr x) (cdr y)))))

By IH, axiom 5, we have

(implies (and (consp x) ; hyp 2

(consp y) ; hyp 2b

(nat (min-nat (cdr x) (cdr y)))) ; IH

(and T T)),

and we’ll reach T and hence prove our theorem.

Chapter 4: CS340d Quizzes 97

4.17 Quiz 15 Prove it

Quiz 15

CS 340d

Unique Number: 52285

Spring, 2023

Given: April 23, 2023

This page is intentionally blank. Quiz 15 does not exist, due to a numbering error. Sorry
about that.

Chapter 4: CS340d Quizzes 98

4.18 Quiz 16 Is this a defthm

Quiz 16

CS 340d

Unique Number: 52285

Spring, 2023

Given: April ??, 2023

From Quiz 16: Is this a defthm?

Consider the definitions below for the following questions.

You can use knowledge from previous lectures and/or ACL2 to help you answer the questions.

(defun app (x y)

(if (consp x)

(cons (car x)

(app (cdr x) y))

y))

(defun rev (x)

(if (atom x)

nil

(app (rev (cdr x))

(list (car x)))))

(defun true-listp (x)

(if (consp x)

(true-listp (cdr x))

(eq x nil)))

1. Is this a theorem? (true or false)

(defthm true-listp-rev

(true-listp (rev x)))

2. Is this a theorem? (true or false)

(defthm rev-of-rev

(implies (true-listp x)

(equal (rev (rev x))

x)))

Chapter 4: CS340d Quizzes 99

3. Do we need the true-listp hypothesis in the

previous theorem? I.e. is this a theorem?

(defthm rev-of-rev-2

(equal (rev (rev x))

x))

4. Is this a theorem? (true or false)

(defthm rev-of-rev-of-rev

(equal (rev (rev (rev x)))

(rev x)))

Chapter 4: CS340d Quizzes 100

4.19 Quiz 17 The Method

Quiz 17

CS 340d

Unique Number: 52285

Spring, 2023

Given: April 13, 2023

From Quiz 17: The Method

Consider the following definitions for representing natural numbers

as lists of nils and a "plus" operation to add these numbers.

(defun nat (x)

(if (atom x)

(null x)

(and (null (car x))

(nat (cdr x)))))

(defun make-nil-list (x)

(if (atom x)

nil

(cons nil (make-nil-list (cdr x)))))

(defun app (x y)

(if (consp x)

(cons (car x) (app (cdr x) y))

y))

(defun plus (x y)

(app (make-nil-list x)

(make-nil-list y)))

These will be used in the following questions. You may use

lecture knowledge and ACL2 to answer the questions.

1. Is this a theorem? (true or false)

(defthm nat-plus

(nat (plus x y)))

2. Provide the following defthm event into ACL2. Does it prove?

Chapter 4: CS340d Quizzes 101

(true or false)

(defthm associativity-of-plus

(equal (plus (plus i j) k)

(plus i (plus j k))))

3. What is the key checkpoint printed by ACL2?

Copy and paste the checkpoint into the box below.

4. In this case, we may need some key insight to help ACL2 along.

One such fact is the theorem below. Provide it to ACL2.

(defthm make-nil-list-fact

(equal (make-nil-list (app x y))

(app (make-nil-list x)

(make-nil-list y))))

Now, provide the associativity-of-plus theorem to ACL2 again.

Does the theorem prove?

(true or false)

5. Note the key checkpoint from the last proof attempt of associativity-of-plus.

If needed, what theorem do you think will help?

Now, enter the following theorem into ACL2.

Does this help prove the associativity-of-plus theorem? (true or false)

(defthm make-nil-list-twice

(equal (make-nil-list (make-nil-list x))

(make-nil-list x)))

102

5 CS340d Homework

Homework problems are designed to solidify your understanding of various concepts related
to this course. Problems may appear here prior to their assignment. We reserve the right to
alter homework assignment up to the date of assignment. Why? We may not be able to
cover in class everything we hoped to discuss prior to some specific date; this, in turn, will
affect when we expect students to be able to respond to CS340d homework assignments.

5.1 Homework 0

Homework Assignment 0

CS 340d

Unique Number: 52285

Spring, 2023

Given: January 12, 2023

Due: January 19, 2023

Part 1:

Part 1 of your homework assignment is to familiarize yourself with the documentation system
we will be using for ACL2. This is a web-based system that you can access from the following
link.

acl2.org/manual

We recommend that students begin by starting a browser and loading:
http://acl2.org/manual – a Webpage should be displayed. Then, in the “Jump-
to” dialogue box, we recommend that a student enter “gentle-intro-to-acl2-programming”.
Note, most browsers will attempt to auto complete. A student should read and try to
understand everything in that webpage. Please, read through the section titled “Symbols.”

ACL2 lisp operates by what is called a read-eval-print loop. At the ACL2 prompt you enter
the form you want evaluated and ACL2 reads that input, evaluates it and prints out the
result of the evaluation. The ACL2 prompt contains a lot of information about the state of
ACL2. What do the following ACL2 prompts tell you about the state of the system?

1.) ACL2 !>

2.) ACL2 >

3.) ACL2 p!>

4.) ACL2 p>

Use the reading you did in “A Gentle Introduction to ACL2 Programming,” and the ACL2
documentation system to answer. For extra credit, what do these prompts mean?

acl2.org/manual

Chapter 5: CS340d Homework 103

5.) KEYWORD >

6.) ACL2 !s>

Part 2:

We will be using the ACL2 Lisp programming language immediately in this course, and the
theorem-proving system starting in a couple of weeks. To get started you need to confirm
that you can access and run the ACL2 system on the UTCS Linux cluster, and on your
personnel machine. Remember, we will be working in every class using ACL2.

The top-level ACL2 webpage can be found here:

http://acl2.org/manual

If you wish to use this system on UTCS Linux-based computers, then be sure that you have
appropriate user usage privileges. Once you have logged into a UTCS Linux-based computer,
then you may type:

/p/bin/acl2

at the unix system prompt to start ACL2 running. If you wish to use ACL2 on your personal
laptop, then you will need to follow the ACL2 installation instructions which can be found
here:

http://www.cs.utexas.edu/users/moore/acl2/v7-0/HTML/installation/

installation.html

Before ACL2 can be built on your laptop or deskside computer, you will need to obtain a
Lisp implementation. We strongly recommend that you use Clozure Common Lisp. Why?
This is the Lisp that we generally use. This hashtag contains a bit of information that might
be helpful.

http://www.cs.utexas.edu/users/moore/acl2/v7-0/HTML/installation/

requirements.html#Obtaining-CCL

Part 2 of your homework assignment is to provide us with a copy of the ACL2 welcome
header you see when you run the command to start-up ACL2 on the computer you will be
using for ACL2 assignments this semester.

It should look something like this...

sms@Scott-MacBook-Pro src % ~/ccl-acl2-8.4/saved_acl2

Welcome to Clozure Common Lisp Version 1.12 (v1.12-32-g8778079b) DarwinX8664!

++

+ ACL2 Version 8.4 +

+ built March 21, 2022 08:08:16. +

+ Copyright (C) 2021, Regents of the University of Texas. +

+ ACL2 comes with ABSOLUTELY NO WARRANTY. This is free software and +

+ you are welcome to redistribute it under certain conditions. For +

+ details, see the LICENSE file distributed with ACL2. +

++

System books directory "/Users/sms/acl2/ccl-acl2-8.4/books/".

Type :help for help.

http://acl2.org/manual
http://www.cs.utexas.edu/users/moore/acl2/v7-0/HTML/installation/installation.html
http://www.cs.utexas.edu/users/moore/acl2/v7-0/HTML/installation/installation.html
http://www.cs.utexas.edu/users/moore/acl2/v7-0/HTML/installation/requirements.html#Obtaining-CCL
http://www.cs.utexas.edu/users/moore/acl2/v7-0/HTML/installation/requirements.html#Obtaining-CCL

Chapter 5: CS340d Homework 104

Type (quit) to quit completely out of ACL2.

;;;

;;; Quick test of defining a recursive function in ACL2

;;;

ACL2 !> (defun sum-to-n (n)

(if (zp n) ; Is n zero?

0

(+ n

(sum-to-n (1- n)))))

The admission of SUM-TO-N is trivial, using the relation O< (which

is known to be well-founded on the domain recognized by O-P) and the

measure (ACL2-COUNT N). We observe that the type of SUM-TO-N is described

by the theorem (AND (INTEGERP (SUM-TO-N N)) (<= 0 (SUM-TO-N N))).

We used the :compound-recognizer rule ZP-COMPOUND-RECOGNIZER and primitive

type reasoning.

Summary

Form: (DEFUN SUM-TO-N ...)

Rules: ((:COMPOUND-RECOGNIZER ZP-COMPOUND-RECOGNIZER)

(:FAKE-RUNE-FOR-TYPE-SET NIL))

Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)

SUM-TO-N

ACL2 !> (good-bye)

sms@Scott-MacBook-Pro ccl-acl2-8.4 %

NOTE: If you have any trouble getting access to ACL2 on the UTCS Linux machines, or
difficulty in installing and running ACL2 on your personal machine, see Professor Hunt or
one of his staff immediately. You cannot do the work for this class without this software
system available to you.

Chapter 5: CS340d Homework 105

5.2 Homework 1

Homework Assignment 1

CS 340d

Unique Number: 52285

Spring, 2023

Given: January 19, 2023

Due: January 26, 2023

This homework assignment considers further our choice of ACL2 as the programming
language for cs340d. If you search around for information on the most commonly used
programming languages in industry, you will often find a list like the following for the top
five or six.

Python

JavaScript

Java

C#

C

C++

You have Python, which according to Peter Norvig is a dialect of Lisp. See more detail on
that claim here (https://norvig.com/python-lisp.html).

Many of the languages that are variants of C. C# and C++ added object-oriented program-
ming into C. Java might be consider as a newer version of C designed with network (read
internet) programming in mind.

To do the types of verification that we have in mind we need a formally-defined programming
language and a verifier for that logic. We will use ACL2. Note, there are other systems like
ACL2; for example, NuPRL, Coq, HOL, PVS. We will not investigate these systems, but
they are all interesting.

We will explore further the SUM-TO-N function, and compare it to an output equivalent
function in “your” favorite programming language. The specification, in natural language,
is:

A program that when given a Natural number, n, computes and returns

the sum of the Natural numbers from 1 up and including n.∑n
k=1 k

We offer this function. Does it meet its specification?

(defun sum-to-n (n)

(declare (xargs :guard (natp n)))

(if (zp n) ; Is n zero?

0 ; yes, return 0

(+ n ; no, recursive call to sum-to-n

(sum-to-n (1- n)))))

https://norvig.com/python-lisp.html

Chapter 5: CS340d Homework 106

Part 1:

Continue reading in “gentle-introduction-to-ACL2-programming” through the section titled
Common Patterns of Recursion.

Part 2:

2.1 Write a python program that is output equivalent to the ACL2 program for SUM-TO-N.

2.2 Write a C or Java program that is output equivalent to the ACL2 program for SUM-TO-N.

Part 3:

3.1 Defend the correctness of the programs you have written. How can you verify or prove
that your code satisfies its specification? For the ACL2 version, we can use the ACL2
theorem prover to formally verify its correctness.

(defthm sum-to-n-returns-natp

(implies (natp n)

(natp (sum-to-n n))))

In fact, it doesn’t matter if the input is a natural number.

(defthm sum-to-n-returns-natp-2

(natp (sum-to-n n)))

We know from Gauss formula the the sum of the Natural numbers up to n is given by n(n+1)

2
.

So we will take that as the specification of sum-to-n.

(defun sum-to-n-spec (n)

(declare (xargs :guard (natp n)))

(/ (* (1+ n) n) 2))

; Now state the theorem (Main Result) that must be true

; if sum-to-n meets its specification.

(defthm correctness-of-sum-to-n

(implies (natp n)

(equal (sum-to-n n)

(sum-to-n-spec n))))

Part 4:

Using ACL2, write solutions to these challenges:

1. Define a function, MULTIPLY, to multiply all of the numbers in a list.

2. Define a function, SUM-TIPS, to sum all tips of a tree with integers at the tips.

3. Define the FLATTEN function, which recursively appends the FLATTEN of a left subtree
to the FLATTEN of a right subtree.

4. Define a flatten function which doesn’t use APPend, but just uses CONS.

5. Argue that FLATTEN and the function from 4. produce the same result.

Chapter 5: CS340d Homework 107

5.3 Homework 2

Homework Assignment 2

CS 340d

Unique Number: 52285

Spring, 2023

Given: January 26, 2023

Due: February 9, 2023

This homework concerns the 5 data types in ACL2: numbers, characters, strings, symbols,
and ordered pairs.

Part 1:

Continue reading in “gentle-introduction-to-ACL2-programming” through the section titled
Functions on Binary Trees.

Problem 1.

Each of the utterances below is supposed to be a single object.

Say whether it is a number, string, symbol, pair, or ill-formed

i.e., does not represent a single object in our language).

1. Monday

2. π
3. HelloWorld!

4. --1

5. -1

6. *PI*

7. 31415x10**-4

8. (A . B . C)

9. Hello World!

10. if

11. invokevirtual

12. ((1) . (2))

13. <=

14. ((A . 1) (B . 2) (C . 3))

15. Hello_World!

16. +

17. lo-part

18. 31415926535897932384626433832795028841971693993751058209749445923

19. (1 . (2 . 3))

20. (1 . 2 3)

21. "Hello World!"

22. ((1) (2) . 3)

23. ()

Chapter 5: CS340d Homework 108

Problem 2.

Group the constants below into equivalence classes. That is,

some items below are equal to others even though they are

displayed differently; group equal constants together.

1. (1 . (2 3))

2. (nil . (nil nil))

3. ((nil nil) . nil)

4. (1 (2 . 3) 4)

5. (nil nil)

6. (1 (2 . 3) . (4 . ()))

7. (HelloWorld !)

8. (1 (2 3 . ()) 4)

9. ((A . t) (B . nil)(C . nil))

10. (()())

11. (1 2 3)

12. (() () . nil)

13. (A B C)

14. (a . (b . (c)))

15. (HELLO WORLD !)

16. ((a . t) (b) . ((c)))

ACL2 provides built-in type functions that recognize the ACL2 data types. They are named
acl2-numberp, characterp, stringp, symbolp and consp respectively.

Note that each of these function names end in the letter p. This is an informal Lisp naming
convention for symbols naming predicates.

A predicate is a boolean function. That is a function that returns either T or NIL. You can
define a function booleanp which recognizes the two boolean values as follows.

(defun booleanp (x)

(declare (xargs :guard t))

(if (eq x t) t (eq x nil)))

You can say that s is of type boolean, if (booleanp s) returns T. You can also state a theorem
(thm) that describes an important property of the function booleanp as follows.

(thm (or (booleanp x) (not (booleanp x))))

Enter this theorem into ACL2. Is it a theorem? What is the name of the above theorem?

Therefore you can define any type of object you need to support a system model by defining
a recognizer (type) for that object. For example, if you are working on Natural numbers,
you might have a recognizer called (natp x) which you could define as follows.

(defun natp (n)

(and (integerp n) (<= 0 n)))

Note that some math types are also built-in functions in ACL2. For example, all of the
following are built-in for math: integerp, rationalp, complex-rationalp.

Chapter 5: CS340d Homework 109

Part 2:

Define functions for the following predicates in ACL2.

(plusp x) - returns T if x is a positive number, otherwise NIL.

(minusp x) - returns T if x is a negative number, otherwise NIL.

(natp x) - returns T if x is a natural number, otherwise NIL.

(posp x) - returns T if x is a positive integer, otherwise NIL.

(evenp x) - returns T if x is an even integer, otherwise NIL.

(oddp x) - returns T if x is an odd integer, otherwise NIL.

(zerop x) - returns T if x is zero, otherwise NIL.

Check your definitions by running them in ACL2.

To get a high-level overview of the partition of numbers

supported in ACL2 study the following graphic and

classifying function.

ACL2 Numbers

|

|-- Rationals

| |

| |-- Integers

| | |

| | |-- Positive integers 3

| | |-- Zero 0

| | |-- Negative Integers -3

| |

| |-- Non-Integral Rationals

| | |

| | |-- Positive Non-Integral Rationals 19/3

| | |-- Negative Non-Integral Rationals -22/7

|

|-- Complex Rational Numbers #c(3 5/2) ; i.e., 3 + (5/2)i

(defun classify-number (x)

(cond ((rationalp x)

(cond ((integerp x)

(cond ((< 0 x) ’positive-integer)

((= 0 x) ’zero)

(t ’negative-integer)))

((< 0 x) ’positive-non-integral-rational)

Chapter 5: CS340d Homework 110

(t ’negative-non-integral-rational)))

((complex-rationalp x) ’complex-rational)

(t ’NaN)))

Chapter 5: CS340d Homework 111

5.4 Homework 3

Homework Assignment 3

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 7, 2023

Due: February 16, 2023

This homework will help introduce the ACL2 Logic. It concerns the ACL2 notions of terms
and function definitions.

Part 1:

Continue reading in “gentle-introduction-to-ACL2-programming” through the section titled
Conclusion. Continue reading in “recursion-and-induction” through the section titled
Function Definitions. Do this reading before attempting the problems.

In ‘‘recursion-and-induction’’ documentation provide solutions for

problems 3-7.

Part 2:

In ‘‘recursion-and-induction’’ documentation provide solutions for

problems 10 - 15, 17.

Chapter 5: CS340d Homework 112

5.5 Homework 4

Homework Assignment 4

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 16, 2023

Due: February 23, 2023

Simple ACL2 Proofs

So far in this course we have focused our discussions mainly on verification of properties
of software. In this homework we introduce use of the ACL2 Logic for modeling digital
hardware and asking if a hardware design has certain properties. We look at a simple
boolean circuit and ask if it implements the specification.

Part 1:

Using the same definitions for NOT, B-OR, and B-AND from Part 3 below,

can you demonstrate De Morgan’s Law is a validity?

That is, prove the following is a theorem.

(B-AND x y) == (NOT (B-OR (NOT x) (NOT y)))

Part 2:

Consider the following expressions. For each, show that

it is a theorem , or provide a counter example. (and show

your work in detail)

(equal (if 6 x y) x)

(equal (if NIL x y) y)

(equal (if (if x y z) u v)

(if x (if y u v) (if z u v)))

(equal (implies x (implies y z))

(implies (and x y) z))

Chapter 5: CS340d Homework 113

Part 3:

Given the following proposed Boolean circuit:

a ---->

B-AND --------------->

c ----> B-OR --->

+---->

|

c ---> NOT ---> |

B-AND --+

b ------------>

where:

(NOT x) == (if x NIL T)

(B-OR x y) == (if x T (if y T NIL))

(B-AND x y) == (if x (if y T NIL) NIL)

Consider the specification:

(IF c a b)

If the inputs a, b, and c, are constrained to be

boolean values, does the circuit diagram (above)

implement the specification (IF c a b)?

Chapter 5: CS340d Homework 114

5.6 Homework 5

Homework Assignment 5

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 23, 2023

Due: March 2, 2023

Here is a web pointer to a talk that can help you with this homework. Hand proof examples
by J Moore (https://youtu.be/pVRfeu8MbgE)

This homework will help introduce defining functions in our simplified version of the ACL2
Logic. It concerns the ACL2 notions of terms and function definitions.

Part 1:

You should have completed the reading of “gentle-introduction-to-ACL2-programming”
through the section titled Conclusion. Now you should be familiar with some of the common
errors that come up during debugging your ACL2/Lisp programs (e.g., Stack overflow, Type
errors). You will have read over the common patterns of recursion in function definitions
(defun) and become familiar with using the built-in data structure (cons pairs) to model
lists, trees, a-lists and so on. This material is now fair game for quiz questions, so if you
have any lingering questions on the concepts of this part of the course please bring those to
class for discussion and clarification.

Continue reading in “recursion-and-induction” through the section titled Structural Induction.
Do this reading before attempting the problems.

In ‘‘recursion-and-induction’’ documentation provide solutions for

problems 27, 28, 29.

Think about problems 27, 28, 29, and write up your thoughts about

these three problems and what impact allowing these definitions might

have on the ACL2 logic.

Part 2:

In ‘‘recursion-and-induction’’ documentation provide solutions for

problems 31-37.

NOTE: We (Warren, Vivek, Maxine, Scott) will be available each week at our published
office hours. If you don’t see us then, come down the hall to our office and ask us for help.
In addition, we can be available at other times by appointment. Don’t wait until you have a
big problem – come see us, and we will try to help you while the problem is still small.

https://youtu.be/pVRfeu8MbgE
https://youtu.be/pVRfeu8MbgE

Chapter 5: CS340d Homework 115

5.7 Homework 6

Homework Assignment 6

CS 340d

Unique Number: 52285

Spring, 2023

Given: March 2, 2023

Due: March 9, 2023

Part 1: Tracing

In this part of the homework assignment we look at how tracing can be used to gain
familiarity with the data and control flow of two functions that presumably do the same
thing. Sometimes you can have two equivalent functions where one is much more efficient
(in time or space utilization) while the other is easier to reason (prove theorems) about. If
we can show the two functions are equivalent then they can be used interchangeably.

Consider the reverse function which you have seen in an earlier homework. So we are all
on the same page we provide this function here, but you are welcome to use an alternative
definition that you have written yourself (provided you can show it to be equivalent to the
definition below).

;; The append function.

(defun app (x y)

(if (consp x)

(cons (car x) (app (cdr x) y))

y))

;; The reverse function - rev

(defun rev (x)

(if (consp x)

(app (rev (cdr x)) (cons (car x) nil))

nil))

;; The tail-recursive reverse function - rev1

(defun rev1 (x a)

(if (consp x)

(rev1 (cdr x) (cons (car x) a))

a))

;; Prove - This is what you will prove in a later homework.

(equal (rev1 x nil) (rev x))

Chapter 5: CS340d Homework 116

Use the trace$ function in ACL2 to understand the operation of both rev and rev1 functions.
Write up a short report describing what you have done and what you have learned in this
exercise. Include answers to the follow questions in your report.

• Q1: What is the CONS complexity (number of CONS operations) of APP?

• Q2: What is the CONS complexity of REV?

• Q3: What happens if you trace both APP and REV simultaneously?

• Q4: Do you believe that you can prove (equal (rev x) (rev1 x nil)) ?

This will be graded as a writing assignment so be sure and spell check and grammar check
your work.

Part 2: Structural Induction

This part of the homework will build your skills in using the key tool for proof in ACL2 –
Structural Induction.

Continue reading in “recursion-and-induction” through the section titled Structural Induction.
Do this reading before attempting the problems.

Your homework assignment is to provide solutions for problems 40 - 44.

These problems may ask you to prove something that is not a theorem. In this case, provide
a counterexample demonstrating that the conjecture is false for some input. Then propose
and prove the “intended” theorem. For example, adding a hypothesis can restrict the domain
of input so that the conjecture holds.

Furthermore, for some theorems, you may need to state and prove lemmas to aid in the
proof process.

Here are some definitions you may wish to use for this (and future) homework assignment(s).

(defun tree-copy (x)

(if (consp x)

(cons (tree-copy (car x))

(tree-copy (cdr x)))

x))

(defun app (x y)

(if (consp x)

(cons (car x)

(app (cdr x) y))

y))

(defun rev (x)

(if (consp x)

(app (rev (cdr x))

Chapter 5: CS340d Homework 117

(cons (car x) nil))

nil))

(defun mapnil (x)

(if (consp x)

(cons nil (mapnil (cdr x)))

nil))

(defun swap-tree (x)

(if (consp x)

(cons (swap-tree (cdr x))

(swap-tree (car x)))

x))

(defun mem (e x)

(if (consp x)

(if (equal e (car x))

t

(mem e (cdr x)))

nil))

(defun sub (x y)

(if (consp x)

(if (mem (car x) y)

(sub (cdr x) y)

nil)

t))

(defun int (x y)

(if (consp x)

(if (mem (car x) y)

(cons (car x)

(int (cdr x) y))

(int (cdr x) y))

nil))

Chapter 5: CS340d Homework 118

5.8 Homework 7

Homework Assignment 7

CS 340d

Unique Number: 52285

Spring, 2023

Given: March 9, 2023

Due: March 23, 2023

Part 1: Tracing (continued from homework 6)

In homework 6 we looked at how tracing can be used to gain familiarity with the data and
control flow of two functions that presumably do the same thing. Sometimes you can have
two equivalent functions where one is much more efficient (in time or space utilization) while
the other is easier to reason (prove theorems) about. If we can show the two functions are
equivalent then they can be used interchangeably.

Consider the reverse function which you have seen in an earlier homework. So we are all
on the same page we provide this function here, but you are welcome to use an alternative
definition that you have written yourself (provided you can show it to be equivalent to the
definition below).

;; The append function.

(defun app (x y)

(if (consp x)

(cons (car x) (app (cdr x) y))

y))

;; The reverse function - rev

(defun rev (x)

(if (consp x)

(app (rev (cdr x)) (cons (car x) nil))

nil))

;; The tail-recursive reverse function - rev1

(defun rev1 (x a)

(if (consp x)

(rev1 (cdr x) (cons (car x) a))

a))

;; Now, based on your work in homework 6,

;; Prove (by hand proof) - The following if it is is a Theorem.

;; If it is not a theorem provide a counterexample, and see if

;; you can tweak it so it becomes a theorem under additional

Chapter 5: CS340d Homework 119

;; assumptions (constraints).

;;

(defthm rev-rev1-equivalence

(equal (rev1 x nil) (rev x)))

For extra understanding, but no extra credit, see if you

can get ACL2 to prove it.

Part 2: Structural Induction

This part of the homework will continue to build your skills in using the key tool for proof
in ACL2 – Structural Induction.

Continue reading in “recursion-and-induction” through the section titled Structural Induction.
Do this reading before attempting the problems.

Your homework assignment is to provide solutions for problems 45 – 50.

These problems may ask you to prove something that is not a theorem. In this case, provide
a counterexample demonstrating that the conjecture is false for some input. Then propose
and prove the “intended” theorem. For example, adding a hypothesis can restrict the domain
of input so that the conjecture holds.

Furthermore, for some theorems, you may need to state and prove lemmas to aid in the
proof process.

NOTE: After this assignment, we will start using the proof builder. This will allow you to
accomplish your homework with much less writing.

Here are some definitions you may wish to use for this (and future) homework assignment(s).

(defun tree-copy (x)

(if (consp x)

(cons (tree-copy (car x))

(tree-copy (cdr x)))

x))

(defun app (x y)

(if (consp x)

(cons (car x) (app (cdr x) y))

y))

(defun rev (x)

(if (consp x)

(app (rev (cdr x)) (cons (car x) nil))

nil))

(defun mapnil (x)

(if (consp x)

Chapter 5: CS340d Homework 120

(cons nil (mapnil (cdr x)))

nil))

(defun swap-tree (x)

(if (consp x)

(cons (swap-tree (cdr x))

(swap-tree (car x)))

x))

(defun mem (e x)

(if (consp x)

(if (equal e (car x))

t

(mem e (cdr x)))

nil))

(defun sub (x y)

(if (consp x)

(if (mem (car x) y)

(sub (cdr x) y)

nil)

t))

(defun int (x y)

(if (consp x)

(if (mem (car x) y)

(cons (car x) (int (cdr x) y))

(int (cdr x) y))

nil))

Chapter 5: CS340d Homework 121

5.9 Homework 8

Homework Assignment 8

CS 340d

Unique Number: 52285

Spring, 2023

Given: March 23, 2023

Due: March 30, 2023

Solidify Your Knowledge of the Principle of Structural Induction

This homework is designed to solidify your knowledge of our Principle of Structural Induction
by problems that consider reflectivity, commutativity, and transitivity.

Your homework assignment is to provide solutions for problems 51 – 55.

Chapter 5: CS340d Homework 122

5.10 Homework 9

Homework Assignment 9

CS 340d

Unique Number: 52285

Spring, 2023

Given: March 30, 2023

Due: April 6, 2023

Using the (ACL2) Method

This homework is to encourage your use of the ACL2 “Method” for proving theorems about
ACL2 conjectures using the ACL2 theorem prover. For an introduction to “The Method”,
please see the ACL2 Documentation topic: THE-METHOD. This documentation topic
will take you to the ACL2 Documentation topic: INTRODUCTION-TO-THE-THEOREM-
PROVER. Read through the subtopics:

• INTRODUCTION-TO-REWRITE-RULES-PART-1

• SPECIAL-CASES-FOR-REWRITE-RULES

• EQUIVALENT-FORMULAS-DIFFERENT-REWRITE-RULES

• INTRODUCTION-TO-KEY-CHECKPOINTS

• DEALING-WITH-KEY-COMBINATIONS-OF-FUNCTION-SYMBOLS

• GENERALIZING-KEY-CHECKPOINTS

• POST-INDUCTION-KEY-CHECKPOINTS

which are referenced in this Doc topic.

Part 1: Using the ACL2 Method

Using the ACL2 “The Method,”, re-prove the theorems from Homework #6 (Problems
40-44). You may turn in for grading a file of events that lead to proving the theorem for
each problem (40 - 44). If you wish, you may use the ACL2 proof builder to create events
for the ACL2 system to process, but you must turn an ACL2 script file that can be run by:

cat <your-solution-file.lisp> | acl2

Part 2: The equivalence of rev1 and rev

Prove, with help from the proof-builder or using “The method,” the following theorem.
Append the ACL2 proof commands you use for this proof with what you created for your
Part 1 (above) solution.

(equal (rev1 x nil) (rev x))

Chapter 5: CS340d Homework 123

The following functions may be helpful, or not.

; The append function.

(defun app (x y)

(if (consp x)

(cons (car x) (app (cdr x) y))

y))

;; The reverse function - rev

(defun rev (x)

(if (consp x)

(app (rev (cdr x)) (cons (car x) nil))

nil))

(defun mapnil (x)

(if (consp x)

(cons nil (mapnil (cdr x)))

nil))

;; The tail-recursive reverse function - rev1

(defun rev1 (x a)

(if (consp x)

(rev1 (cdr x) (cons (car x) a))

a))

Chapter 5: CS340d Homework 124

5.11 Homework 10

Homework Assignment 10

CS 340d

Unique Number: 52285

Spring, 2023

Given: April 6, 2023

Due: April 18, 2023

More Work with the ACL2 Method

This homework is intended to introduce you to Peano arithmetic.

Your homework assignment is to provide solutions for problems 67 – 73 using ACL2 and
“The Method.” You will turn in the events file that confirms you proof works. This file must
run without error when you turn it in for grading.

If you wish, you may use the ACL2 proof builder to create events for the ACL2 system to
process, but you must turn an ACL2 script file that can be run by:

cat <your-solution-file.lisp> | acl2

Chapter 5: CS340d Homework 125

5.12 Homework 11

Homework Assignment 11

CS 340d

Unique Number: 52285

Spring, 2023

Given: Not Assigned

Due: Not Assigned

Under construction. This assignment requires ACL2 more general definitional principle.
This is not part of the CS340d course requirements.

This homework concerns developing facility in the documentation system available with
ACL2, and exploring the ACL2 system interface and interaction style (read-eval-print loop).
We will explore further the SUM-TO-N function, and build upon its basic structure as
a template or proof strategy that is reusable. We have seen the SUM-TO-N function in
homework 0 and in the lectures.

General Comment

Before we develop this homework assignment further, we describe our philosophy for all our
assignments and for many of our assignments (quizzes, labs, special projects) in this course.
We expect our programs to implement their requirements with mathematical precision, but
programs are generally specified with natural language. To this point in your education, most
programming assignments have included some description of what program you should write,
and then, you are expected to interpret the documentation and produce a result. It requires
tremendous care and precision to write a precise description of any computation in a natural
language – it is certainly beyond our ability to write completely precise, natural-language
specifications.

We would like to write mathematical specifications, and that will require us learn certain
mathematics throughout the course of this semester. As a community of software developers,
this approach would be extremely valuable where it can be deployed, but it is not yet
a mature discipline. Even so, we will sometimes refer to programs that can be specified
formally. Like, for example, SUM-TO-N.

Homework 1

• Prove
∑n−1

k=1 k(n− k)2 =
n2(n2−1)

12

• Given

From lectures and class notes we have seen a proof approach with functions INC,
SUM-TO-N and SUM-SQ-TO-N. Using this same approach write a function SUM-
CUBE-TO-N that sums up the cubes of the numbers 1 to n.

• Prove

Using ACL2 and the function SUM-SQ-TO-N as a proof strategy, show that this
summation is equivalent to:∑n

k=1 k
3 = n2(n+1)2

4

Chapter 5: CS340d Homework 126

• Lemmas

With the function SUM-CUBE-TO-N proven, we now have the following three lemmas
available to prove the Main Result.

• Lemma-1∑n
k=1 k = n(n+1)

2

• Lemma-2∑n
k=1 k

2 = n(n+1)(2n+1)

6

• Lemma-3∑n
k=1 k

3 = n2(n+1)2

4

Use this information to prove the Main Result by hand, and using ACL2. To be clear, you
will submit the following items for grading.

• Your function SUM-CUBE-TO-N.

• Your ACL2 Proof of Lemma-3.

• Your hand-proof of the Main Result.

• Your ACL2 proof of the Main Result.

SOLUTION

The following relationships about summations will be needed.

• Lemma-4∑n−1
k=1 k = (

∑n
k=1 k)− n

• Lemma-5∑n−1
k=1 k

2 = (
∑n

k=1 k
2)− n2

• Lemma-6∑n−1
k=1 k

3 = (
∑n

k=1 k
3)− n3

Proof of the Main Result.

This proof is written in a calculational style. It is a series of math steps that rewrite the LHS
of the equation into the RHS. Between each step is a justification supporting the validity of
the step. The justification in written in <...> brackets. We start with the LHS

∑n−1
k=1 k(n− k)2

= < Expand the squared term. >

∑n−1
k=1 k(n

2 − 2kn+ k2)

Chapter 5: CS340d Homework 127

= < Distribute k. >

∑n−1
k=1(kn

2 − 2k2n+ k3)

= < Distribute summation operation. >

n2
∑n−1

k=1 k − 2n
∑n−1

k=1 k
2 +

∑n−1
k=1 k

3

= < Substitute using Lemma-1 through Lemma-6. >

n2(n(n+1)

2
− n)− 2n(n(n+1)(2n+1)

6
− n2) + (n

2(n+1)2

4
− n3)

= < Expand products. >

n(n2)(n+1)

2
− n3 − 2(n2)(n+1)(2n+1)

6
+ 2n(n2) + n2(n+1)2

4
− n3

= < Factor out n2 and simplify. >

n2(n(n+1)

2
− 2(n+1)(2n+1)

6
+ (n+1)2

4
)

= < Put on common denominator. >

n2(6n(n+1)

12
− 4(n+1)(2n+1)

12
+ 3(n+1)2

12
)

= < Factor out (n+1)

12
. >

n2(n+1)

12
(6n− 4(2n+ 1) + 3(n+ 1))

= < Expand and simplify. >

n2(n+1)

12
(n− 1)

= < Multiply out (n+ 1)(n− 1). >

Chapter 5: CS340d Homework 128

n2(n2−1)
12

QED.

This confirms the Main Result by hand proof. Now see if ACL2 confirms this result with
the prover.

129

6 CS340d Laboratories

Laboratories (labs) are designed to enhance and deepen your understanding of specific
material. During the course of this semester, there will be four labs. These labs build upon
each other – so it’s very important that you develop and submit the work identified for each
lab.

The purpose of these laboratories is to make you familiar with the debugging process – by
developing some of the basic debugging tools and then using them to debug some programs.

Chapter 6: CS340d Laboratories 130

6.1 Lab 0

Laboratory 0

CS 340d

Unique Number: 52285

Spring, 2023

Given: January 26, 2023

Due: February 14, 2023

This laboratory concerns duplicating some of the functionality of the Unix "wc" command
by writing an equivalent command in ACL2.

6.2 Lab 0 General Comments

Before we describe this homework assignment, we describe our philosophy for all laboratory
assignments and for many of our homework assignments. We expect our programs to
implement their requirements with mathematical precision, but program requirements
are generally specified using natural language. To this point in your education, most
programming assignments have included some description of what program you should write.
Then, you are expected to interpret the requirements, specifications and other supplied
documentation to produce a conforming result. It requires tremendous care and expert
knowledge to write a precise description of any computation in a natural language – it is
certainly beyond our ability to write such completely precise, natural-language specifications.

We would like to write mathematical specifications for our all of our programs. As a
community of software developers, this approach would be extremely valuable, where it can
be deployed, but it is not a mature discipline. Even so, we will attempt to use ACL2 where we
can. For some programs, we will provide executable predicates (to recognize desired validity
conditions) and simulators in the form of various combinations of Linux/MacOS/FreeBSD
user-level (program) commands. The running of these commands and their outputs will
serve as executable simulators.

6.3 Lab 0 Requirements

This laboratory involves duplicating some of the functionality of the "wc" command using
ACL2. Note, your program should also work on binary files.

Here, we include some remarks that might help you. The number of characters returned
should be equal to the length of the file or input. The number of lines should be equal to
the number of line-feed characters contained in the file. The number of words should be
equal to the groups of characters separate by spaces, tabs, line feeds, and carriage returns.
You should read the "wc" manual entry carefully.

But, the real specification of your ACL2-based "wc" is what the Linux version of "wc" does
on the departmental Linux computers. This Linux program is your executable specification
for this laboratory. Extra credit may be awarded if you find a discrepancy of some kind in
the FreeBSD, Linux, or MacOS "wc" commands. What is a discrepancy? Absolutely any
input file that caused your ACL2 version of "wc" to produce a correct result that is different
than the UTCS Linux computers. Now, if you can argue to the class that even though your

Chapter 6: CS340d Laboratories 131

implementation is inconsistent with the UTCS Linux result, that your result is correct –
then you may have found a real bug! Bugs of this kind are always worth extra credit.

At the end of this laboratory assignment is some Lisp code that will help you get started –
this code provides a template to help you start working.

Looking at the man page for the Linux wc program

The man page is a good place to start the quest for understanding the specification of the wc
(word count) program. Here is a list, by no means exhaustive, of some of the functionality
of wc that we need to support for completeness.

• Processing multiple files together, or working with standard input and output if no file
names are provided.

• The functionality of wc is defined by its use of the unix command iswspace(3). So this
function should be studied and its functionality provided.

• wc supports cumulative counts for all files in one command.

• wc supports the following switches -clmw. The switches -c and -m are mutually exclusive.

• -c output the number of characters (bytes).

• -l output the number of lines.

• -w output the number of words.

• Accept input until EOF or ^D is received.

• Exits 0 on success, and > 0 if an error occurs.

To recreate the entire functioning of the Linux wc program would require additional work
beyond what we are asking of you. We are only attempting to recreate the line, word, and
character count results. Thus, our ACL2-based wc defines a subset of the Linux wc command
in ACL2 Lisp.

6.4 Lab 0 Documentation

Finally, you need to include in your solution program a 50-line to 60-line comment as a
Lisp-language comment that begins with a line containing only "#|" and ends with a line
containing only "|#" that describes your ACL2 "wc" command. This description should
be in the (approximate) format of a typical FreeBSD/Linux/MacOS manual entry. This
description is a writing assignment associated with this laboratory – all of the laboratories in
this class include a write-up of some kind. Remember, you are taking a class with a writing
flag, and this kind of summary will be required for all of the class laboratory assignments.
[Remark: I wonder how many ChatGPT submissions we will receive...]

6.5 Lab 0 Grading

Your laboratory will be graded with the follow weights:

70% - Functioning of your ACL2 "wc" implementation as specified above

30% - Written description of your "wc" command.

Be careful with what you write. We will be grading the functioning of your program on
several hundred files. And, we will carefully read your documentation, looking for problems

Chapter 6: CS340d Laboratories 132

(such as grammar, spelling, run-on sentences, tense agreement, etc.) – errors will lower your
grade.

6.6 Lab 0 Turn-in

Prior to the due date, we will post submission instructions.

6.7 Lab 0 Code Template

Below is a template you may use to complete your laboratory. Be sure to leave function
process-file as your top-level function because our automated grading system will load your
code and then call that function. Also, be sure that your entire code can be run without any
intervention required; i.e., we should be able to load your file by: (ld “<filename.lisp>”) .

; wc.lisp

; (ld "wc.lisp")

(in-package "ACL2")

; Some miscellaneous testing definitions.

(defmacro ! (x y)

‘(assign ,x ,y))

(defmacro !! (variable new-value)

;; Assign without printing the result.

‘(mv-let

(erp result state)

(assign ,variable ,new-value)

(declare (ignore result))

(value (if erp ’Error! ’,variable))))

(defun count-words (list-of-chars)

(declare (ignorable list-of-chars))

"Count number of words."

;; Here is where you need to work!

0)

(defun count-lines (list-of-chars)

"Count number of LF characters."

(if (atom list-of-chars)

0

(let ((char (car list-of-chars))

(rest (cdr list-of-chars)))

(if (equal char #\Newline)

(1+ (count-lines rest))

Chapter 6: CS340d Laboratories 133

(count-lines rest)))))

(defun check-for-ASCII-chars (list-of-chars)

"Check that a list of characters are all ASCII characters."

(if (atom list-of-chars)

T

(and (< (char-code (car list-of-chars)) 128)

(check-for-ASCII-chars (cdr list-of-chars)))))

(set-state-ok t)

(defun process-file (filename state)

"Reads and process the file <FILENAME>."

(let ((str (read-file-into-string filename)))

(if (not (stringp str))

;; If return value is not a string, we have an error condition.

(mv (cw "Zero-length file. Does the file ~p0 exist?~%" filename) state)

(if (> (length str) 72057594037927936)

;; If LEN > 2^56, just give up!

(mv NIL state)

(let* ((list-of-chars (coerce str ’list))

(ASCII-chars? (check-for-ASCII-chars list-of-chars)))

(mv (list :ascii-characters ASCII-chars?

:number-of-characters (len list-of-chars)

:number-of-lines (count-lines list-of-chars)

:number-of-words (count-words list-of-chars)

)

state))))))

Chapter 6: CS340d Laboratories 134

6.8 Lab 1

Laboratory 1

CS 340d

Unique Number: 52285

Spring, 2023

Given: February 16, 2023

Due: March 7, 2023

This laboratory concerns counting the number of times each word appears in a document.
This is an extension of our Lab 0 lab.

6.9 Lab 1 General Comments

Before we describe this laboratory assignment, we describe our philosophy for all laboratory
assignments and for many of our homework assignments. We expect our programs to
implement their requirements with mathematical precision, but program requirements
are generally specified using natural language. To this point in your education, most
programming assignments have included some description of what program you should write.
Then, you are expected to interpret the requirements, specifications and other supplied
documentation to produce a conforming result. It requires tremendous care and expert
knowledge to write a precise description of any computation in a natural language – it is
certainly beyond our ability to write such completely precise, natural-language specifications.

We would like to write mathematical specifications for our all of our programs. As a
community of software developers, this approach would be extremely valuable, where it can
be deployed, but it is not a mature discipline. Even so, we will attempt to use ACL2 where we
can. For some programs, we will provide executable predicates (to recognize desired validity
conditions) and simulators in the form of various combinations of Linux/MacOS/FreeBSD
user-level (program) commands. The running of these commands and their outputs will
serve as executable simulators.

6.10 Lab 1 Requirements

This laboratory involves extending the functionality of Lab 0 by counting the number of
times each word identified and counted in Lab 0 appears.

The expected result of running your new word-counting command should be an association
list of words paired with the number of times each word appears.

At the end of this laboratory assignment is some Lisp code that will help you get started –
this code provides a template to help you start working. This code also appears on the class
website.

6.11 Lab 1 Documentation

Finally, you need to include in your solution program a 50-line to 60-line comment as a
Lisp-language comment that begins with a line containing only "#|" and ends with a line
containing only "|#" that describes your ACL2 "wcnt" command. This description should
be in the (approximate) format of a typical FreeBSD/Linux/MacOS manual entry. This
description is a writing assignment associated with this laboratory – all of the laboratories in

Chapter 6: CS340d Laboratories 135

this class include a write-up of some kind. Remember, you are taking a class with a writing
flag, and this kind of summary will be required for all of the class laboratory assignments.

6.12 Lab 1 Grading

Your laboratory will be graded with the follow weights:

70% - Functioning of your ACL2 "wcnt" implementation as specified above

30% - Written description of your "wcnt" command.

Be careful with what you write. We will be grading the functioning of your program on
several hundred ASCII-only files. And, we will carefully read your documentation, looking
for problems (such as grammar, spelling, run-on sentences, tense agreement, etc.) – errors
will lower your grade.

6.13 Lab 1 Turn-in

Prior to the due date, we will post submission instructions on Canvas.

6.14 Lab 1 Code Template

Below is a template you may use to complete your laboratory. Be sure to leave function
wcnt as your top-level function because our automated grading system will load your code
and then call that function. Also, be sure that your entire code can be run without any
intervention required; i.e., we should be able to load your file by: (ld “<filename.lisp>”) .
We should be able to use your solution by evaluating: (wcnt “filename” state).

; wcnt.lisp

; (ld "wcnt.lisp")

; (certify-book "wcnt" ?)

; (include-book "wcnt")

(in-package "ACL2")

; Some miscellaneous testing definitions.

(defmacro ! (x y)

(declare (xargs :guard (symbolp x)))

‘(assign ,x ,y))

(defmacro !! (variable new-value)

;; Assign without printing the result.

(declare (xargs :guard t))

‘(mv-let

(erp result state)

(assign ,variable ,new-value)

(declare (ignore result))

(value (if erp ’Error! ’,variable))))

Chapter 6: CS340d Laboratories 136

(defun wcnt (char-lst)

"Count number of words."

(declare (xargs :guard (character-listp char-lst))

(ignorable char-lst))

;; Your solution should return an association list of words paired

;; with their frequency count.

;; Replace the constant result with your word counter function.

’(("foo" . 3)

("bar" . 2)))

(defun check-for-ASCII-chars (char-lst)

"Check that a list of characters are all ASCII characters."

(declare (xargs :guard (character-listp char-lst)))

(if (atom char-lst)

T

(and (< (char-code (car char-lst)) 128)

(check-for-ASCII-chars (cdr char-lst)))))

(set-state-ok t)

(defun wcnt-file (filename state)

"Reads and process the file <FILENAME>."

(declare (xargs :guard (stringp filename)

:guard-hints

(("Goal"

:in-theory

(disable read-file-into-string2)))

:stobjs (state)))

(let ((str (read-file-into-string filename)))

(if (not (stringp str))

;; If return value is not a string, we have an error condition.

(mv (cw "Zero-length file. Does the file ~p0 exist?~%" filename) state)

(if (> (length str) 72057594037927936)

;; If LEN > 2^56, just give up!

(mv NIL state)

(let* ((char-lst (coerce str ’list))

(ASCII-chars? (check-for-ASCII-chars char-lst)))

(mv (if ASCII-chars?

Chapter 6: CS340d Laboratories 137

(wcnt char-lst)

"Non ASCII characters detected.")

state))))))

Chapter 6: CS340d Laboratories 138

6.15 Lab 2

Laboratory 2

CS 340d

Unique Number: 52285

Spring, 2023

Given: March 7, 2023

Due: April 4, 2023

This laboratory concerns inserting, deleting, inspecting, and maintaining ordered lists and
trees.

6.16 Lab 2 General Comments

Before we describe this laboratory assignment, we describe our philosophy for all laboratory
assignments and for many of our homework assignments. We expect our programs to
implement their requirements with mathematical precision, but program requirements
are generally specified using natural language. To this point in your education, most
programming assignments have included some description of what program you should write.
Then, you are expected to interpret the requirements, specifications and other supplied
documentation to produce a conforming result. It requires tremendous care and expert
knowledge to write a precise description of any computation in a natural language – it is
certainly beyond our ability to write such completely precise, natural-language specifications.

We would like to write mathematical specifications for our all of our programs. As a
community of software developers, this approach would be extremely valuable, where it can
be deployed, but it is not a mature discipline. Even so, we will attempt to use ACL2 where we
can. For some programs, we will provide executable predicates (to recognize desired validity
conditions) and simulators in the form of various combinations of Linux/MacOS/FreeBSD
user-level (program) commands. The running of these commands and their outputs will
serve as executable simulators.

6.17 Lab 2 Requirements

This laboratory involves ordered sets of items, where the items are stored as lists and trees.
We provide recognizers for both ordered lists and ordered trees. For both kinds of data
structures, you are asked to write an insert, member, and delete function. We will provide
the names and signatures of the functions you are to write.

At the end of this laboratory assignment is some ACL2 code that will help you get started –
this code provides a template to help you start working. This code also appears on the class
website.

6.18 Lab 2 Documentation

Finally, you need to include in your solution program a 80-line to 90-line comment as a
Lisp-language comment that begins with a line containing only "#|" and ends with a line
containing only "|#" that describes your ACL2 insert, member, and delete function for
lists, and your ACL2 insert, member, and delete function for trees. This description should
be in the (approximate) format of a typical FreeBSD/Linux/MacOS manual entry. This

Chapter 6: CS340d Laboratories 139

description is a writing assignment associated with this laboratory – all of the laboratories in
this class include a write-up of some kind. Remember, you are taking a class with a writing
flag, and this kind of summary will be required for all of the class laboratory assignments.

6.19 Lab 2 Grading

Your laboratory will be graded with the follow weights:

70% - Functioning of your ACL2 member, insert, and delete functions

for both data structures.

30% - Written description of your solutions.

Be careful with what you write. We will be grading the functioning of your program on
several hundred ASCII-only files. And, we will carefully read your documentation, looking
for problems (such as grammar, spelling, run-on sentences, tense agreement, etc.) – errors
will lower your grade.

6.20 Lab 2 Turn-in

Prior to the due date, we will post submission instructions on Canvas.

6.21 Lab 2 Code Template

Below is a template you should use to complete your laboratory. Be sure to leave the
fully-defined functions as they are given here. Note, we will use an automated grading
system will load your code and then call all of the functions you are expected to write. Be
sure that your entire code can be run without any intervention required; i.e., we should be
able to load your file by: (ld “<filename.lisp>”) We should be able to use your solution by
evaluating the various member, insert and delete functions repeatedly on a wide variety of
data.

; Below, you need to provide the definitions for the LIST-based

; functions:

; insrt (e x)

; mbr (e x)

; del (e x)

; And for the TREE-based functions:

; bst-insrt (e x)

; bst-mbr (e x)

; bst-del (e x)

; Sets with Lists and Binary Trees Scott, Vivek, & Warren

; (ld "lab2-mem-insrt-del.lisp" :ld-pre-eval-print t)

Chapter 6: CS340d Laboratories 140

(in-package "ACL2")

(defun << (x y)

"General less-than function."

(declare (xargs :guard t))

(and (lexorder x y)

(not (equal x y))))

; Ordered sets represented as lists.

(defun setp (x)

"Ordered list of objects."

(declare (xargs :guard t))

(if (atom x)

(null x)

(if (atom (cdr x))

(and (atom (car x))

(null (cdr x)))

(let ((a (car x))

(b (cadr x)))

(and (atom a)

(atom b)

(<< a b)

(setp (cdr x)))))))

(defun insrt (e x)

"Insert E into ordered set X."

(declare (xargs :guard (and (atom e)

(setp x))))

;; Replace X (below) with an Insert function body

(list e x))

(defun mbr (e x)

"Test whether E is in set X."

(declare (xargs :guard (and (atom e)

(setp x))))

;; Replace form below with a Member function body

(list e x))

(defun del (e x)

"Delete element from set X, or do nothing if no E in X."

;; Observation: When E "larger" than (CAR x), we can stop

(declare (xargs :guard (and (atom e)

(setp x))))

;; Replace form below with a Delete function body.

(list e x))

Chapter 6: CS340d Laboratories 141

; Ordered sets represented as trees.

(defun bstp (x)

"Syntactic Tree Set Recognizer."

(declare (xargs :guard t))

;; If NIL, x is the empty bst

(if (atom x)

(null x)

(let ((obj (car x))

(sbt (cdr x)))

(and (atom obj)

(consp sbt)

(bstp (car sbt))

(bstp (cdr sbt))))))

(defun tr<<e (x e)

"All elements in X less than e."

(declare (xargs :guard (bstp x)))

(if (atom x)

T

(let ((obj (car x))

(sbt (cdr x)))

(and (<< obj e)

(tr<<e (car sbt) e)

(tr<<e (cdr sbt) e)))))

(defun e<<tr (e x)

"All elements in X greater than e."

(declare (xargs :guard (bstp x)))

(if (atom x)

T

(let ((obj (car x))

(sbt (cdr x)))

(and (<< e obj)

(e<<tr e (car sbt))

(e<<tr e (cdr sbt))))))

(defun bst-ordp (x)

"Recognizer for tree-based sets; all elements ordered."

(declare (xargs :guard (bstp x)))

(if (atom x)

t

(let* ((obj (car x))

(sbt (cdr x))

(lt (car sbt))

(rt (cdr sbt)))

Chapter 6: CS340d Laboratories 142

;; Consider both subtrees

(and (bst-ordp lt)

(bst-ordp rt)

;; Confirm that values "surround" OBJ

(tr<<e lt obj)

(e<<tr obj rt)))))

(defun bst-insrt (e x)

"BST insert element"

(declare (xargs :guard (and (atom e)

(bstp x)

(bst-ordp x))))

;; Replace form below with a tree-based Insert function body

(list e x))

(defun bst-mbr (e x)

"BST member, returns tree where e resides"

(declare (xargs :guard (and (atom e)

(bstp x)

(bst-ordp x))))

;; Replace form below with a tree-based Member function body

(list e x))

(defun bst-del (e x)

"BST delete, if element e present, delete it"

(declare (xargs :guard (and (bstp x)

(bst-ordp x))))

;; Replace form below with a Delete function body.

(list e x))

Chapter 6: CS340d Laboratories 143

6.22 Lab 3

Laboratory 3

CS 340d

Unique Number: 52285

Spring, 2023

Given: April 4, 2023

Due: April 20, 2023

This laboratory concerns inserting, deleting, inspecting, and maintaining ordered lists and
trees.

6.23 Lab 3 General Comments

Before we describe this laboratory assignment, we describe our philosophy for all laboratory
assignments and for many of our homework assignments. We expect our programs to
implement their requirements with mathematical precision, but program requirements
are generally specified using natural language. To this point in your education, most
programming assignments have included some description of what program you should write.
Then, you are expected to interpret the requirements, specifications and other supplied
documentation to produce a conforming result. It requires tremendous care and expert
knowledge to write a precise description of any computation in a natural language – it is
certainly beyond our ability to write such completely precise, natural-language specifications.

We would like to write mathematical specifications for our all of our programs. As a
community of software developers, this approach would be extremely valuable, where it can
be deployed, but it is not a mature discipline. Even so, we will attempt to use ACL2 where we
can. For some programs, we will provide executable predicates (to recognize desired validity
conditions) and simulators in the form of various combinations of Linux/MacOS/FreeBSD
user-level (program) commands. The running of these commands and their outputs will
serve as executable simulators.

6.24 Lab 3 Requirements

This laboratory involves proving some theorems about the member, insert, and delete
functions you defined in Lab 2. Below, you will find some theorems we ask you to prove
about the functions you defined for your Lab 2 solution. We will also understand if you choose
to re-define some of your Lab 2 solutions because you may find (when attempting to the
prove properties requested below) that your specification functions may need improvement
and/or correction.

At the end of this laboratory assignment there are some ACL2 DEFTHMs you are asked
to prove. Note: the last request is very hard! Solutions for this last problem will be worth
extra credit. The code (below) also appears on the class website.

6.25 Lab 3 Documentation

Finally, you need to include in your solution program a 80-line to 90-line comment as a
Lisp-language comment that begins with a line containing only "#|" and ends with a line
containing only "|#" that describes your approach to the proofs you are asked to perform.

Chapter 6: CS340d Laboratories 144

This description should be in the (approximate) format of a typical FreeBSD/Linux/MacOS
manual entry. This description is a writing assignment associated with this laboratory – all
of the laboratories in this class include a write-up of some kind. Remember, you are taking
a class with a writing flag, and this kind of summary will be required for all of the class
laboratory assignments.

6.26 Lab 3 Grading

Your laboratory will be graded with the follow weights:

70% - For the proofs requested about your ACL2 member, insert, and

delete functions for both data structures; this will be

exhibited by the proofs you provide.

30% - Written description of your solutions.

Be careful with what you write. We will carefully read your documentation, looking for
problems (such as grammar, spelling, run-on sentences, tense agreement, etc.) – errors will
lower your grade.

6.27 Lab 3 Turn-in

Prior to the due date, we will post submission instructions on Canvas.

6.28 Lab 3 Code Template

Below is a template you should use to complete your laboratory. Be sure to leave the
fully-defined functions as they are given here. Note, we will use an automated grading
system will load your code and then call all of the functions you are expected to write. Be
sure that your entire code can be run without any intervention required; i.e., we should be
able to load your file by: (ld “<filename.lisp>”) We should be able to use your solution by
evaluating the various member, insert and delete functions repeatedly on a wide variety of
data.

; For your ACL2 definitions for the LIST-based functions:

; insrt (e x)

; mbr (e x)

; del (e x)

; And your ACL2 TREE-based functions:

; bst-insrt (e x)

; bst-mbr (e x)

; bst-del (e x)

; we ask you to prove the lemmas below.

Chapter 6: CS340d Laboratories 145

; Sets with Lists and Binary Trees Scott, Vivek, & Warren

; (ld "lab3-trees.lisp" :ld-pre-eval-print t)

(in-package "ACL2")

; Please prove these DEFTHMs about the list-based set functions

; you defined in Lab 2. Please (re-)supply your definitions as

; you must submit a file that we can run with a single command

; (ld "<filename.lisp>"). Note, you may add helper definitions

; and lemmas.

(defthm setp-insrt

;; INSRT returns a SETP set.

(implies (and (atom e)

(setp x))

(setp (insrt e x))))

(defthm mbr-insrt

;; E a member after its insertion.

(implies (and (atom e)

(setp x))

(mbr e (insrt e x))))

(defthm mbr-a-mbr-insrt

;; A still a member after any insertion.

(implies (and (atom a)

(atom e)

(setp x)

(mbr a x))

(mbr a (insrt e x))))

; ++++++++++++++++

(defthm setp-del

;; Deletion leaves a set.

(implies (setp x)

(setp (del e x))))

(defthm not-mbr-del

;; E not a member after deletion.

(implies (and (atom e)

(setp x))

(not (mbr e (del e x)))))

; ++++++++++++++++

Chapter 6: CS340d Laboratories 146

(defthm mbr-a-del-e

;; A still a member if different element deleted.

(implies (and (atom a)

(atom e)

(not (equal a e))

(setp x))

(equal (mbr a (del e x))

(mbr a x))))

; ++++++++++++++++

; Please prove these DEFTHMs about the tree-based set functions you

; defined in Lab 2.

(defthm bstp-bst-insrt

(implies (and (atom e)

(bstp x))

(bstp (bst-insrt e x))))

; Hint: two helper lemmas are needed.

(defthm bst-ordp-bst-insrt

;; BST-INSRT is ordered.

(implies (and (atom e)

(bstp x)

(bst-ordp x))

(bst-ordp (bst-insrt e x))))

; ++++++++++++++++

(defthm bst-mbr-bst-insrt

;; E a member after its insertion.

(implies (and (atom e)

(bstp x)

(bst-ordp x))

(bst-mbr e (bst-insrt e x))))

(defthm bst-mbr-a-mbr-insrt

;; A still a member after any additional insertion.

(implies (and (atom a)

(atom e)

(bstp x)

(bst-ordp x)

(bst-mbr a x))

(bst-mbr a (bst-insrt e x))))

Chapter 6: CS340d Laboratories 147

; ++++++++++++++++

(defthm bstp-bst-del

(implies (bstp x)

(bstp (bst-del e x))))

; Hint: two helper lemmas are needed.

(defthm bst-ordp-bst-del

(implies (and (bstp x)

(bst-ordp x))

(bst-ordp (bst-del e x))))

; EXTRA CREDIT Problem

; This is a hard problem! If you succeed, you will receive extra

; credit after you explain your proof to the instructor or TA -- even

; though we can check it with ACL2.

(defthm bst-mbr-bst-del-e

;; Atom A still a member if different object (E) is deleted.

(implies (and (atom a)

(not (equal a e))

(bstp x)

(bst-ordp x))

(equal (bst-mbr a (bst-del e x))

(bst-mbr a x))))

148

Doc Index

B
Basic Logic Review . 18

C
Class Advice . 9
Class Assessment . 8
Class Syllabus . 5
Code of Conduct . 10
Course Announcement . 2
CS340d Homework . 102
CS340d Laboratories . 129
CS340d Quizzes . 70

D
Doc Index . 148

E
Electronic Class Delivery . 9
Emergency Evacuation . 16

H
Homework . 8
Homework 0 . 102
Homework 1 . 105
Homework 10 . 124
Homework 11 . 125
Homework 2 . 107
Homework 3 . 111
Homework 4 . 112
Homework 5 . 114
Homework 6 . 115
Homework 7 . 118
Homework 8 . 121
Homework 9 . 122

I
Introduction . 2

L
Lab 0 . 130
Lab 1 . 134
Lab 2 . 138
Lab 3 . 143
Laboratory Projects . 8
Lecture 0 – Introduction course overview

and fibonacci example . 39
Lecture 1 – The course syllabus

rules UT disclosures . 40
Lecture 10 – Terms and functions revisited 42
Lecture 11 – ACL2 revisited 42
Lecture 12 – ACL2 Theory repeated 42
Lecture 13 – ACL2 Axioms . 45
Lecture 14 – Proof by Induction 45
Lecture 15 – Assoc of App . 47
Lecture 16 – Storing values in variables 52
Lecture 17 – Problem 43 and Proof process 54
Lecture 18 – Verification of iSort 58
Lecture 19 – Array-based iSort 58
Lecture 2 – Introduction to

functional programming . 40
Lecture 20 – The Method . 58
Lecture 21 – Proof Automation 60
Lecture 22 – The Method . 65
Lecture 23 – Peano Arithmetic 65
Lecture 24 – Structural Induction 68
Lecture 25 – popcount . 68
Lecture 26 – Verification and Validation 68
Lecture 27 – The Last Class . 68
Lecture 3 – Introduction to tracing

and debugging . 40
Lecture 4 – Continue introduction to functional

programming in ACL2 . 40
Lecture 5 – Build an expression evaluator 40
Lecture 6 – ACL2 function definition 41
Lecture 7 – General correctness principles 41
Lecture 8 – Presentation and use of

the ACL2 Logic . 41
Lecture 9 – Terms and functions revisited 42
Lectures . 39

Q
Quiz 0 Welcome Questionnaire 70
Quiz 1 Checkout Canvas Quiz Submission 73
Quiz 10 More on Terms . 85
Quiz 11 The Definitional Principle 87
Quiz 12 Concepts Review . 89
Quiz 13 Prove it . 91
Quiz 14 Prove it . 93
Quiz 15 Prove it . 97
Quiz 16 Is this a defthm . 98
Quiz 17 The Method . 100

Doc Index 149

Quiz 2 Propositional Calculus 74
Quiz 3 Propositional Calculus 76
Quiz 4 Propositional Calculus 77
Quiz 5 Functional programming in ACL2 78
Quiz 6 Functional programming in ACL2 79
Quiz 7 A Quiz Poll . 81
Quiz 7a An ACL2 Lisp Function 82
Quiz 8 Terms . 83
Quiz 9 Dot Notation . 84
Quizzes . 8

R
Religious Holidays . 16
Review of Linear Temporal logic 28

S
Scholastic Dishonesty . 16
Students with Disabilities . 16

U
UT Required Notices . 17

W
Writing Flag . 7

	1 Introduction
	Course Announcement
	Class Syllabus
	Writing Flag
	Homework
	Laboratory Projects
	Quizzes
	Class Assessment
	Class Advice
	Electronic Class Delivery
	Code of Conduct
	Scholastic Dishonesty
	Students with Disabilities
	Religious Holidays
	Emergency Evacuation
	UT Required Notices

	2 Basic Logic Review
	Axiomatic Logic Systems
	Propositional Logic
	Properties of a Logic
	Natural Deduction
	Predicate Logic
	Proof Techniques
	Proving Axioms
	Inference Rules of E
	Direct Proof
	Mutual Implication Proof
	Truth Implication Proof
	Proof by Contradiction
	Proof by Contrapositive
	Proof by Case Analysis
	Mathematical Induction

	Review of Linear Temporal Logic
	Axiomatic Logic System for LTL
	Stating Properties in LTL
	Temporal Deduction
	Proof techniques and Proofs in LTL
	Proving Axioms in LTL
	Direct Proof
	Mutual Implication Proof
	Truth Implication Proof
	Proof by Contradiction
	Proof by Contrapositive
	Proof by Case Analysis
	Mathematical Induction

	How to Prove it - Tips
	Example: Program Properties and a Proof

	3 Lectures
	Lecture 0 -- Introduction course overview and fibonacci example
	Lecture 1 -- The course syllabus rules UT disclosures
	Lecture 2 -- Introduction to functional programming
	Lecture 3 -- Introduction to tracing and debugging
	Lecture 4 -- Continue introduction to functional programming in ACL2
	Lecture 5 -- Build an expression evaluator
	Lecture 6 -- ACL2 function definition
	Lecture 7 -- General correctness principles
	Lecture 8 -- Presentation and use of the ACL2 Logic
	Lecture 9 --Terms and functions revisited
	Lecture 10 -- Terms and functions revisited
	Lecture 11 -- ACL2 revisited
	Lecture 12 -- ACL2 Theory repeated
	Lecture 13 -- ACL2 Axioms
	Lecture 14 -- Proof by Induction
	Lecture 15 -- Assoc of App
	Lecture 16 -- Storing values in variables
	Lecture 17 -- Problem 43 and Proof process
	Lecture 18 -- Verification of iSort
	Lecture 19 -- Array-based iSort
	Lecture 20 -- The Method
	Lecture 21 -- Proof Automation
	Lecture 22 -- The Method
	Lecture 23 -- Peano Arithmetic
	Lecture 24 -- Structural Induction
	Lecture 25 -- popcount
	Lecture 26 -- Verification and Validation
	Lecture 27 -- The Last Class

	4 CS340d Quizzes
	Quiz 0 Welcome Questionnaire
	Quiz 1 Checkout Canvas Quiz Submission
	Quiz 2 Propositional Calculus
	Quiz 3 Propositional Calculus
	Quiz 4 Propositional Calculus
	Quiz 5 Functional programming in ACL2
	Quiz 6 Functional programming in ACL2
	Quiz 7 A Quiz Poll
	Quiz 7a An ACL2 Lisp Function
	Quiz 8 Terms
	Quiz 9 Dot Notation
	Quiz 10 More on Terms
	Quiz 11 The Definitional Principle
	Quiz 12 Concepts Review
	Quiz 13 Prove it
	Quiz 14 Prove it
	Quiz 15 Prove it
	Quiz 16 Is this a defthm
	Quiz 17 The Method

	5 CS340d Homework
	Homework 0
	Homework 1
	Homework 2
	Homework 3
	Homework 4
	Homework 5
	Homework 6
	Homework 7
	Homework 8
	Homework 9
	Homework 10
	Homework 11

	6 CS340d Laboratories
	Lab 0
	Lab 0 General Comments
	Lab 0 Requirements
	Lab 0 Documentation
	Lab 0 Grading
	Lab 0 Turn-in
	Lab 0 Code Template
	Lab 1
	Lab 1 General Comments
	Lab 1 Requirements
	Lab 1 Documentation
	Lab 1 Grading
	Lab 1 Turn-in
	Lab 1 Code Template
	Lab 2
	Lab 2 General Comments
	Lab 2 Requirements
	Lab 2 Documentation
	Lab 2 Grading
	Lab 2 Turn-in
	Lab 2 Code Template
	Lab 3
	Lab 3 General Comments
	Lab 3 Requirements
	Lab 3 Documentation
	Lab 3 Grading
	Lab 3 Turn-in
	Lab 3 Code Template

	Doc Index

