
1 / 15

Verification of Array-Based Insertion Sort
ACL2 Lecture 3

Warren A. Hunt, Jr.
hunt@cs.utexas.edu

Computer Science Department
University of Texas

2317 Speedway, M/S D9500
Austin, TX 78712-0233

May, 2021

2 / 15

Verification of Array-Based Insertion Sort

In this lecture, we explore how to prove the correctness of a pointer-based,
in-memory, sorting procedure.

▶ We will model memory as a fixed-length list of integers.

▶ We access and update memory with constant-time operators.

▶ Using pointers, we access and update in-memory integers.

▶ We use pointer arithmetic to determine function termination.

▶ We prove the correctness of our in-memory insertion algorithm.

▶ We verify the correctness of our in-memory isort algorithm.

But, we must show more!

We show that our sorting algorithm doesn’t alter other parts of the memory.

3 / 15

Representing our Memory as a List of Integers

Sometimes we wish to use routines that manipulate memory-based data, and
we want to confirm that pointer-based routines behave properly.

Our memory is an INTEGER-LISTP list; for a “memory-level” view, we rotate a
memory diagram somewhat counter-clockwise, so its visual representation is a
right-associated tree is “laying on its side”.

Memory, M, contains (LEN M) integers; addressed from 0 to (1- END).

M --O--- o o o -----O-----O---- o o o ----O---- o o o ----O- NIL

| | | | |

E . . . a b . . . z . . . W

+-----+-- ---+-----+-----+-- ---+-----+-- ---+-----+

| E | o o o | a | b | o o o | z | o o o | W |

+-----+-- ---+-----+-----+-- ---+-----+-- ---+-----+

0 L R END

Our Memory <-- Vals from L up to R -->

One may think of L and R as pointers into memory M, where address 0 points to
the start of the memory and address (1- END) to the last addressable location.

4 / 15

Characterizing Our Memory

We use ACL2’s function INTEGER-LISTP to recognize memory as a fixed-length
list of integers, and we use the LEN function to measure its size.

(defun int-listp (x) (defun len (x)

(if (atom x) (if (atom x)

(eq x nil) 0

(and (integerp (car x)) (+ 1 (len (cdr x)))))

(int-listp (cdr x)))))

For each of our in-memory operations, we will prove that our memory remains
an INTEGER-LISTP and that its LENgth remains unchanged.

(defun nth (x l) (defun !nth (pos val x)

(if (endp l) (if (zp pos)

nil (cons val (cdr x))

(if (zp n) (cons (car x)

(car l) (!nth (1- pos) val

(nth (- n 1) (cdr l))))) (cdr x))))))

And we prove various properties about our arrays; e.g.,

(implies (and (natp i) (< i (len x)))

(equal (!nth i (nth i x) x) x))

5 / 15

Projecting a Sub-Sequence Out of our Memory

To compare memory configurations with our specifications, we define M-TO-L

to project the contents of a range of memory locations.

(defun m-to-l (m l r)

(declare (xargs :guard (and (integer-listp m)

(natp l)

(natp r)

(<= l r)

(<= r (len m)))

:measure (nfix (- r l)))) ;; must be a NATP

(if (zp (- r l))

nil

(cons (nth l m)

(m-to-l m (1+ l) r))))

Note the use of a :measure parameter: (nfix (- r l))

All recursive ACL2 functions must have a lexicographic measure that decreases
with every recursive call.

6 / 15

Observations about our Projection Function

Extracting a range of memory values produces an integer-listp result.

(defthm integer-listp-m-to-l

(implies (and (integer-listp m)

(natp l) (<= r (len m)))

(integer-listp (m-to-l m l r))))

For the lemma above, why don’t we need (natp r) as a hypothesis? Consider:

(defthmd reason-r-is-natp-greater-than-0

(implies (and (natp l)

(not (zp (+ r (- l)))))

(and (natp r)

(< 0 r))))

Inductive fact: writing below the start address doesn’t effect the projection.

(defthm m-to-l-!nth-above

(implies (and (natp l)

(natp l+)

(< l l+))

(equal (m-to-l (!nth l e m) l+ r)

(m-to-l m l+ r))))

7 / 15

Comparison of In-Memory Operations to List-Based Operations

Imagine we wish to sum the elements of a list of integers.

(defun sum-list (x)

(declare (xargs :guard (integer-listp x)))

(if (atom x)

0

(+ (car x)

(sum-list (cdr x)))))

Similarly, imagine a function that sums a vector of in-memory integers.

(defun sum-sub-array (m l r)

(declare (xargs :guard (and (integer-listp m)

(natp l) (natp r)

(<= l r)

(<= r (len m)))

:measure (nfix (- r l))))

(if (zp (- r l))

0

(+ (nth l m)

(sum-sub-array m (1+ l) r))))

Is the SUM-LIST of a projection equal to SUM-SUB-ARRAY of the same range?

8 / 15

The Correctness of our In-Memory Summation Function

Summing a range of in-memory elements is same as collecting the same range
of elements and summing this collection.

(defthm sum-sub-array-is-same-as-project-and-sum-list

(implies (and (integer-listp m)

(natp l) (natp r)

(<= l r) (<= r (len m)))

(equal (sum-sub-array m l r)

(sum-list (m-to-l m l r)))))

(SUM-SUB-ARRAY Mem L R) is equal to the (SUM-LIST (LIST a b ... z)).

(M-TO-L Mem L R) ---O-----O---- o o o ----O---- NIL

projection | | |

a b . . . z

Mem:

+-----+-- ---+-----+-----+-- ---+-----+-- ---+-----+

| E | o o o | a | b | o o o | z | o o o | W |

+-----+-- ---+-----+-----+-- ---+-----+-- ---+-----+

0 L R END

We have lifted ourselves from a pointer-based, in-memory algorithm to
list-based operations.

9 / 15

Insertion into an ORDEREDP Array

(defun insert-e-in-m (m l r e)

"Insert E into integer memory having one empty slot at L."

(declare (xargs :guard (and (integer-listp m)

(natp l) (natp r)

(<= l r) (<= r (len m))

(integerp e))

:measure (nfix (- r l))))

(if (zp (- r l))

m ;; Zero length array; nothing can be done

(let ((l+1 (1+ l)))

(if (= l+1 r)

;; Single-element array, perform insertion

(!nth l e m)

(let ((nx-e (nth l+1 m)))

;; Compare E with first element of array sub-sequence

(if (<= e nx-e)

;; Place E if it is less than or equal NX-E

(!nth l e m)

;; Otherwise, m[l] <- m[l+1], and we move on...

(let ((updated-m (!nth l nx-e m)))

(insert-e-in-m updated-m l+1 r e))))))))

10 / 15

Facts About Inserting an Element into an ORDEREDP Memory

To confirm our memory contract, we prove LEN and INTEGER-LISTP properties.

(defthm len-insert-e-in-m

(implies (and (natp l)

(<= r (len m)))

(equal (len (insert-e-in-m m l r e))

(len m))))

(defthm integer-listp-insert-e-in-m

(implies (and (integer-listp m)

(natp l) (<= r (len m))

(integerp e))

(integer-listp (insert-e-in-m m l r e))))

And, importantly, we confirm no other part of memory is changed.

(defthm insert-e-in-m-does-not-alter-m-outside-sort-range

(implies (and (natp l) (natp i)

(or (< i l)

(and (<= r i)

(<= r (len m)))))

(equal (nth i (insert-e-in-m m l r e))

(nth i m))))

11 / 15

Correctness of In-Memory Insertion

ACL2’s ENCAPSULATE limits the visibility of the first lemma to this environment.

(encapsulate ()

(local

(defthm cons-is-same-as-insert-when-e-less-than-m-l+1

(implies (and (integer-listp m)

(natp l)

(<= r (len m))

(integerp e)

(<= e (nth l m)))

(equal (insert e (m-to-l m l r))

(cons e (m-to-l m l r))))))

(defthm insert-e-in-m-ok

(implies (and (integer-listp m)

(natp l) (natp r)

(< l r) (<= r (len m))

(integerp e))

(equal (m-to-l (insert-e-in-m m l r e) l r)

(insert e (m-to-l m (1+ l) r))))))

The lemma above says in-memory insertion works just like list-based insertion.

12 / 15

Sort From The End to the Front

Insert elements from right-to-left (end-to-start) into an ORDEREDP list.

(defun isort-in-m (m l r)

"ISORT insertion iteration."

(declare (xargs :guard (and (integer-listp m)

(natp l) (natp r)

(< l r) (<= r (len m)))

:measure (nfix (- r l))

:verify-guards nil)) ;; Guards not verified!

(if (zp (- r l))

m

(let ((l+1 (1+ l)))

(if (= l+1 r)

;; One-element array; do nothing

m

;; Sort the rest (the tail) of the array

(let ((e (nth l m))

(m-updated (isort-in-m m l+1 r)))

;; Insert E in ordered array M-UPDATED

(insert-e-in-m m-updated l r e))))))

Notice that the guards are not verified.

13 / 15

Facts About Our In-Memory Sorting Procedure

To verify the guards of ISORT-IN-M , we prove that it LEN is unchanged.

(defthm len-isort-in-m

(implies (and (natp l)

(<= r (len m)))

(equal (len (isort-in-m m l r))

(len m))))

(defthm integer-listp-isort-in-m

;; This lemma needs to know the LEN of ISORT-IN-M

(implies (and (integer-listp m)

(natp l)

(<= r (len m)))

(integer-listp (isort-in-m m l r))))

(verify-guards isort-in-m)

Induction is needed to prove (integerp-listp (isort-in-m m l r)).

Once these facts are known, the ISORT-IN-M guards can be verified.

14 / 15

More Properties about In-Memory Sorting

We prove an inductive fact that sorting above l doesn’t change value at l.

(defthm nth-isort-in-m

(implies (and (integer-listp m)

(natp l)

(natp l+)

(< l l+))

(equal (nth l (isort-in-m m l+ r))

(nth l m))))

(defthm isort-in-m-does-not-alter-elements-outside-sort-range

(implies (and (natp l)

(<= l r)

(natp i)

(or (< i l)

(and (<= r i)

(<= r (len m)))))

(equal (nth i (isort-in-m m l r))

(nth i m))))

Key property: ISORT-IN-M does not alter memory outside of its sort range.

15 / 15

Correctness of our In-Memory Insertion-Sort Procedure

We have established that ISORT-IN-M:

▶ does not change the size of the memory,

▶ does not change the memory outside of the sort range, and

▶ leaves the elements in the memory sorted.

(defthm isort-in-m-ok

(implies (and (integer-listp m)

(natp l)

(natp r)

(<= l r)

(<= r (len m)))

(equal (m-to-l (isort-in-m m l r) l r)

(isort (m-to-l m l r)))))

Inherently, pointer-based algorithms – where one has to keep track of memory
usage – require more analysis effort than their list-based algorithms.

Challenge: Can you specify and verify an in-memory, quick-sort algorithm?

	Verification of Array-Based Insertion Sort
	Representing our Memory as a List of Integers
	Characterizing Our Memory
	Projecting a Sub-Sequence Out of our Memory
	Observations about our Projection Function
	Comparison of In-Memory Operations to List-Based Operations
	The Correctness of our In-Memory Summation Function
	Insertion into an ORDEREDP Array
	Facts About Inserting an Element into an ORDEREDP Memory
	Correctness of In-Memory Insertion
	Sort From The End to the Front
	Facts About Our In-Memory Sorting Procedure
	More Properties about In-Memory Sorting
	Correctness of our In-Memory Insertion-Sort Procedure

