Some Basic ACL2-Lisp Functions
ACL2 Lecture 3

Warren A. Hunt, Jr.

hunt@cs.utexas.edu

Computer Science Department
University of Texas
2317 Speedway, M/S D9500
Austin, TX 78712-0233

January, 2023



REV, Accumulators, Complexity, and Tracing

In this lecture, we investigate some basic list and tree processing functions.

Discussion of REV

TRACE$ of REV

Using accumulators; tail recursion

We define a way to sum the leaves of a tree with integer leaves.

We define an ACL2 predicate that recognizes trees with integer leaves.
We introduce FLATTEN, a function to flatten a tree into a list.

We postulate flattening a tree without using APP.

vyVVvVvYvVvyVvVvVvVvyYvYyy

We will use TRACE$ to animate our definitions.

At the end, we will look at HW 1.
REMINDER: Using examples, we are introducing functional programming.

The lack of side effects provides opportunities for analysis. Much of this course
concerns the pursuit of such opportunities.



List REVerse

We can use APP to create a REVerse function.

Consider:
(defun app (x y)
(if (atom x)

y
(cons (car x)
(app (cdr x) y))))

(defun rev (x)
(if (atom x)
nil
(app (rev (cdr x))
(list (car x)))))

Does REV return a TRUE-LISTP?

Remark: in running text, we often write ACL2 terms in upper case because

Lisp up-cases everything.



TRACE of REVerse

Let's animate the REV function.
(trace$ REV)

It appears linear in its performance, but what about APP?
(trace$ APP)
Does REV return a TRUE-LISTP?

Does reversing a list twice produce return the original input?

(equal (rev (rev x)) x)

Deeper Question: Should we trace CONS?



Using Accumulators; Tail Recursion
We see that REV may be expensive to evaluate.
What is the complexity of REV?

Let's consider the use of an accumulator.

(defun rev2-help (x acc)

(if (atom x)

acc
(rev2-help

;3 Trim off first element
(cdr x)
;5 Extend the accumulator
(cons (car x) acc))))

(defun rev2 (x)
(rev2-help x nil))

Let's trace things to see what happens.



Tree Copy
So far, our definitions have concerned only right-associated trees (lists).

Consider:

(defun tree-copy (x)
;3 If no pair
(if (atom x)
;; return the atom
b4
;; otherwise, pair a copy
(cons
;; the left subtree, and
(tree-copy (car x))
;5 the right subtree
(tree-copy (cdr x)))))

Note that we move both left and right. Is this OK?



A Tree with Integer Leaves
Can we define a function that recognizes a tree containing just integers?

Will we allow empty trees?

(defun tree-integerp (x)
;5 If pair recognized
(if (atom x)
;; do we have an integer?
(integerp x)
;; otherwise, check
(and
;; the left subtree, and
(tree-integerp (car x))
;5 the right subtree
(tree-integerp (cdr x)))))

Are we under utilizing CONS? How many CONSes are needed to hold n atoms?



FLATTEN a Tree

Can we define a function that, from left-to-right, takes each tip of a tree and
creates a list?

(flatten (cons (cons 1 2) (cons 3 4)))
==>
(123 4)

We want a list with all tree tips. So, let's append the left and right subtrees
together.

What do we need to do?

Let's have a look at HW 1.



	REV, Accumulators, Complexity, and Tracing
	List REVerse
	TRACE of REVerse
	Using Accumulators; Tail Recursion
	Tree Copy
	A Tree with Integer Leaves
	FLATTEN a Tree

