
1 / 8

Some Basic ACL2-Lisp Functions
ACL2 Lecture 3

Warren A. Hunt, Jr.
hunt@cs.utexas.edu

Computer Science Department
University of Texas

2317 Speedway, M/S D9500
Austin, TX 78712-0233

January, 2023



2 / 8

REV, Accumulators, Complexity, and Tracing

In this lecture, we investigate some basic list and tree processing functions.

▶ Discussion of REV

▶ TRACE$ of REV

▶ Using accumulators; tail recursion

▶ We define a way to sum the leaves of a tree with integer leaves.

▶ We define an ACL2 predicate that recognizes trees with integer leaves.

▶ We introduce FLATTEN, a function to flatten a tree into a list.

▶ We postulate flattening a tree without using APP.

▶ We will use TRACE$ to animate our definitions.

At the end, we will look at HW 1.

REMINDER: Using examples, we are introducing functional programming.

The lack of side effects provides opportunities for analysis. Much of this course
concerns the pursuit of such opportunities.



3 / 8

List REVerse

We can use APP to create a REVerse function.

Consider:

(defun app (x y)

(if (atom x)

y

(cons (car x)

(app (cdr x) y))))

(defun rev (x)

(if (atom x)

nil

(app (rev (cdr x))

(list (car x)))))

Does REV return a TRUE-LISTP?

Remark: in running text, we often write ACL2 terms in upper case because
Lisp up-cases everything.



4 / 8

TRACE of REVerse

Let’s animate the REV function.

(trace$ REV)

It appears linear in its performance, but what about APP?

(trace$ APP)

Does REV return a TRUE-LISTP?

Does reversing a list twice produce return the original input?

(equal (rev (rev x)) x)

Deeper Question: Should we trace CONS?



5 / 8

Using Accumulators; Tail Recursion

We see that REV may be expensive to evaluate.

What is the complexity of REV?

Let’s consider the use of an accumulator.

(defun rev2-help (x acc)

(if (atom x)

acc

(rev2-help

;; Trim off first element

(cdr x)

;; Extend the accumulator

(cons (car x) acc))))

(defun rev2 (x)

(rev2-help x nil))

Let’s trace things to see what happens.



6 / 8

Tree Copy

So far, our definitions have concerned only right-associated trees (lists).

Consider:

(defun tree-copy (x)

;; If no pair

(if (atom x)

;; return the atom

x

;; otherwise, pair a copy

(cons

;; the left subtree, and

(tree-copy (car x))

;; the right subtree

(tree-copy (cdr x)))))

Note that we move both left and right. Is this OK?



7 / 8

A Tree with Integer Leaves

Can we define a function that recognizes a tree containing just integers?

Will we allow empty trees?

(defun tree-integerp (x)

;; If pair recognized

(if (atom x)

;; do we have an integer?

(integerp x)

;; otherwise, check

(and

;; the left subtree, and

(tree-integerp (car x))

;; the right subtree

(tree-integerp (cdr x)))))

Are we under utilizing CONS? How many CONSes are needed to hold n atoms?



8 / 8

FLATTEN a Tree

Can we define a function that, from left-to-right, takes each tip of a tree and
creates a list?

(flatten (cons (cons 1 2) (cons 3 4)))

==>

(1 2 3 4)

We want a list with all tree tips. So, let’s append the left and right subtrees
together.

What do we need to do?

Let’s have a look at HW 1.


	REV, Accumulators, Complexity, and Tracing
	List REVerse
	TRACE of REVerse
	Using Accumulators; Tail Recursion
	Tree Copy
	A Tree with Integer Leaves
	FLATTEN a Tree

