ACL2 Terms, Evaluation, Mutual Recursion
ACL2 Lecture 5

Warren A. Hunt, Jr.
hunt@cs.utexas.edu

Computer Science Department
University of Texas
2317 Speedway, M/S D9500
Austin, TX 78712-0233

March, 2025



ACL2 Terms, Evaluation, Mutual Recursion

In this lecture, we investigate using ACL2 to define terms and their evaluation.

VVVvyVvyVVyVYyVYVYyYVYYyY

Review item: a FLATTEN function with an accumulator.
Lookup and Update by position

Lookup and Update Properties

Measure functions

Mutual Recursion — Shuffling

Example terms

Recognizing a term

Evaluation examples

An evaluation function

Tracing evaluation

Class Projects



MC-FLATTEN — McCarthy's FLATTEN Function

Earlier this semester, we asked that you define a FLATTEN function using CONS
instead of APPend.

Why? Because, repeated use of APP is expensive in the number of CONS cells
created.

So, can we use an accumulator to assist our collection effort?

(defun mc-flatten (x acc)
(if (atom x)
(cons x acc)
;3 Accumulate the left elements second

(mc-flatten (car x)
;3 Accumulate the right elements first

(mc-flatten (cdr x) acc))))
Suggestion: using TRACE$, compare FLATTEN with MC-FLATTEN.

Can you prove?

(equal (flatten x)
(mc-flatten x nil))



Lookup and Update by Position

We can use lists as a memory.

(defun ith (n 1)
;; If at the end of memory L; then return default value
(if (endp 1)
nil
;; If at address, access item
(if (zp n)
(car 1)
;; otherwise, keep looking...
(ith (- n 1) (cdr 1)))))

(defun !ith (n val 1)
(if (zp n)
;; If at the specified position, place element
(cons val (cdr 1))
;; otherwise, copy current element, and continue...
(cons (car 1)
('ith (1- n) val (cdr 1)))))

One should consider what happens when (< (LEN L) N)).



Lookup and Update Properties

Have we defined a useful memory? Consider:
(defthm ith-!ith
;5 We read what we wrote
(equal (ith n (!ith n v 1)) v))

(defthm ith-!ith-different-addresses
(implies (and (natp i)
(natp j)
(not (equal i j)))
;; Writes at other locations
(equal (ith i (!'ith j v 1))
;3 Don’t change what is at position I

(Ath i 1))

Lemma ITH-!ITH confirms that we can read back what was written.

Lemma ITH-!ITH-DIFFERENT-ADDRESSES says a write other than at I doesn't
change the value at position I.

Is this enough?



NTH and INTH Properties

Here we defined an abbreviation for UPDATE-NTH.

(defmacro !nth (key val 1)
¢ (update-nth ,key ,val ,1))

(add-macro-fn !nth update-nth) ;; UPDATE-NTH shown as !NTH
These five rules relate NTH and !'NTH — the first rule is built in.

(defthm nth-!nth
;; Read-over-Write; redundant with lemma NTH-UPDATE-NTH
(equal (nth al (!nth a2 v 1))
(if (equal (nfix al) (nfix a2))
v
(nth al 1))))

(defthm !'nth-nth
;3 Write-over-Read
;; A read "off the end" is NIL, but a write extends L
(implies (and (equal al a2)
(< (nfix al) (len 1)))
(equal (!nth al (nth a2 1) 1)
DN



NTH and INTH Properties, continued

(defthm !nth-!nth-same-address
;3 Write-over-write; memory reflects last value written
(implies (equal al a2)
(equal (!nth al v (!nth a2 w st))
('nth al v st))))

(defthm !nth-!nth-different-addresses
;; Order of writes to different memory locations is irrelevant
(implies (not (equal (nfix al) (nfix a2)))
(equal (!nth al vl (!nth a2 v2 st))
(!nth a2 v2 (!'nth al vl st)))))

(defthm nth-from-atom-or-short-list
;3 A read ‘‘off the end’’
(implies (or (atom 1)

(and (integerp 1i)
(< (len 1) i)))
(not (nth i 1))))



Measure Function Example

ACL2 provides basic idioms for proving that recursive definitions will terminate.

Through our use of the Principle of Structural Recursion we have investigated
the use of the CAR—CDR idiom.

But, imagine we want to recur by removing an item first from one pile and then
from a second pile, and then repeating.

This is like shuffling (mixing) two stacks of playing cards. Could we define:
(defun mix (s x y)
(if s
(if (atom x)
y
(cons (car x)
(mix nil (cdr x) y)))
(if (atom y)
X
(cons (car y)
(mix t x (cdr y))))))

where X and Y contain our cards?

ACL2 fails to accept this function. Why?



Measure Function Example, continued

For a measure, one may specify a measure function that involves relationships
among a function’s arguments.

Often, we can use a measure that produces a natural number; this is the
simplest kind of ordinal. For now, that is what we will do.

(defun m (x y)
(+ (len x) (len y)))

Given the measure function above, we can now define the MIX function.

(defun mix (s x y)
(declare (xargs :measure (m x y))) ;; A specific measure
(if s
(if (atom x)
y
(cons (car x)
(mix (not s) (cdr x) y)))
(if (atom y)
X
(cons (car y)
(mix (not s) x (cdr y))))))



Mutual Recursion

Instead of a single function with a flag argument, can we define two,
mutually-recursive functions?

(mutual-recursion

(defun 1 (x y)
(declare (xargs :measure (m x y)))
(if (atom x)
y
(cons (car x)

(r (cdr x) y¥)))

(defun r (x y)
(declare (xargs :measure (m x y)))
(if (atom y)
X
(cons (car y)

(1 x (cdr ¥



Is MIX equivalent to L and R?

Can we establish a relationship between MIX and L and R?

(defthm mix-is-1-r
(and

(implies (double-rewrite s)
(equal (mix s x y)

@ xy)»)

(implies (not (double-rewrite s))
(equal (mix s x y)
(r x y))))
)

Advice: At first, implement mutual recursion with flag functions.



An Expression Evaluator
Can we define the syntax and semantics of a simple calculator? Let's try...

Our variable symbols will be ACL2 symbols. Our values are integers.

(defun symbol-integer-alistp (al)
(declare (xargs :guard t))
(if (atom al)
(null al)
(let* ((pair (car al)))
(and (consp pair)
(symbolp (car pair))
(integerp (cdr pair))
(symbol-integer-alistp (cdr al))))))

Our language will allow embedded integer-valued constants.

Our calculator will implement negation, addition, and multiplication.



Our Variable Lookup Function
Imagine we wished to evaluate arithmetic expressions that include variables.

We will need a way to look up the values of variables

(defun assc (k al)
(declare (xargs :guard (symbol-integer-alistp al)))
(if (atom al)
0
(let* ((pair (car al))
(key (car pair)))
(if (equal k key)
(mbe :logic (ifix (cdr pair))
:exec (cdr pair))
(assc k (cdr al))))))

Can we have duplicate keys?



Expression Recognizer

(defun exprp (x)
(declare (xargs :guard t))
(if (atom x)
(symbolp x)
(let ((fn (car x))
(args (cdr x)))
(and (symbolp fn)
(consp args)
(case fn
(quote (and (null (cdr args))
(integerp (car args))))

(- (and (null (cdr args))
(exprp (car args))))
(+ (and (consp (cdr args))

(null (cddr args))

(exprp (car args))

(exprp (cadr args))))
(* (and (consp (cdr args))

(null (cddr args))

(exprp (car args))

(exprp (cadr args))))
(otherwise NIL))))))



Expression Evaluator

Given a term and an association list, we can define an evaluator.

(defun evx (x a)
(declare (xargs :guard (and (exprp x)
(symbol-integer-alistp a))
:verify-guards nil))
(if (atom x)
;3 Lookup variable value
(assc x a)
(let ((fn (car x))
(args (cdr x)))
(case fn
(quote (car args)) ;; Constant
(- (- (evx (car args) a)))
(+ (+ (evx (car args) a)
(evx (cadr args) a)))
(* (¥ (evx (car args) a)
(evx (cadr args) a)))))))

Question: does this function always return an integer?



Expression Return Type, Optimizer

What is the type of our evaluator?

(defthm integerp-evx
(implies (exprp x)
(integerp (evx x a)))
:rule-classes :type-prescription)

Can you define a FOLD-CONSTANT expression optimizer?

(defthm integerp-evx

(implies (and (exprp x)
(integer-val-alistp a))

(equal (evx (fold-constants x) a)
(evx x a))))

For example:
(fold-constants ’(+ x (x °3 ’2)))
==>

>(+ x ’6)
Can you prove your constant-folding expression optimizer correct?



	ACL2 Terms, Evaluation, Mutual Recursion
	MC-FLATTEN – McCarthy's FLATTEN Function
	Lookup and Update by Position
	Lookup and Update Properties
	NTH and !NTH Properties
	NTH and !NTH Properties, continued
	Measure Function Example
	Measure Function Example, continued
	Mutual Recursion
	Is MIX equivalent to L and R?
	An Expression Evaluator
	Our Variable Lookup Function
	Expression Recognizer
	Expression Evaluator
	Expression Return Type, Optimizer

