
1 / 8

Using ACL2 for Set Operations
Sets as Ordered Lists without Duplicates

Warren A. Hunt, Jr.
hunt@cs.utexas.edu

Computer Science Department
University of Texas

2317 Speedway, M/S D9500
Austin, TX 78712-0233

February, 2025



2 / 8

Sets as Lists

How might we represent ordered sets using ACL2?

(defun << (x y)

(declare (xargs :guard t))

;; LEXORDER is like <=

(and (lexorder x y)

(not (equal x y))))

(defun setp (x)

(declare (xargs :guard t))

(if (atom x)

(null x)

(if (atom (cdr x))

(null (cdr x))

;; Compare the first two objects

(let ((a (car x))

(b (cadr x)))

(and (<< a b)

(setp (cdr x)))))))

What kind of sets are recognized by setp?

Can you write an element insertion function?



3 / 8

Set Insertion

Given that our setp recognizer requires any extension to be ordered makes it
clear that we need to find the proper insertion place.

(defun insrt (e x)

"Insert E into ordered set X."

(declare (xargs :guard (setp x)))

(if (atom x)

(list e)

(let ((l (car x)))

(if (<< e l)

(cons e x)

(if (equal e l)

x

(cons l

(insrt e (cdr x))))))))

Can you prove this?

(defthm setp-insrt

(implies (setp x)

(setp (insrt e x))))



4 / 8

Set Membership

Can you write a set membership function?

(defun mbr (e x)

(declare (xargs :guard (setp x)

:verify-guards nil))

(if (atom x)

...

))

Why not verify the guards? We don’t know this inductive fact:

(defthm not-mbr-when-e-is-<<-car-x

(implies (and (setp x)

(<< e (car x)))

(not (mbr e x))))

(verify-guards mbr) ;; Show TRACE$ difference



5 / 8

Is E a Member After Insertion?

After inserting E into set X, will we find it?

(defthm mbr-insrt

(implies (setp x)

(mbr e (insrt e x))))

If we insert E into set X, will A still be a member?

(defthm mbr-a-mbr-insrt

;; Item A still a member after any insertion.

(implies (and (setp x)

(mbr a x))

(mbr a (insrt e x))))



6 / 8

Set Element Deletion

Can we remove an element from our set leaving it ordered?

(defun del (e x)

"Delete E from set X, or do nothing if no E in X."

;; When (SETP x), we can stop after a deletion.

(declare (xargs :guard (setp x)

:verify-guards nil))

(if (atom x)

NIL

...

))

Do we have to delete all E items? Can we establish the following?

(defthm del-when-e-is-<<-car-x

(implies (and (setp x)

(<< e (car x)))

(equal (del e x) x)))

(verify-guards del) ;; Show TRACE$ difference



7 / 8

Some Facts About DEL

Here are facts that we should know. Can you prove them?

(defthm setp-del

;; Deletion leaves a set

(implies (setp x)

(setp (del e x))))

(defthm not-mbr-del

;; Item E should not be a member after its deletion

(implies (setp x)

(not (mbr e (del e x)))))

(defthm mbr-a-del-e

;; Is item A still a member if different element deleted?

(implies (and (not (equal a e))

(setp x))

(equal (mbr a (del e x))

(mbr a x))))

Are there other properties we would like to establish?



8 / 8

What about Indexing?

(defun nth (n l)

(if (atom l)

nil

(if (zp n)

(car l)

(nth (- n 1) (cdr l)))))

(defun update-nth (key val l)

(cond ((zp key) (cons val (cdr l)))

(t (cons (car l)

(update-nth (1- key) val (cdr l))))))

Can you prove:

(defthm nth-of-update-nth

;; Is what your wrote where you put it?

(equal (nth i (update-nth i v l)) v))

What about?

(defthm update-nth-of-nth

;; Do you get back the same L?

(equal (update-nth i (nth i l) l) l))


	Sets as Lists
	Set Insertion
	Set Membership
	Is E a Member After Insertion?
	Set Element Deletion
	Some Facts About DEL
	What about Indexing?

