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Abstract

Most parametric clustering algorithms in use today employ generative models that do not
have a natural mechanism to give rise to overlapping clusters. The multiplicative mixture
model has been recently proposed as a generative model that can naturally give rise to
overlapping clusters. However, performing maximum likelihood parameter estimation for
this model using a standard technique like expectation maximization is intractable. As a
result, Monte Carlo algorithms have been developed to do parameter estimation. In con-
trast to these stochastic algorithms, we propose a complementary deterministic algorithm
to perform approximate maximum likelihood parameter estimation in a tractable manner.
We then derive an overlapping clustering algorithm that uses employs the multiplicative
mixture model as a generative model.
Keywords: Multiplicative Mixture Model, Approximate Maximum Likelihood Parameter
Estimation, Overlapping Clustering, Variational Methods, Exponential Families.

1. Introduction

One of the most important tasks in unsupervised machine learning is that of data clustering.
Parametric generative models for data clustering have been popular in the research literature
due to the interpretable nature of the chosen generative model structure as well as the model
parameters.

One of the most popular parametric generative models for clustering is the additive
mixture model. It consists of K parameterized random variables, also known as mixture
components, one of which is chosen at a time to generate a single data point. The random
variable from which the data point is drawn is chosen according to a discrete probability
distribution over the K mixture components. One of the reasons why the additive mixture
model is so popular is that parameter estimation for it can be done in a computationally
efficient manner by the expectation maximization algorithm. Redner and Walker (1984)
provide a comprehensive review of additive mixture models. For a more modern unifica-
tion of various additive mixture model based clustering algorithms done using Bregman
divergences, see to Banerjee et al. (2005b).

However, most generative model based clustering algorithms do not have an in-built
mechanism to detect overlapping clusters. This is not surprising since the structure of most
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generative models can not give rise to overlapping clusters. Yet, a lot of datasets have
inherently overlapping clusters and quite a few applications such as mining gene expression
data or text data require the ability to perform overlapping clustering. It was noted by
Banerjee et al. (2005a) that when generative models such as the additive mixture model
that can not naturally model overlapping clusters are nonetheless used to cluster data with
overlapping clusters, then the quality of clustering results is very poor. Thus there is a
need for generative models that can inherently model overlapping clusters. The idea of
multiplying probability distributions together to get sharp distributions as well as overlaps
in the output space was introduced by Hinton (2002) who called the resulting model a
product of experts.

A multiplicative mixture model is further development of the product of experts model.
It is a parametric generative model which consists of K underlying random variables which
act as the mixture components that generate the observed data points. Associated with
each observed data point is a hidden binary mixture vector of length K that indicates
which of the K probability density functions corresponding to the mixture components
were multiplied together and suitably normalized to get the probability distribution that
generated that data point. Each data point is independently generated in this manner.
Note that here any of the K mixture components can participate in generating a data point
as opposed to additive mixture models where only one of the K mixture components can
participate in generating a data point. Thus the structure of the multiplicative mixture
model has a natural mechanism for generating overlapping clusters.

However this enhanced modeling capability comes at a cost. Infering the model pa-
rameters from the observed data is significantly more difficult in multiplicative mixture
models than in additive mixture models. This is because the multiplicative model will have
a normalization term that may not be expressible in closed form. This will make basic in-
ference tasks like calculating marginal and posterior distributions analytically intractable.
In addition, the hidden variables in multiplicative mixture models will have 2K possible
configurations each. Thus even if the normalization term is expressible in closed form,
calculating the marginal and the posterior distributions will involve a summation over 2K

configurations which is computationally intractable for large K. Doing the same in additive
mixture models will invole summation over just K configurations which is computationally
tractable.

The intractability of the parameter estimation problem for the product of experts model
itself was recognized at the very outset in (Hinton, 2002) and a Monte Carlo method was
constructed for approximate inference of model parameters. A more recent Monte Carlo
method for parameter estimation in the multiplicative model was developed by Heller and
Ghahramani (2007). Williams et al. (2002) consider the specific case of Gaussian mixtures in
a multiplicative model and draw connections to topics in machine learning like Probabilistic
Principal Components Analysis and Probabilistic Minor Components Analysis.

For performing inference and learning of model parameters, a complementary alternative
to stochastic approximation methods such as the Monte Carlo methods are the variational
methods of constructing deterministic approximations (Jordan et al., 1999; Wainwright
and Jordan, 2003) for quantities of interest via the introduction of additional or variational
variables. Here, we take a similar deterministic approximation approach.
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The rest of this report is organized as follows. In Section 2, we review some basic ma-
terial regarding the exponential families of random variables that is useful subsequently. In
Section 3, we describe the multiplicative mixture model and the intractability of maximum
likelihood learning of its parameters. After that, in Section 4, we develop a determinitic
method to do approximate maximum likelihood parameter estimation for the multiplicative
mixture model and then use this method to devise an overlapping clustering algorithm in
Section 5.

2. Exponential Families Of Random Variables

We begin with a brief review of some basic facts, stated without proof, regarding the
exponential families of random variables and their connections to concepts from convex
analysis. For a thorough treatment of exponential families refer to Amari and Nagaoka
(2001); Barndorff-Nielsen (1978) and for that of convex analysis refer to Hiriart-Urruty and
Lemaréchal (2001); Rockafellar (1970).

2.1 Basic Definitions

Let X be a random variable that takes values x in some sample space X ⊆ Rd and let σ(X )
be a σ-algebra over X so that (X , σ(X )) is a measurable space. In addition, let P be the
probability measure of the random variable X and R be a given σ-finite reference measure
where both measures are defined over the measurable space (X , σ(X )).

Further, let t(x) = {ti(x)}si=1 be a collection of measurable functions ti : X → R that
form the set of sufficient statistics for the random variable X. Thus, t : X → Rs is itself a
vector valued measurable function. Also, let Θ ⊆ Rs be defined as

Θ =
{
θ ∈ Rs

∣∣∣∣ ∫
X
e〈θ,t(x)〉dR <∞

}
,

where 〈θ, t(x)〉 denotes the inner product in Rs between θ and t(x). Based on this defintion
of Θ we can define a function Υ: Θ→ R as

Υ(θ) = log
(∫
X
e〈θ,t(x)〉dR

)
.

Finally, given a θ ∈ Θ we say that X is a member of the exponential family of random
variables that is parameterized by θ if its probability measure P is absolutely continuous
with respect to the σ-finite reference measureR and the resulting Radon-Nikodym derivative
of P with respect to R has the form

dP

dR
= e〈θ,t(x)〉−Υ(θ).

The definitions of the set Θ and the function Υ ensure that P is a well defined and
valid probability measure. The parameter θ is called the natural parameter and the set Θ
is called the natural parameter space. The function Υ is called the log-partition function
and it shall play an important role in the developments to follow. In some parts of the
research literature, θ is also called the exponential parameter or the canonical parameter,
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Θ is likewise called the exponential parameter space or the canonical parameter space, and
Υ is also called the cumulant function.

If X is a continuous random variable and the reference measure R is absolutely con-
tinuous with respect to the Lebesgue measure, then the probability measure P of X is
also absolutely continuous with respect to the Lebesgue measure and consequently has a
Radon-Nikodym derivative that is of the form

dP

dx
= e〈θ,t(x)〉−Υ(θ)r(x),

where dx indicates the Radon-Nikodym derivative taken with respect to the Lebesgue mea-
sure and r(x) is the Radon-Nikodym derivative of R with respect to the Lebesgue measure.
This guarantees that there exists a probability density function p(x; θ) = dP

dx for X and that
r : X → R+ is a measurable function. Similarly, if X is a discrete random variable and the
reference measure R is absolutely continuous with respect to the counting measure, then in
exactly the same manner as the continuous case, there exists a probability mass function
p(x; θ) = dP

dx for X.
Henceforth, with a slight abuse of notation we will use dx to denote Radon-Nikodym

derivatives taken with respect to both the Lebesgue and the counting measures, use the in-
tegral sign to denote both Lebesgue integrals and summations, and use the term probability
density function to refer to probability density functions and probability mass functions for
continuous and discrete random variables respectively. However, this should not cause any
confusion since what is implied ought to be clear from the context.

Since all the continous and discrete exponential families of practical interest have proba-
bility measures that are absolutely continuous with respect to the Lebesgue and the count-
ing measures respectively, we can effectively redefine the exponential families of random
variables as those having a probability density function of the form

p(x; θ) = e〈θ,t(x)〉−Υ(θ)r(x), (1)

where r : X → R+ is some positive function, θ ∈ Θ which is defined as

Θ =
{
θ ∈ Rs

∣∣∣∣ ∫
X
e〈θ,t(x)〉r(x)dx <∞

}
,

and Υ: Θ→ R is defined as

Υ(θ) = log
(∫
X
e〈θ,t(x)〉r(x)dx

)
. (2)

There are two important notions about an exponential family of random variables, those
of a regular family and a minimal representation. These are defined next.

A Regular Family: An exponential family is said to be regular if the natural parameter
space Θ is an open set. For regular exponential families, the log-partition function Υ is
uniquely determined upto a constant additive factor.

A Minimal Representation: An exponential family is said to have a minimal repre-
sentation if the components of the vector of sufficient statistics t(x) are affinely independent
almost everywhere, that is @ non-zero α ∈ Rs such that {α, t(x)} = β, (a constant) ∀x ∈ X
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upto a set of measure zero. For exponential families with a minimal representation, p(x; θ)
is uniquely determined for each natural parameter θ ∈ Θ.

Henceforth, we restrict our attention to regular exponential families with minimal rep-
resentation due to the uniquely identifiable nature of the log-partition function and the
natural parameter.

2.2 Properties of Θ and Υ

We next state some useful properties of the natural parameter space Θ and the log-partition
function Υ of a regular exponential family of random variables with a minimal representation
in terms of their connections to concepts from convex analysis.

Proposition 1 The log-partition function Υ: Θ→ R is a convex function of Legendre type,
that is, it satisfies the properties

• Θ is a non-empty and convex set.

• Υ is a proper, closed, strictly convex and differentiable function on Θ.

• ‖∇Υ(θ)‖ → ∞ as θ approaches the boundary of Θ.

As its alternate name implies, the log-partition function Υ is the cumulant generating
function of the random vector t(X).

Proposition 2 The log-partition function Υ: Θ → R is a C∞ function on Θ and is the
cumulant generating function of the random vector t(X). In particular we have

• ∇Υ(θ) = E[t(X)].

• ∇2Υ(θ) = E[t(X)t(X)T ]− E[t(X)]E[t(X)]T .

Since Υ is a C∞ function on Θ, we are also guaranteed the existence of mixed cumulants
of all orders for the random vector t(X).

2.3 Expectation And Conjugate Duality

Given a vector of sufficient statistics t(x), the set of all µ ∈ Rs such that µ is the expected
value of t(x) under some distribution that is absolutely continuous with respect to the
reference measure R is called the realizable mean parameter space M . Note that M is a
convex set.

From Proposition 2 we know that the gradient of the log-partition function∇Υ(θ) equals
the expected value of the the sufficient statistics of the exponential family distribution
indexed by θ. The gradient is then a mapping from Θ onto the relative interior of M . This
is somewhat surprising since the distribution in the definition of M was allowed to be an
arbitrary one. As a result for a given µ in the relative interior of M we can restrict our
attention to distributions of the exponential family.

In addition, the gradient mapping is one-to-one and hence invertible if and only if the
exponential family has a minimal representation. The invertibility of the gradient mapping
plays an important role in the conjugate function of the log-partition function and the
relationship between the spaces Θ and M . We discuss this conjugate function next.
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Family X r(x) dx t(x)
Bernoulli {0, 1} 1 Counting x

Binomial {0, 1, . . . , N}
(
N
x

)
2−N Counting x

Poisson {0, 1, . . .} 1
x! Counting x

Exponential R++ 1 Lebesgue −x

Gaussian Rd 1√
2π
d e
− ‖x‖

2

2 Lebesgue x

Family Θ Υ(θ) M Υ∗(µ)
Bernoulli R log(1 + eθ) [0, 1] µ logµ+ (1− µ) log(1− µ)
Binomial R N log

(
1+eθ

2

)
[0, N ] µ logµ+ (N − µ) log(N − µ) +N log

(
2
N

)
Poisson R eθ R+ µ logµ− µ

Exponential R++ − log θ R−− − log(−µ)− 1
Gaussian Rd 1

2‖θ‖
2 Rd 1

2‖µ‖
2

Table 1: Examples Of Exponential Families.

Definition 3 The conjugate function of Υ(θ) is defined as

Υ∗(µ) = sup
θ∈Θ

({µ, θ} −Υ(θ)).

The supremum in this definition is achieved when µ = ∇Υ(θ) and suppose µ lies in
the relative interior of M . If the gradient mapping is invertible which it will be if the
exponential family has a minimal representation, then the θ that achieves this supremum
is the one that corresponds to the realizable mean µ and is given by θ = (∇Υ)−1(µ).

Moreover, if the exponential family is regular in addition to having a minimal represen-
tation, then Υ(θ) is a convex function of Legendre type and so is Υ∗(µ). As a result Υ(θ)
can be written as the conjugate of it conjugate Υ∗(µ) in the form

Υ(θ) = sup
µ∈M

({θ, µ} −Υ∗(µ)).

The supremum in the above representation is achieved when θ = ∇Υ∗(µ). As Υ∗(µ) is
a convex function of Legendre type, it is strictly convex and differentiable and so ∇Υ∗(µ)
is strictly monotonic and invertible. Hence the supremum is achieved by µ = (∇Υ∗)−1(θ)
or the realizable mean µ that corresponds to the natural parameter θ. But we also have
the one-to-one gradient mapping. This gives us (∇Υ∗)−1 = ∇Υ. To summarize,

Proposition 4 If the exponential family is regular and has a minimal representation then

• Υ(θ) and Υ∗(µ) are convex functions of Legendre type and conjugates of one another.

• ∇Υ(θ) is a one-to-one mapping from Θ to M and ∇Υ∗(µ) is a one-to-one mapping
from M to Θ and the two gradient mappings are inverses of each other.
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3. The Multiplicative Mixture Model

We now describe the multiplicative mixture model and the resulting intractability of doing
maximum likelihood parameter estimation for it using a standard technique like expectation
maximization.

3.1 Model Description

Let the K underlying random variables that form the mixture components of our model
belong to the same known exponential family and θ̂ = {θk}Kk=1 be the corresponding natural
parameters. Thus p(x; θk) will be the probability density of the kth mixture component.
Also, let x ∈ X be an arbitrary observed data point, z be the corresponding binary mixture
vector, and zk be the kth component of z. Each zk is then associated with the kth mixture
component and its density p(x; θk). Under the multiplicative mixture model, the densities
associated with those components of z that are set to 1 are chosen to be multiplied together
and normalized to get the density according to which x is generated. Further, let q(x) be
some probability density that is also multiplied and normalized together with the chosen
mixture component densities. We choose a suitable q(x) to model background noise so that
if none of the mixture components are chosen to generate x, then x is generated according
to q(x).

Implicit in this formulation is the assumption that the product of the chosen densi-
tites and q(x) is integrable so that it can be normalized to get a valid probability density.
Unfortunately, the product of two or more densities is not guaranteed to be integrable.
However, if we assume that q(x) and {p(x; θk)}Kk=1 are bounded, then we are guaranteed
that a product of q(x) and any subset of the mixture component densitites is integrable .
This is formalized in the following Theorem.

Theorem 5 Let q(x) and {p(x; θk)}Kk=1 be bounded probability densities. Then we have∫
X
q(x)

∏
k∈K

p(x; θk) dx <∞ ∀K ⊆ {1, 2, . . . ,K}.

Proof See Appendix A.

Henceforth, we shall assume that the densities of the mixture components are bounded.
This is an extremely mild assumption since the densities of all discrete exponential families
will necessarily be bounded and those of all continuous exponential families of practical
interest are bounded. In particular, note that all the densities of the commonly encountered
exponential families listed in Table 1 are bounded.

Finally, let the K binary components of z be generated by K independent but not
identically distributed Bernoulli random variables which, as described in Table 1, form a
discrete exponential family. Let ζ̂ = {ζk}Kk=1 then be the corresponding natural parameters
with ζk being the natural parameter of the Bernoulli random variable that generates zk.
From the independence assumption we can express the joint density p(z) of z as

log p(z) =
K∑
k=1

ζkzk − log(1 + eζk). (3)
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Now, conditioned on a fixed configuration of z, we can express the conditional density
p(x|z) of x as

p(x|z) =

q(x)
K∏
k=1

p(x; θk)zk

∫
X
q(x)

K∏
k=1

p(x; θk)zkdx

.

From Theorem 5, this will be a well defined probability density. Taking a log on both
sides of the previous expression and substituting exponential family densities of the form
(1) into it, we get

log p(x|z) = log q(x) +
K∑
k=1

zk log p(x; θk)− log
(∫
X
q(x)

K∏
k=1

p(x; θk)zkdx
)
,

= log q(x) +
K∑
k=1

zk
[
〈θk, t(x)〉+ log r(x)

]
− log

(∫
X
q(x)

K∏
k=1

[
e〈θk,t(x)〉r(x)

]zkdx).
(4)

3.2 Intractability Of Expectation Maximization

The multiplicative mixture model can be viewed more generally as a probabilistic model
whose random variables are partitioned into two sets; one set consists of those variables
whose realizations are observed and the other set consists of those variables whose realiza-
tions are hidden. In our case, the data point x is observed and the corresponding binary
vector z that indicates which mixture components participated in generating x is hidden.
For such models, expectation maximization (McLachlan and Krishnan, 1996) is a stan-
dard technique that is widely employed to do maximum likelihood parameter estimation.
It consists of iteratively carrying out two successive steps known as the E-step and the
M-step until some empirical criteria for convergence is met at which point the iterations
are terminated and the algorithm stops. The incomplete log-likelihood function log p(x) is
guaranteed to increase after each iteration and so we asymptotically converge to a station-
ary point of log p(x). For each such iteration of expectation maximization to be tractable,
we need the E-step as well as the M-step to be tractable. Unfortunately, both steps are
intractable for the multiplicative mixture model. To see why this is so, let us consider each
step in turn.

In the E-step, we need to calculate the posterior density p(z|x) of z conditioned on
an observed x and to do this we will need to calculate the marginal density p(x) of x.
The intractability of doing so in evident from the integral term in (4). We encounter two
problems here. First, the integral may not be expressible in closed form for our choice of
q(x) and the exponential family from which the mixture components are drawn as a result
of which the E-step will become analytically intractable. Second, even if that integral was
expressible in closed form, the K components of z will be coupled together in that expression
in such a way that we will need to explicitly sum over all 2K possible configurations of z in
order to calculate p(x) and hence p(z|x). Thus, even if the E-step is analytically tractable,
it will become computationally intractable.
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In the M-step, we need to calculate the expectation of the complete log-likelihood func-
tion log p(x, z) with respect to the posterior density p(z|x) that we get in the E-step and then
maximize the resulting expected value over the model parameters θ̂ and ζ̂. Here, we again
encounter the same problems as before. First, log p(x, z) may not be expressible in close
form due to the integral term in (4) which will make the M-step analytically intractable.
Second, even if it was expressible in closed form, the resulting expression will have have
the K components of z coupled together in such a way that calculating the expectation
of log p(x, z) with respect to any probability density over z, even a fully factorized one,
will require us to explicitly sum over all 2K possible configurations of z. After taking this
expectation, we are still left with the problem of maximizing an objective function that
consists of a sum of 2K different terms. Hence, even if the M-step is analytically tractable,
it will become computationally intractable.

4. Approximate Maximum Likelihood Parameter Estimation

As we saw in the last section, using expectation maximization to do exact maximum like-
lihood parameter estimation is intractable for the multiplicative mixture model. As an
alternative, in this section we develop a tractable deterministic technique to do approxi-
mate instead of exact maximum likelihood parameter estimation. We do so by introducing
additional free variables in a systematic manner in order to construct a closed form lower
bound on the incomplete log-likelihood function log p(x). This lower bound will be in a form
such that we can iteratively increase it in a tractable manner. However, this tractability
does come at a cost. We now have additional free variables whose values must be deter-
mined and since we are increasing a lower bound on log p(x) at each iteration, our parameter
estimation technique will converge to a stationary point of this lower bound. Unfortunately,
that is not guaranteed to be a stationary point of log p(x) itself.

4.1 Constucting A Lower Bound On The Incomplete Log-Likelihood

We can get a closed form lower bound on the problematic integral in (4) by using the
perspective function of the log-partition function Υ that is associated with the exponential
family from which our mixture components are drawn. In addition, the components of z
will become uncoupled in this lower bound which will let us efficiently marginalize it out
later on. This lower bound is given in the following theorem.

Theorem 6 Let q(x) ≤ 1 and r(x) ≤ 1. If â = {ak}Kk=1 is such that each ak ∈ [0, 1] and∑K
k=1 ak = 1, then we have

− log
(∫
X
q(x)

K∏
k=1

[
e〈θk,t(x)〉r(x)

]zkdx) ≥ − K∑
k=1

zkakΥ
(
θk
ak

)
, (5)

where, for any ak = 0 we define

akΥ
(
θk
ak

)
= log

(
ess sup
X

e〈θk,t(x)〉r(x)
)
.
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Proof See Appendix B.

The two conditions required for the lower bound in (5) to hold are rather mild. Since
the choice of q(x) is entirely upto us, we can always choose one that satifies q(x) ≤ 1.
Enforcing this condition might actually be desirable since we ought to choose a background
noise distribution that is evenly spread out over the sample space and not concentrated
in a few regions. Also, this condition will necessarily hold for a discrete q(x). Similarly,
the condition on r(x) is also rather mild and is satisfied by most exponential families of
practical interest. In particular, note that it is satisfied by all the commonly encountered
families listed in Table 1. Moreover, if a given exponential family does not satisfy r(x) ≤ 1,
then we can always scale r(x) by an appropriate constant factor and absorb its reciprocal
into the log-partition function Υ.

We can now use the bound from Theorem 6 to construct a lower bound on the complete
log-likelihood function log p(x, z). This lower bound will be in a form such that marginaliza-
tion over the z present in it can be done in an efficient manner to give us a closed form lower
bound on the incomplete log-likelihood function log p(x). It is this second bound that we
are ultimately interested in for our approximate maximum likelihood parameter estimation
problem. Let us begin by substituting (5) into (4) to get a lower bound on the conditional
density p(x|z) of x that has the form

log p(x|z) ≥ log q(x) +
K∑
k=1

zk

[
〈θk, t(x)〉 − akΥ

(
θk
ak

)
+ log r(x)

]
.

Next, adding (3) into the previous expression, we get a lower bound on the complete
log-likelihood function log p(x, z) that can be expressed as

log p(x, z) ≥ log q(x) +
K∑
k=1

zk

[
ζk + 〈θk, t(x)〉 − akΥ

(
θk
ak

)
+ log r(x)

]
− log(1 + eζk). (6)

After exponentiating both sides, we get a lower bound on the joint density p(x, z) of x
and z that has the form

p(x, z) ≥ q(x)
K∏
k=1

e
zk

[
ζk+〈θk,t(x)〉−akΥ

(
θk
ak

)
+log r(x)

]
1 + eζk

.

In the previous expression, we can see that the components of z have become uncoupled
in the lower bound on the joint density. This will let us efficiently marginalize out the z to
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get a closed form lower bound on the density p(x) of x in the following way.

p(x) =
∑
z

p(x, z),

(i)

≥
∑
z

q(x)
K∏
k=1

e
zk

[
ζk+〈θk,t(x)〉−akΥ

(
θk
ak

)
+log r(x)

]
1 + eζk

,

=
1∑

z1=0

1∑
z2=0

· · ·
1∑

zK=0

q(x)
K∏
k=1

e
zk

[
ζk+〈θk,t(x)〉−akΥ

(
θk
ak

)
+log r(x)

]
1 + eζk

,

(ii)
= q(x)

K∏
k=1

1∑
zk=0

e
zk

[
ζk+〈θk,t(x)〉−akΥ

(
θk
ak

)
+log r(x)

]
1 + eζk

,

= q(x)
K∏
k=1

1 + e

[
ζk+〈θk,t(x)〉−akΥ

(
θk
ak

)
+log r(x)

]
1 + eζk

,

where, the inequality in step (i) follows from the previous lower bound on p(x, z) and
exchanging the product and summations in step (ii) follows since each zk appears in one
and only one unique term within the product.

Taking a log on both sides, we get a lower bound on the incomplete log-likelihood
function log p(x) that has the form

log p(x) ≥ log q(x) +
K∑
k=1

log
(

1 + e

[
ζk+〈θk,t(x)〉−akΥ

(
θk
ak

)
+log r(x)

])
− log(1 + eζk). (7)

We now have a closed form lower bound on log p(x). Unfortunately, it has some unde-
sirable properties. It is not concave in its variables and we would like to have a concave
objective function in a maximization problem. Moreover, it is not even concave in any
subset of its variables when the remaining ones are held fixed. In particular, note that if
any two sets of variables out of {θ̂, ζ̂, â} are held fixed, then this lower bound is still not
concave in the third set of variables. Thus, in order to iteratively increase (7), we will need
to resort to some gradient ascent technique from non-linear programming. However, we do
not need to do this. The lack of concavity is not as serious an obstacle as it might seem at
first glance. We can exploit the variational characterization of the negative binary entropy
function in terms of its convex conjugate to get a lower bound on (7) that can not only be
made exact but also have the desired concavity properties. This lower bound is given in
the following Lemma.

Lemma 7 Let h∗ : R→ R++ be the function h∗(y) = log(1 + ey) and h : [0, 1]→ [− log 2, 0]
be the negative binary entropy function h(b) = b log b + (1 − b) log(1 − b). Then h∗ and h
are convex conjugates of one another and for y ∈ R, b ∈ [0, 1], we will have

h∗(y) = max
b∈[0,1]

{by − h(b)} where arg max
b∈[0,1]

{by − h(b)} =
1

1 + e−y
, (8)

h(b) = max
y∈R
{by − h∗(y)} where arg max

y∈R
{by − h∗(y)} = log

(
b

1− b

)
, (9)

11
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and
h∗(y) + h(b) ≥ by. (10)

Proof See Appendix C.

We can now use the bound from Lemma 7 to construct a lower bound on log p(x). Let
b̂ = {bk}Kk=1 be such that each bk ∈ [0, 1]. Substituting (10) into (7) and using a unique
bk from b̂ for each one of the K terms in the summation, we get a lower bound on the
incomplete log-likelihood function that has the form

log p(x) ≥ log q(x)+
K∑
k=1

bk

[
ζk+〈θk, t(x)〉−akΥ

(
θk
ak

)
+log r(x)

]
−h(bk)−log(1+eζk). (11)

We now have a closed form lower bound on log p(x) that has the desired concavity
properties. While it is still not concave in all its variables, the bound in (11) is concave in
any one set of variables out of {θ̂, ζ̂, â, b̂} when the other three sets of variables are held fixed.
Also, the set of all feasible values for each one of the four sets of variables is a convex set.
This suggests a straightforward block co-ordinate ascent scheme to iteratively increase this
lower bound since maximizing the objective function along any one block of co-ordinates
will reduce to a somewhat simple convex program for most exponential families. Moreover,
as we shall see later on, the particular form of this lower bound will lead to a very natural
and intuitive cluster assignment rule.

4.2 Extending The Lower Bound To An Entire Dataset

So far, we have only considered a single observed data point x that is generated by the
multiplicative mixture model and a lower bound on its incomplete log-likelihood function
log p(x). Since our model generates all the observed data points in an independent and
identical manner, we can construct a lower bound on the log-likelihood of an entire dataset
in a rather straightforward fashion. Let D be a dataset consisting of N observed data points.
A direct use of the lower bound in (11) will require us to introduce a new pair of the free
variables {â, b̂} for each one of the N data points. Doing this might be computationally
too demanding for very large data sets. Hence, we will introduce the free variables in more
controlled and scalable manner.

Let us split the dataset D into M partitions and let Dm be the mth partition with Nm

data points in it. Instead of introducing Nm pairs of free variables, one for each data point,
we will introduce just one pair {âm, b̂m} of free variables for all the data points in Dm. In
this way, by sharing free variables among the data points, we can control their number in
the lower bound on the log-likelihood. However, this control does come at a cost. Reducing
the number of free variables will result in a looser lower bound on the log-likelihood which
will then adversely affect the quality of our approximate maximum likelihood parameter
estimates. This is undesirable and so we should select a M as high as possible within the
constraints of the available computing resources.

Let {âm, b̂m} = {amk, bmk}Kk=1 be the free variables for the mth data partition Dm.
Then, we can get a lower bound on the incomplete log-likelihood function of all the data

12
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points in Dm by using the lower bound on log p(x) as follows.

log p(Dm) =
∑
x∈Dm

log p(x),

(i)

≥ qm +Nm

K∑
k=1

bmk

[
ζk + 〈θk, tm〉 − amkΥ

(
θk
amk

)
+ rm

]
− h(bmk)− log(1 + eζk),

(12)

where, the inequality in step (i) follows from the lower bound in (11) and from a summation
over all the data points in Dm while holding {θ̂, ζ̂, âm, b̂m} fixed. The constants qm, tm, and
rm depend upon the data partition Dm and are defined as

qm =
∑
x∈Dm

log q(x),

tm =
1
Nm

∑
x∈Dm

t(x),

rm =
1
Nm

∑
x∈Dm

log r(x).

Finally, we can get a lower bound on the incomplete log-likelihood function of all the
data points in our dataset D by using the lower bound on log p(Dm) as follows.

log p(D) =
M∑
m=1

log p(Dm),

(i)

≥ q +
M∑
m=1

Nm

K∑
k=1

bmk

[
ζk + 〈θk, tm〉 − amkΥ

(
θk
amk

)
+ rm

]
− h(bmk)− log(1 + eζk),

(13)

where, the inequality in step (i) follows from the lower bound in (12) and from a summation
over all the data partitions Dm. The constant q depends upon all the data points in D and
is defined as

q =
M∑
m=1

qm.

Maximizing the lower bound in (13) will give us the approximate maximum likelihood
estimates of the model parameters θ̂ and ζ̂ that we are ultimately interested in. In addition,
the values of the free parameters at this maximum will also be of interest to us when we
devise an overlapping clustering algorithm for the dataset D.

4.3 Iteratively Increasing The Lower Bound

We now look at how to maximize the lower bound in (13) on the incomplete log-likelihood
function log p(D) of the dataset D. For the sake of notational convenience, let us define
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the function L to be this lower bound. In order to keep our notation uncluttered, we will
suppress the dependence of L on the variables θ̂, ζ̂, {âm}Mm=1, and {b̂m}Mm=1 that define it.
These variables will be left implicit whenever we refer to L. Thus we have

L = q +
M∑
m=1

Nm

K∑
k=1

bmk

[
ζk + 〈θk, tm〉 − amkΥ

(
θk
amk

)
+ rm

]
− h(bmk)− log(1 + eζk). (14)

Since L is not a concave function, we can not expect to find its global maximum and
so we will have to settle for a local maximum instead. Even though L may not be concave,
it will be concave in any one set of variables out of θ̂, ζ̂, {âm}Mm=1, and {b̂m}Mm=1 when
the other three sets of variables are held fixed. Also, the set of all feasible values for each
one of the four sets of variables is a convex set. Quite unsurprisingly, L has analogous
concavity properties to the lower bound in (11) on the log-likelihood of a single data point.
As mentioned before, this suggests a natural block co-ordinate ascent scheme to iteratively
increase L since maximizing it along any one block of co-ordinates will reduce to a relatively
simple convex program for most choices of exponential families. Also, we can verify in a
rather straighforward manner that L is a continuously differentiable function of all its
variables.

Let us now turn our attention to maximizing L over any one out of its four sets of
variables when the other three are held fixed. We begin with the natural parameters ζ̂ of
the independent Bernoulli random variables that generate z. From the definition of L in
(14), we will have

max
ζ̂
L = max

ζ̂

M∑
m=1

Nm

K∑
k=1

bmkζk − log(1 + eζk),

(i)
= max

ζ̂

K∑
k=1

[
ζk

( M∑
m=1

Nm

N
bmk

)
− log(1 + eζk)

]
,

where, step (i) follows from exchanging the two summations and using the fact that∑M
m=1Nm = N is a positive constant that we can divide by without changing where the

maximum is attained. Since the objective function here decomposes into an uncoupled sum
over the K components {ζk}Kk=1 of ζ̂, we can maximize it over ζ̂ by independently maximiz-
ing it over each individual ζk. Using result (9) from Lemma 7, we can express the solution
to this maximization problem and thus the update rule for each one of the K components
of ζ̂ as

arg max
ζk

L = log

( ∑M
m=1Nmbmk

N −
∑M

m=1Nmbmk

)
. (15)

Next, we look at maximizing L over the free variables {b̂m}Mm=1. From its definition in
(14), we can see that as a function of {b̂m}Mm=1 when the other three sets of variables are
held fixed, L will decompose into an uncoupled sum over the the M data partitions Dm.
Thus we can maximize L over {b̂m}Mm=1 by independently maximizing it over each b̂m. This
maximization can be expressed as

max
b̂m

L = max
b̂m

K∑
k=1

bmk

[
ζk + 〈θk, tm〉 − amkΥ

(
θk
amk

)
+ rm

]
− h(bmk),

14
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where, we have divided out the positive constant Nm as it will not change where the max-
imum is attained. Here as well, the objective function decomposes into an uncoupled sum
over the K components {bmk}Kk=1 of b̂m. Hence we can maximize it over b̂m by maximizing
it individually over each bmk. Using result (8) from Lemma 7, we can express the solution
to this maximization problem and thus the update rule for each one of the K components
of b̂m in the form

arg max
bmk

L =
1

1 + e
−
[
ζk+〈θk,tm〉−amkΥ

(
θk
amk

)
+rm

] . (16)

Now, we look at maximizing L over the natural parameters θ̂ of the mixture components.
From (14) we will get

max
θ̂
L = max

θ̂

M∑
m=1

Nm

K∑
k=1

bmk

[
〈θk, tm〉 − amkΥ

(
θk
amk

)]
,

(i)
= max

θ̂

K∑
k=1

[〈
θk,

M∑
m=1

Nmbmktm

〉
−

M∑
m=1

NmbmkamkΥ
(
θk
amk

)]
,

where step (i) follows from exchanging the two summations and using the linearity of an
inner product. As before, we can see that the objective function will decompose into an
uncoupled sum over the K components {θk}Kk=1 of θ̂ and so, we can maximize it over
θ̂ by independently maximizing it over each individual θk. Unfortunately, unlike the two
previous maximizations, we can not express the solution to this problem in closed form. This
is because, the solution will heavily depend upon the nature of the log-partition function
Υ and hence the choice of the exponential family from which the mixture components are
drawn. Nonetheless this is a convex program and it will have a unique solution. We can
still express the update rule for each one of the K components of θ̂ as

arg max
θk

L = arg max
θk

[〈
θk,

M∑
m=1

Nmbmktm

〉
−

M∑
m=1

NmbmkamkΥ
(
θk
amk

)]
. (17)

Finally, we look at maximizing L over the free variables {âm}Mm=1. From (14), we can
see that L will decompose into an uncoupled sum over the the M data partitions Dm when
{âm}Mm=1 is allowed to vary and the other three sets of variables are held fixed. Thus
we can maximize L over {âm}Mm=1 by independently maximizing it over each âm. This
maximization will be of the form

max
âm

L = max
âm

K∑
k=1

−bmkamkΥ
(
θk
amk

)
,

where, we have divided out the positive constant Nm since it will not change the location of
the maxima. Unlike the previous three maximizations, the objective function here will not
decompose into an uncoupled sum over the K components {amk}Kk=1 of âm. This is because
of the

∑K
k=1 amk = 1 constraint from Theorem 6. Hence we will have to maximize it jointly
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over the amk. Moreover, we will not be able to express the solution to this maximization in
closed form due to its heavy dependence on the nature of the log-partition function of our
chosen exponential family. However, it is a convex program and will have a unique solution.
We can still write the update rule for âm as

arg max
âm

L = arg max
K∑
k=1

−bmkamkΥ
(
θk
amk

)
, (18)

s.t.
K∑
k=1

amk = 1, amk ≥ 0.

It is clear from the update rules for the variables that our objective function will increase
after each iteration of the update cycle. Moreover, the concavity of L along each set of
variables and the fact that it is continuously differentiable over all the variables will also
guarantee that the sequence of iterates generated in this manner will converge to a local
maximum of L. This is convergence guarantee formalized in the following lemma.

Lemma 8 Every limit point of the sequence of iterates generated by the update cycle given
in (15), (16), (17), and (18) is a stationary point of L.

Proof See Bertsekas (1999, Proposition 2.7.1).

5. An Overlapping Clustering Algorithm

We can use the approximate maximum likelihood parameter estimation scheme developed
in the previous section to derive an overlapping clustering algorithm for which the multi-
plicative mixture model serves as a generative model. Our clustering algorithm will return
a hard clustering of the dataset D, that is, each data point will either be included in or
excluded from each cluster. Each one of the K mixture components in our multiplicative
model corresponds to one cluster and each data point can simultaneously belong to any
subset of the these K clusters.

Our clustering algorithm proceeds in two distinct stages. First, we obtain approximate
maximum likelihood estimates of the model parameters θ̂ and ζ̂ along the associated free
variables {âm, b̂m}Mm=1 using the block co-ordinate ascent scheme described in the previous
section. Next, we infer the cluster assignments. The binary mixture vector z associated
with each data point x encodes which mixture components participated in generating x,
it will encode which clusters x belongs to. Since z is hidden from us, the most obvious
and natural estimate of z given a particular x would be the one that had the maximum
probability of occuring conditioned on the observed x. Thus the cluster assignment for the
data point x will be given by the maximum aposteriori probability estimate of z that is
given by

arg max
z

p(z|x).

However, as we saw in Section 3, calculating p(z|x) for a single z becomes intractable.
Hence maximizing p(z|x) over all 2K possible configurations of z is clearly intractable as
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well. As an alternative to maximizing p(z|x), we will instead maximize a lower bound on
it. The form of this lower bound will be such that maximizing it over all configurations of z
can be done in a tractable manner. This is in the same spirit as our approximate maximum
likelihood estimation scheme, where instead of maximizing the log-likelihood of the dataset,
we maximized a lower bound on it. We proceed as follows

arg max
z

p(z|x) = arg max
z

p(x, z)
p(x)

,

(i)
= arg max

z
p(x, z),

(ii)
= arg max

z
log p(x, z).

where, step (i) follows since for a particular x, p(x) is a positive constant independent of z
and hence it will not change the z at which the maximum is achieved and step (ii) follows
since the log(·) function is strictly monotone increasing.

We have already derived a lower bound given in (6) on the complete log-likelihood
function log p(x, z) of a particular data point x. We will maximize this lower bound over all
possible configurations of z to get the cluster assignments for x. For the sake of notational
convenience, let us define the function J to be this lower bound. Then, from (6), we will
have

J = log q(x) +
K∑
k=1

zk

[
ζk + 〈θk, t(x)〉 − akΥ

(
θk
ak

)
+ log r(x)

]
− log(1 + eζk).

where, the free variables â = {ak}Kk=1 and b̂ = {bk}Kk=1 are the ones associated with the
data partition that x lies in and their values are taken to be those at the termination of the
block co-ordinate ascent iterations.

Maximizing J over the z, we get

arg max
z

J = arg max
z

K∑
k=1

zk

[
ζk + 〈θk, t(x)〉 − akΥ

(
θk
ak

)
+ log r(x)

]
,

We can see that the objective function for this maximization problem has decomposed
into an uncoupled sum over the K mixture components that correspond to the K clusters.
Hence we can maximize J over all possible configurations of z by independently maximizing
it over each individual component zk of z. Thus maximizing z will reduce to individually
maximizing zkJk(x) over zk, where the functions Jk(x) are defined as

Jk(x) =
[
ζk + 〈θk, t(x)〉 − akΥ

(
θk
ak

)
+ log r(x)

]
.

Since, each zk can be either 0 or 1, Jk(x) will be maximized by zk = 0 if Jk(x) ≤ 0 and
conversely, Jk(x) will be maximized by zk = 1 if Jk(x) > 0. This assignment of zk based
on the sign of Jk(x) will then be our cluster assignment rule. This has a very natural and
intuitive interpretation. For every data point x, the model parameters θ̂ and ζ̂, along with
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the free variables â of the data partition that x lies in will together determine a decision
region for each on the K clusters. The boundaries of these K decision regions will be given
by Jk(x) = 0. If x lies inside the decision region for the kth cluster, that is if Jk(x) > 0,
then x is included in the kth cluster. Otherwise, x is excluded from that cluster. This is
done one after the other for the decision regions of all K clusters.
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Appendix A. Proof Of Theorem 5

In this appendix we prove Theorem 5 from Section 3. We begin with a basic result from
real analysis that will be useful in the proof.

Proposition 9 (Tchebyshev’s Inequality) Let f : X → R+ be a non-negative and mea-
surable function on X ⊆ Rd. If α > 0, then we have

|{x ∈ X | f(x) > α}| ≤ 1
α

∫
X
f(x)dx,

where |·| denotes the Lebesgue measure of a set.

Proof See Wheeden and Zygmund (1977, Corollary 5.12).

Next, we present a proof of Theorem 5. For the sake of readability, we repeat the state-
ment of the theorem before presenting its proof.

Theorem Let q(x) and {p(x; θk)}Kk=1 be bounded probability densities. Then we have

∫
X
q(x)

∏
k∈K

p(x; θk) dx <∞ ∀K ⊆ {1, 2, . . . ,K}.

Proof Let us fix an arbitrary subset K of {1, 2, . . . ,K} and define the following sets:

Yq = {x ∈ X | q(x) > 1},
Yk = {x ∈ X | p(x; θk) > 1},

YK = Yq ∪
⋃
k∈K
Yk.
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Then, from Tchebyshev’s inequality with α = 1 and the subadditivity of the Lebesgue
measure, we get

|Yq| ≤
∫
X
q(x)dx = 1,

|Yk| ≤
∫
X
p(x; θk)dx = 1,

|YK| ≤ |Yq|+
∑
k∈K
|Yk| ≤ 1 + |K|, (19)

where, with a slight abuse of notation, |K| denotes the number of elements in the set K.
Our use of |·| to denote the Lebesgue measure of a set as well as the number of elements
in a finite set should not cause any confusion since which one is implied ought to be clear
from the set in question.

From the defintion of YK we can see that if x /∈ YK, that is if x ∈ X \YK, then q(x) ≤ 1
and p(x; θk) ≤ 1 for each k ∈ K. Thus

q(x)
∏
k∈K

p(x; θk) ≤ q(x) ∀x ∈ X \ YK. (20)

Finally, we have that q(x) and {p(x; θk)}Kk=1 are bounded probability densities. Thus
there exists a finite B > 0 such that for each x ∈ X we have

q(x) ≤ B, (21)
p(x; θk) ≤ B. (22)

We now have the necessary ingredients to construct a finite upper bound on the integral
in the statement of the theorem and thereby show that it is finite. We proceed as follows.∫

X
q(x)

∏
k∈K

p(x; θk) dx =
∫
YK
q(x)

∏
k∈K

p(x; θk) dx+
∫
X\YK

q(x)
∏
k∈K

p(x; θk) dx,

(i)

≤ B1+|K|
∫
YK
dx+

∫
X\YK

q(x)dx,

(ii)

≤ B1+|K||YK|+
∫
X
q(x)dx,

(iii)

≤ (1 + |K|)B1+|K| + 1,
<∞.

where, the inequality in step (i) follows from the upper bounds in (20), (21), and (22), the
inequality in step (ii) follows since X \YK ⊆ X , and the final inequality in step (iii) follows
from the upper bound in (19).

Since the subset K that we fixed at the begining of the proof was an arbitrary one, the
argument presented above will hold for any K. Hence the integral in the statement of the
theorem will be finite for all subsets K of {1, 2, . . . ,K}. This completes the proof.
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Appendix B. Proof Of Theorem 6

In this appendix we prove Theorem 6 from Section 4. We begin with a basic result from
real analysis that will play a key role in the proof.

Proposition 10 (Hölder’s Inequality) Let {fk}Kk=1 be a collection of measurable func-
tions fk : X → R on X ⊆ Rd. If α̂ = {αk}Kk=1 is such that each αk ∈ [1,∞] and∑K

k=1
1
αk

= 1, then we have

∫
X

K∏
k=1

|fk(x)|dx ≤
K∏
k=1

(∫
X
|fk(x)|αkdx

) 1
αk
,

where |·| denotes the absolute value and by standard convention, for αk = ∞ we define
1
αk

= 0 and (∫
X
|fk(x)|αkdx

) 1
αk

= ess sup
X
|fk|.

Proof See Wheeden and Zygmund (1977, Theorem 8.6) and use induction on K.

Next, we present a proof of Theorem 6. For the sake of readability, we repeat the state-
ment of the theorem before presenting its proof.

Theorem Let q(x) ≤ 1 and r(x) ≤ 1. If â = {ak}Kk=1 is such that each ak ∈ [0, 1] and∑K
k=1 ak = 1, then we have

− log
(∫
X
q(x)

K∏
k=1

[
e〈θk,t(x)〉r(x)

]zkdx) ≥ − K∑
k=1

zkakΥ
(
θk
ak

)
,

where, for any ak = 0 we define

akΥ
(
θk
ak

)
= log

(
ess sup
X

e〈θk,t(x)〉r(x)
)
.

Proof Let us fix an arbitrary z and let K ⊆ {1, 2, . . . ,K} denote which of its components
are set to 1. Thus for this configuration of z, we will have zk = 1 if k ∈ K and zk = 0
if k /∈ K. We can see that there will be a unique K corresponding to each one of the 2K

possible configurations of z. Further, for a given â that is held fixed, let us define

aq = 1−
∑
k∈K

ak.

From the definition of â, we have that each ak ≥ 0 and since K ⊆ {1, 2, . . . ,K}, we will
additionally have ∑

k∈K
ak ≤

K∑
k=1

ak = 1.
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Combining these two observations with the definition of aq, we can see that aq ∈ [0, 1].
Thus, for the reciprocals of aq and {ak}k∈K, we will get

1
aq
≥ 1,

1
ak
≥ 1, (23)

aq +
∑
k∈K

ak = 1. (24)

We now have a valid set of exponents for which Hölder’s inequality is applicable. For
the configuration of z that was fixed at the begining of the proof, we can start constructing
a bound on the integral in the statement of the theorem as follows.

∫
X
q(x)

K∏
k=1

[
e〈θk,t(x)〉r(x)

]zkdx =
∫
X
q(x)

∏
k∈K

e〈θk,t(x)〉r(x)dx,

(i)

≤
(∫
X
q(x)

1
aq dx

)aq ∏
k∈K

(∫
X
e

〈
θk
ak
,t(x)
〉
r(x)

1
ak dx

)ak
, (25)

where, the inequality in step (i) follows from (23), (24), and Hölder’s inequality. Note
that since our functions are probability densities, they will all be non-negative and so we
can dispense with the absolute value signs. Just as in Hölder’s inequality, by standard
convention, for any ak = 0 we define 1

ak
=∞ and(∫

X
e

〈
θk
ak
,t(x)
〉
r(x)

1
ak dx

)ak
= ess sup

X
e〈θk,t(x)〉r(x).

Let us now turn our attention to the leading term of (25). As aq ∈ [0, 1], there are two
possibilities: aq ∈ (0, 1] and aq = 0. First, suppose that aq ∈ (0, 1]. Since q(x) ≤ 1 and
1
aq
≥ 1, we will have (∫

X
q(x)

1
aq dx

)aq
≤
(∫
X
q(x)dx

)aq
= 1.

Next, suppose that aq = 0. Since q(x) ≤ 1, we will have(∫
X
q(x)

1
aq dx

)aq
= ess sup

X
q(x) ≤ 1.

Hence in either case, for aq ∈ [0, 1] we get(∫
X
q(x)

1
aq dx

)aq
≤ 1. (26)

Moreover, since r(x) ≤ 1 and each 1
ak
≥ 1, we also get

r(x)
1
ak ≤ r(x). (27)
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Using the previous two results, we can get a further bound on the previous upper bound
in (25) on the integral in the statement of the Theorem. We proceed as follows.(∫

X
q(x)

1
aq dx

)aq ∏
k∈K

(∫
X
e

〈
θk
ak
,t(x)
〉
r(x)

1
ak dx

)ak (i)

≤
∏
k∈K

(∫
X
e

〈
θk
ak
,t(x)
〉
r(x)

1
ak dx

)ak
,

(ii)

≤
∏
k∈K

(∫
X
e

〈
θk
ak
,t(x)
〉
r(x)dx

)ak
, (28)

where, the inequality in step (i) follows from the upper bound in (26) and the inequality in
step (ii) follows from the upper bound in (27).

Taking a log on the right-hand side of the the previous expression, multiplying it by −1,
and using the definition of the log-partition function Υ given in (2), we get

− log
(∏
k∈K

(∫
X
e

〈
θk
ak
,t(x)
〉
r(x)dx

)ak)
= −

∑
k∈K

akΥ
(
θk
ak

)
,

(i)
= −

∑
k∈K

zkakΥ
(
θk
ak

)
−
∑
k/∈K

zkakΥ
(
θk
ak

)
,

= −
K∑
k=1

zkakΥ
(
θk
ak

)
, (29)

where, the equality in step (i) follows since zk = 1 for k ∈ K and zk = 0 for k /∈ K according
to the configuration of z that we fixed at the begining of the proof. If any ak = 0, then we
can simply define

akΥ
(
θk
ak

)
= log

(
ess sup
X

e〈θk,t(x)〉r(x)
)
.

Finally, combining the bounds in (25) and (28) together with the expression in (29) and
using the fact that the − log(·) function is monotone decreasing, we get the following lower
bound.

− log
(∫
X
q(x)

K∏
k=1

[
e〈θk,t(x)〉r(x)

]zkdx) ≥ − K∑
k=1

zkakΥ
(
θk
ak

)
.

Note that the lower bound in the previous expression is not dependent on a particular
K and hence a particular configuration of z. It will hold for any arbitrary K ⊆ {1, 2, . . . ,K}
and hence any arbitrary configuration of z since there is a unique K corresponding to each
possible configuration of z. Thus, the final lower bound will hold for all 2K possible config-
urations of z. This completes the proof.

Appendix C. Proof Of Lemma 7

In this appendix we prove Lemma 7 from Section 4. For the sake of readability, we repeat
the statement of the lemma before presenting its proof.
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Lemma Let h∗ : R → R++ be the function h∗(y) = log(1 + ey) and h : [0, 1] → [− log 2, 0]
be the negative binary entropy function h(b) = b log b + (1 − b) log(1 − b). Then h∗ and h
are convex conjugates of one another and for y ∈ R, b ∈ [0, 1], we will have

h∗(y) = max
b∈[0,1]

{by − h(b)} where arg max
b∈[0,1]

{by − h(b)} =
1

1 + e−y
,

h(b) = max
y∈R
{by − h∗(y)} where arg max

y∈R
{by − h∗(y)} = log

(
b

1− b

)
,

and
h∗(y) + h(b) ≥ by.

Proof We can clearly see that h is a proper, continuously differentiable and thereby closed
function. Also, we can verify via its second derivative, that h is a convex function as well.
Its convex conjugate, or Legendre transform, is then defined by

sup
b∈[0,1]

{by − h(b)}.

This supremum will be finite and achievable for all y ∈ R. Hence, the convex conjugate
of h is defined for each y ∈ R and we can replace the sup with a max. Since h is a convex
function, this maximum will be uniquely achieved. Setting the first derivative of the term
within the sup in the previous expression to zero, we get

y − log
(

b

1− b

)
= 0,

and solving this equation for b we get

b =
1

1 + e−y
.

We can see that this b lies in the interval [0, 1] and that the first derivative of the function
to be maximized is zero at it. Combined with the convexity of h, we can conclude that

arg max
b∈[0,1]

{by − h(b)} =
1

1 + e−y
.

Now, substituting the optimal value of b into the function to be maximized, we get

max
b∈[0,1]

{by − h(b)} =
y

1 + e−y
− 1

1 + e−y
log
(

1
1 + e−y

)
− e−y

1 + e−y
log
(

e−y

1 + e−y

)
,

=
yey

1 + ey
− yey

1 + ey
+

ey

1 + ey
log(1 + ey) +

1
1 + ey

log(1 + ey),

= log(1 + ey),
= h∗(y).
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We will proceed in exactly the same way for h∗ as we did for h. It is a proper, continu-
ously differentiable and thereby closed function. In addition, it is a convex function as well.
The convex conjugate, or Legendre transform, of h∗ is then defined by

sup
y∈R
{by − h∗(y)}.

This supremum will be finite and achievable if b ∈ [0, 1]. Hence, the convex conjugate
of h∗ is defined for b ∈ [0, 1] in which case we can replace the sup with a max. Since h∗ is
a convex function, this maximum will be uniquely achieved. Setting the first derivative of
the term within the sup in the previous expression to zero, we get

b− 1
1 + e−y

= 0,

and solving this equation for y we get

y = log
(

b

1− b

)
.

We can see that this y is a well defined real number and that the first derivative of the
function to be maximized is zero at it. Combined with the convexity of h∗, we can conclude
that

arg max
y∈R

{by − h∗(y)} = log
(

b

1− b

)
.

Now, substituting the optimal value of y into the function to be maximized, we get

max
y∈R
{by − h∗(y)} = b log

(
b

1− b

)
− log

(
1 +

b

1− b

)
,

= b log b− b log(1− b)− log
(

1
1− b

)
,

= b log b+ (1− b) log(1− b),
= h(b).

Finally, from Fenchel’s inequality for a proper convex function and its conjugate, we get

h∗(y) + h(b) ≥ by.

This completes the proof.
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