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Abstract. In this paper, we present a new synthesis method based on
the novel concept of constraint annotated tree automaton (CATA). A
CATA is a variant of a finite tree automaton (FTA) where the accep-
tance of a term by the automaton is conditioned upon the logical satis-
fiability of a formula. In the context of program synthesis, CATAs allow
the construction of a more precise version space than FTAs by ruling
out programs that make inconsistent assumptions about the unknown
semantics of functions under synthesis. We apply our proposed algo-
rithm to synthesizing recursive (or mutually recursive) procedures from
relational specifications and demonstrate that our method allows solving
synthesis problems that are beyond the scope of existing approaches.

1 Introduction

Program synthesis, the task of automatically generating programs that meet
a given specification, has found numerous applications, including both user-
facing domains like data science [15, 16, 47, 48] as well as software engineering
tasks [21, 32, 36, 37, 40]. Program synthesizers can be classified among two dimen-
sions, namely (1) whether they target a domain-specific or general programming
language, and (2) what type of specification they require. Many synthesizers
targeting end-users utilize domain-specific languages and only require informal
specifications such as input-output examples or natural language [4, 9, 20, 52].
In contrast, program synthesizers targeting developers tend to require formal
specifications and need to handle a richer set of language features [33, 39, 41, 49].

In the context of synthesizing general-purpose programs from logical specifi-
cations, two aspects have proven to be particularly challenging:

– Recursion: Problems that require synthesizing recursive, or mutually recur-
sive, functions have proven to be particularly difficult to solve. Despite recent
progress in this area [33, 53], synthesizers that tackle recursive functions are
not as effective as those that target domain-specific languages.

– Relational specifications: With the exception of one prior research ef-
fort [51], most synthesizers do not handle relational specifications. However,
in practice, relational specifications are particularly relevant: for example,
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parametrized unit tests [13, 44] and property-based tests [11, 18, 28], which are
becoming increasingly more popular, are, in essence, relational specifications.

While prior research has tried to tackle each of these problems in isolation,
there is no prior work that has attempted to solve synthesis problems that involve
both recursive procedures and relational specifications. In this paper, we ask
the question, “Is it possible to synthesize recursive, or even mutually recursive,
functions from relational specifications?” For example, given the specification:

even(0) ∧ ∀x. (even(x) ⇔ ¬odd(x) ∧ even(x) ⇒ odd(x+ 1))

can we generate correct implementations of both even and odd? This task is quite
difficult, as it requires simultaneously solving the challenges introduced by recur-
sion and relational specifications. Intuitively, handling recursion is hard because
the synthesizer does not know the semantics of terms that involve recursive calls
to the function being synthesized. Similarly, relational specifications pose a sig-
nificant challenge because such specifications do not constrain the input-output
behavior of any individual function. For these reasons, the search space for the
underlying synthesis problem becomes enormous, and standard techniques that
facilitate search space pruning become insufficient.

Interestingly, some of the prior research efforts [33, 51] on relational and re-
cursive synthesis adopt roughly the same solution: they construct a finite tree
automaton (FTA) whose language over-approximates the space of programs con-
sistent with the specification. The key idea is to allow non-deterministic FTA
transitions that encode uncertainty about the semantics of the function being
synthesized. However, since the resulting version space is over-approximate, these
techniques need to combine FTA construction with backtracking search.

Given the similarity between these two techniques that address two (appar-
ently orthogonal) challenges, one might be tempted to ask: “Can we use the
same idea to solve synthesis problems that involve both relational specifications
and that also require synthesizing recursive procedures?” In principle, the an-
swer to this question is “yes”; however, as we show experimentally, the resulting
technique does not yield an effective solution in practice.

The main contribution of this paper is a more effective approach for synthe-
sizing recursive programs from relational specifications. Our method is based on
the novel concept of constraint annotated tree automaton (CATA), a new type
of FTA where non-deterministic transitions are constrained by logical formulae
in a first-order theory. Similar to a standard FTA, a necessary condition for
accepting a tree T is to find a run of the automaton on T that ends in an accept-
ing state. However, because transitions of a CATA are only valid under certain
conditions, a run of the automaton also induces an acceptance constraint, which
must be logically satisfiable in order for that run to be valid. Intuitively, CATAs
offer a more effective synthesis methodology because their acceptance condition
allows us to build an exact, rather than over-approximate, version space with
acceptable overhead. Furthermore, by leveraging an SMT solver to check the
acceptance condition of the CATA, we can avoid the need for explicit backtrack-
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ing search and can instead piggyback on all research results underlying modern
SMT solvers.

In addition to proposing the concept of CATAs and showing how they can
be used for synthesis, another key contribution of this paper is a goal-directed
approach for CATA construction that exploits the specific problem instance at
hand. In particular, a naive synthesis approach based on CATAs would require
constructing multiple CATAs for different sub-terms in the specification and then
taking their intersection. However, as is the case with any type of automaton,
intersection is an expensive operation, so a synthesis algorithm that requires
many intersections is unlikely to scale. Our method addresses this problem by
proposing a more efficient algorithm that minimizes the number of automaton
intersections required to create a precise version space.

We have implemented our proposed approach in a new tool called Contata
and evaluate it on a suite of synthesis benchmarks involving recursion and spec-
ified by a relational specification. Our evaluation shows the advantages of our
approach over prior techniques that first build a non-deterministic FTA and then
perform backtracking search.

2 Motivating Example

In this section, we give an overview of the technique on an extended example
where the goal is to automatically synthesize two functions:

evens : list a -> list a odds : list a -> list a

Given a list, the evens function is expected to return all elements at even indices,
and the odds function should return elements at odd indices. For example, we
have evens([3,8,2]) = [3,2] and odds([3,8,2]) = [8]. The code for evens
and odds is given below:

evens(x) = match x with
| [] -> []
| h:t -> h:odds(t)

odds(x) = match x with
| [] -> []
| _:t -> evens(t)

Note that the evens and odds functions are mutually recursive: The evens

function starts by extracting the head of the list, then prepends it to the result
of calling odds on the tail. The odds function skips the first element in its input
list, and merely returns the result of calling evens on the tail.

Specifying the task. Since our goal is to automatically synthesize these func-
tions, we first need a specification for this task. For the purposes of this example,
suppose that the user provides the following specification:

∀x.∀xs. evens(xs) = odds(x : xs) ∧ ∀x.∀y.∀z.evens([x, y, z]) = [x, z]

The first conjunct describes the relationship between evens and odds, namely,
that the result of calling odds on x : xs should be the same as calling on evens
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on xs. The second part of the specification provides a symbolic input-output ex-
ample. Note that such relational specifications naturally arise in many contexts,
including data structure specifications [37, 36], parametrized unit tests [13], and
2-safety properties like commutativity [42].

Prior work. Before describing our technique, we first briefly explain how prior
work deals with relational specifications and recursion. First, let us assume that
the universal quantifiers in the specification have been instantiated via a stan-
dard counterexample-guided inductive synthesis (CEGIS) loop. In particular,
suppose we have the following ground formula during some iteration of CEGIS:

evens(0 : [1, 2]) = odds([1, 2]) ∧ evens([0, 1, 2]) = [0, 2] (1)

Given such a specification φ for counterexamples I1, . . . , In, a common theme
behind prior work [49, 50, 33] is to construct a version space in the form of a finite
tree automaton (FTA) that represents the space of all programs (up to a bounded
depth) that are consistent with φ. Specifically, these techniques construct an
automaton Ai for each counterexample Ii and then use FTA intersection to
handle the set of all counterexamples. Finally, states that satisfy the specification
φ are marked as final, so any tree accepted by the resulting FTA is a solution.

Constructing such an FTA is straightforward when the semantics of all ex-
pressions are known: Since the automaton states represent constants and the
transitions correspond to operators/functions, we can simply add new transi-
tions and nodes to the FTA using the operational semantics of the language. As
an example, consider a DSL operator f that takes as input two integers x and
y and produces 2x+ y, and let qx be the automaton state representing constant
x. Since the semantics of f are known, the FTA would contain the transition
f(q1, q2) → q4 since f(1, 2) is equal to 4.

Unfortunately, recursive procedures and relational specifications pose a sig-
nificant challenge for FTA construction: When synthesizing a recursive function
f , the implementation can recursively call f , but the semantics of f are not
yet known, as f is currently under construction. Similarly, when dealing with
relational specifications, the implementation of a function f could call another
function g, but the semantics of g are also not yet known. To make matters
worse, relational specifications constrain the joint behavior of multiple func-
tions, so, when constructing the FTA for an individual function, we cannot even
determine which FTA states should be marked as final.

Limitations of prior work. Existing techniques [33, 51] deal with this chal-
lenge by adding non-deterministic transitions to the FTA. In particular, given
FTA states representing values c1, . . . , cn and an n’ary function f that has yet
to be synthesized, the idea is to add a transition of the form f(c1, . . . , cn) → c
as long as the formula f(c1, . . . , cn) = c is consistent with the specification.
However, since there are many such output values c that are consistent with the
specification, this introduces a high degree of non-determinism. Furthermore,
relational specifications also introduce non-determinism with respect to final
states, so the resulting FTA is very over-approximate — that is, the ground
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truth program is accepted by the FTA, but not every program accepted by the
FTA satisfies the specification. As a result, existing techniques [51, 33] combine
FTA construction with backtracking search to look for a valid solution. How-
ever, if the synthesis task involves both recursion and relational specifications,
the resulting FTA becomes so over-approximate that performing backtracking
search over this space of programs is no longer feasible.

Insight behind our approach. Our approach is motivated by the following
observation about the shortcoming of prior techniques: Many programs accepted
by the over-approximate FTA make inconsistent assumptions about the unknown
semantics of functions being synthesized. For example, consider the following
incorrect solution for the evens function for our running example:

evens(x) = match x with
| [] -> []
| h:t -> odds(t)++odds(t)

This program must be incorrect with respect to the specification (Equation 1)
even if we know absolutely nothing about the implementation of odds: The only
way this program can return [0,2] on input list [0,1,2] is if the first call to
odds on [1,2] returns [0] and the second call returns [2] on the same input
list. But, assuming that odds is deterministic, this is clearly infeasible, as we
cannot have odds([1,2]) = [0] and odds([1,2]) = [2] at the same time!

However, prior techniques construct a version space that includes this
spurious program: Since the specification does not constrain the behavior of
odds([1,2]) in any way, they would allow any transition from odds([1,2])

to any possible automaton state, including both [0] as well as [2]. Unfortu-
nately, this leads to many spurious programs, including the “obviously wrong”
implementation of evens from above.

In this paper, we show how to construct the version space in such a way
that such inconsistent programs are never part of it. Our key idea is to qualify
transitions in the FTA by logical formulas that indicate necessary conditions
for a transition to be valid. We refer to such an FTA as a Constraint Anno-
tated Tree Automaton (CATA) due to presence of constraints on its transitions.
Then, a given tree will only be accepted by the CATA if there exists a run of
the CATA that both ends in an accepting state and does not make inconsistent
assumptions. However, because the evens implementation above makes inconsis-
tent assumptions about the I/O behavior of odds, our approach can immediately
rule it out.

3 Preliminaries

A finite tree automaton is a type of state machine that accepts trees rather than
strings. More formally, FTAs are defined as follows:

Definition 1. (FTA) A (bottom-up) finite tree automaton (FTA) over a finite
alphabet Σ is a tuple A = (Q,Qf , ∆) where Q is a finite set of states, Qf ⊆ Q
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is a set of final states, and ∆ is a set of transitions (rewrite rules) of the form
f(q1, . . . , qn) → q where q, q1, . . . , qn ∈ Q and f ∈ Σ.

¬

¬
∨

1
0

q1

q0 q0

q0

q1

Fig. 1: Tree representing ¬(¬1 ∨ 0).

Each symbol in the alphabet Σ has
an arity (rank), and terms of arity k are
denoted Σk. Each ground term t can be
represented in terms of its syntax tree
(n, V,E) with root node n, vertices V , and
edges E; hence, we use “tree” and “term”
interchangeably. We say that a tree t is
accepted by an FTA if we can rewrite t
to some state q ∈ Qf using transitions ∆.
The language of an FTAA, denoted L(A),
includes all ground terms that A accepts.

Example 1. Consider the FTA A with states Q = {q0, q1}, Σ0 = {0, 1},
Σ1 = {¬}, Σ2 = {∨}, final states Qf = {q1}, and the transitions ∆:

1→ q1 0→ q0 ∨(q0, q0)→ q0 ∨(q0, q1)→ q1
¬(q0)→ q1 ¬(q1)→ q0 ∨(q1, q0)→ q0 ∨(q1, q1)→ q1

This FTA accepts propositional logic formulas that evaluate to true. For instance,
Figure 1 shows the tree for formula ¬(¬1∨ 0) where each sub-term is annotated
with its state on the right. This formula is accepted by A because the rules in
∆ “rewrite” the input to state q1, which is a final state.

Definition 2. (Accepting run) An accepting run of an FTA A = (Q,Qf , ∆)
is a pair (t, L) where t = (nr, V, E) is a term that is accepted by A and L is a
mapping from each node in V to an FTA state such that (1) L(nr) ∈ Qf ; (2) If
n has children n1, . . . , nk such that L(n) = q and L(n1) = q1, . . . , L(nk) = qk,
then Label(n)(q1, . . . , qk) → q is a transition in ∆.

In other words, an accepting run labels each tree node with an automaton state.

Example 2. Let L be the mapping that assigns each node of the tree t in Figure 1
to the state written next to it. Then, (t, L) is an accepting run for Example 1.

4 Constraint Annotated Tree Automata

In this section, we introduce the concept of Constraint Annotated Tree Automata
(CATA), which forms the basis of the synthesis algorithm described in the next
section.

Definition 3. (CATA) Let Σ be a finite alphabet and T be a decidable first-
order theory (T may use symbols from Σ as well as additional symbols).
A constraint annotated tree automaton (CATA) over Σ and T is a tuple
AT = (Q,Qf , ∆) where:
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– Q is a finite set of states
– Qf is a mapping from states to their acceptance condition, which is a formula

in theory T
– ∆ ⊆ Σ ×Q∗ × T ×Q is a set of transitions of the form ℓ(q1, . . . , qn) →φ q

where q, q1, . . . , qn ∈ Q and ℓ ∈ Σ and φ ∈ T .

At a high level, a CATA differs from an FTA in two ways: First, the accep-
tance condition Qf is a mapping from each state to a formula φ in theory T . In
other words, unlike the standard FTA where Qf maps each state to a boolean
constant, the CATA maps each state to a first-order formula under which that
state is accepting. Second, the transitions in a CATA are qualified by formulas in
a first-order theory T . In particular, a transition f(q1, . . . , qn) →φ q can rewrite
f(q1, . . . , qn) to q only if the transition condition φ is satisfied.

f

1
(q0, ⊤ )

(q1, g(0) = 1)

0 (q1, ⊤ )
Fig. 2: CATA run on f(0, 1)

Next, we define a run of a CATA. Recall that
an FTA run consists of a tree and mapping L from
nodes of that tree to states in the automaton. For
CATAs, we generalize this notion of a run by hav-
ing two types of mappings: One maps each tree
node to a state, and another maps each node to a
formula. More formally, we have:

Definition 4. (CATA run) Let AT = (Q,Qf , ∆) be a CATA over alphabet Σ
and theory T . A run of this CATA is a triple r = (t, LQ, Lφ) consisting of:

1. A tree t = (nr, V, E), where each n ∈ V is labeled by an element of Σ
2. A function LQ : V → Q mapping the nodes of t to the states of AT
3. A function Lφ : V → Formulas(T ) mapping nodes of t to formulas over

theory T such that if n has label f and children n1 . . . nk then there is a
transition

(f(LQ(n1), . . . , LQ(nk)) →Lφ(n) LQ(n)) ∈ ∆

In other words, a CATA run not only labels tree nodes with states but also
with the conditions under which the corresponding transition is legal. We say
that a run (t,mQ,mΦ), ends at state q if mQ(t.Root) = q.

Example 3. Consider following CATA AT over the combined theory of unin-
terpreted functions and integers: AT has states Q = {q0, q1}, Σ0 = {0, 1},
Σ2 = {f}, final states Qf = {q0 7→ ⊥, q1 7→ g(0) < 1}, and the following
transitions ∆:

1→⊤ q1 0→⊤ q0 f(q0, q0)→g(0)=0 q0 f(q0, q1)→g(0)=1 q1 f(q1, )→⊤ q1

Here, ⊤,⊥ denote true and false respectively. Figure 2 shows a run of this CATA,
with LQ, Lφ shown as a pair (q, φ) next to that node.

Definition 5. (Run Assumptions) Given a run r = (t, LQ, Lφ), the assump-
tions of the run are defined as follows:

Assumptions(r) =
∧

n∈Nodes(t)

Lφ(n)
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For example, the assumptions for the run shown in Figure 2 is just g(0) = 1.

Definition 6. (Accepting run) Given a run r = (t, LQ, Lφ) of CATA AT ,
the acceptance condition of the run is the conjunction of the assumptions of r
and the formula corresponding to the root node, i.e.,

AcceptCond(AT , r) = Assumptions(r) ∧Qf (LQ(Root(t)))

A run r is accepting if there exists a model M such that M |= AcceptCond(AT , r).
We refer to such a model M as a witness for run r.

Example 4. The run from Example 3 is not accepting because the assumptions
made by the run (namely, g(0) = 1) contradict the acceptance condition for node
q1, which is g(0) < 1.

Recall that an FTA accepts a tree t if there exists a corresponding accepting
run for t. We generalize this notion to CATAs as follows:

Definition 7. (Accepted tree) AT accepts tree t under witness M, denoted
(t,M) |= AT , if there is an accepting run r = (t, LQ, Lφ) of AT with witness M.

Example 5. The tree shown in Figure 2 would be accepting (with the same
corresponding run from Figure 2) if we change Qf (q1) to g(0) ≥ 1.

Next, we define the language of a CATA. Recall that the language of an FTA
is the set of all trees it accepts. However, since a CATA accepts a tree only under
certain conditions, the language of a CATA consists of pairs of trees along with
their witnesses. More formally, we have:

L(AT ) = {(t,M) | (t,M) |= AT }

As mentioned earlier, synthesis approaches based on tree automata rely on
a product operation, A1

T × A2
T , that produces a new automaton AT such that

L(AT ) = L(A1
T ) ∩ L(A2

T ). This operation is defined as follows for CATAs:

Definition 8. (Intersection) Let A1
T = (Q1, Qf 1, ∆1) and A2

T = (Q2, Qf 2, ∆2)
be two CATAs over the same underlying theory T and alphabet Σ. Then, the
product CATA A1

T ×A2
T is defined as (Q,Qf , ∆) where:

– Q = Q1 ×Q2

– Qf ((q1, q2)) = Qf 1(q1) ∧Qf 2(q2)
– ∆ contains the transition ℓ((q11, q21), . . . , (q1n, q2n)) →φ1∧φ2

(q1, q2) iff
ℓ(q11, . . . , q1n) →φ1 q1 ∈ ∆1 and ℓ(q21, . . . , q2n) →φ2 q2 ∈ ∆2

Example 6. Suppose A1
T contains the transition q1 →g(0)≥1 q2 and A2

T contains
the transition q3 →g(0) ̸=1 q4. Then, assuming both CATAs are over the combined
theory of integers and uninterpreted functions, the product CATA would contain
the transition (q1, q3) →g(0)>1 (q2, q4).

Theorem 1. Let A1
T = (Q1, Qf 1, ∆1) and A2

T = (Q2, Qf 2, ∆2) be two CATAs
over theory T and alphabet Σ. Then, L(A1

T ×A2
T ) = L(A1

T ) ∩ L(A2
T )
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4.1 CATA Operations for Synthesis

We now define CATA operations that our synthesis algorithm relies on.

Definition 9. (Accepting Runs of Tree) Given a CATA AT and tree t, the
accepting runs for t, denoted Runs(AT , t) are:

Runs(AT , t) = {r = (t, LQ, Lφ) | SAT(AcceptCond(AT , r))}

In other words, the accepting runs of AT on tree t are those runs whose accep-
tance conditions are logically satisfiable. We can similarly define accepting runs
for a state as all accepting runs that end in that state:

Definition 10. (Accepting Runs of State) Given a CATA AT and state q,
the accepting runs for q, denoted Runs(AT , q), are:

Runs(AT , q) = {r = (t, LQ, Lφ) | r ∈ Runs(AT , t) ∧ LQ(Root(t)) = q}

Given a state q or tree t, we often need to compute the acceptance condition
for that tree/state, which we define as follows:

Definition 11. (Acceptance Condition) Given a CATA AT and state or
tree x, the acceptance condition of x, denoted AcceptCond(AT , x) is:

AcceptCond(AT , x) =
∨

r∈Runs(AT ,x)

AcceptCond(AT , r)

Example 7. Consider AT defined in Example 3, and let t1 be the tree in Figure 2.
We have Runs(AT , t1) = ∅, and AcceptCond(AT , q1) = g(0) < 1.

Finally, the acceptance condition for the CATA, AcceptCond(AT ), is the
disjunction of acceptance conditions over all states, and a minimum accepted
tree, denoted MinTree(AT ) is a minimum size tree accepted by the CATA.

5 Synthesis Algorithm

In this section, we first define our synthesis problem more precisely (Section 5.1)
and then present the basic synthesis technique (Section 5.2). However, since the
basic algorithm ends up requiring too many CATA intersections, it does not lend
itself to a practical implementation. In Section 5.3, we show how to construct the
CATA in a goal-directed way to minimize the number of CATA intersections.

5.1 Problem Statement

Definition 12. (Relational spec) Let F = {f1, . . . , fn} be a set of function
symbols. A relational specification over F is a formula of the form ∀x.Φ(x) where
Φ is a quantifier-free formula over some theory T and the only function symbols
in Φ belong either in F or to the signature of T .
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P ::= f(x) = e ; P

e ::= x | e1 e2 | () | fst e | snd e
| (e1, e2) | inl e | inr e | unl e | unr e

| switch e3 on inl _ → e1 , inr _ → e2
v ::= () | (v1, v2) | inl v | inr v

Fig. 3: A functional ML-like language. Programs are comprised of a list of mu-
tually recursive function definitions.

P ⊢ e ⇓ v;φ1 f(x) = e′ ∈ P P ⊢ e′[v/x] ⇓ v′;φ2

f e ⇓ v′;φ1 ∧ φ2 ∧ f(v) = v′

P ⊢ () ⇓ ();⊤
P ⊢ e1 ⇓ v1;φ1 P ⊢ e2 ⇓ v2;φ2

P ⊢ (e1, e2) ⇓ (v1, v2);φ1 ∧ φ2

P ⊢ e ⇓ (v1, v2);φ

P ⊢ fst e ⇓ v1;φ

P ⊢ e ⇓ (v1, v2);φ

P ⊢ snd e ⇓ v2;φ

P ⊢ e ⇓ v;φ

P ⊢ inl e ⇓ inl v;φ

P ⊢ e ⇓ v;φ

P ⊢ inr e ⇓ inr v;φ

P ⊢ e ⇓ inl v

P ⊢ unl e ⇓ v;φ

P ⊢ e ⇓ inr v;φ

P ⊢ unr e ⇓ v;φ

P ⊢ e3 ⇓ inl v3;φ1 P ⊢ e1 ⇓ v1;φ2

P ⊢ switch e3 on inl → e1 inr → e2 ⇓ v1;φ1 ∧ φ2

P ⊢ e3 ⇓ inr v3;φ1 P ⊢ e2 ⇓ v2;φ2

P ⊢ switch e3 on inl → e1 inr → e2 ⇓ v2;φ1 ∧ φ2

Fig. 4: Program Semantics. The symbols e range over expressions, v range over
values, and φ range over formulas in the the theory of uninterpreted functions.

Relational specifications allow jointly constraining the behavior of multiple
functions to be synthesized. For instance, examples of relational specifications
include ∀x.f(g(x)) = x (i.e., f and g are inverses) or ∀x, y.f(x, y) = g(y, x).

In this paper, we consider the problem of synthesizing programs in an ML-like
functional programming language with sums, products, and mutual recursion.
Figure 3 shows the core subset of this programming language. A program in
this language consists of one or more function definitions, and the body of each
function is an expression e, which includes function applications, constructors
(inl,inr for sums and (e1, e2) for products), destructors (unl,unr for sums,
fst,snd for products) and switch statements for pattern matching. Figure 4
presents the semantics of this language using the notation P ⊢ e ⇓ v;φ, meaning
that, under the function definitions given by P , expression e evaluates to value
v and φ is a formula that tracks the results of procedure calls made by e.3

Given a program P in this language defining functions F ′ and a relational
specification ψ over functions F ⊆ F ′, we write P |= ψ if the implementation of

3 These instrumented semantics for recording results of function calls will be useful
for CATA construction in Section 5.
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P satisfies specification ψ. Since the focus of this paper is not verification, we
assume access to an oracle for checking P |= ψ. Given n programs P1, . . . , Pn

implementing different functions, we also use the notation (P1, . . . , Pn) |= ψ to
denote that these programs collectively satisfy specification ψ.

Definition 13. (Solution to synthesis problem) Let ψ be a relational spec-
ification over functions F = {f1, . . . , fn}. A solution to this synthesis problem is
a mapping from each fi ∈ F to a program such Pi such that (P1, . . . , Pn) |= ψ.

Since our top-level approach is based on counterexample-guided inductive
synthesis (CEGIS) [2], it suffices to have a synthesis procedure that can only
deal with ground relational specifications. In particular, a ground relational spec-
ification over F cannot contain any variables, either free or bound, besides those
in F . In the remainder of this section, we therefore only consider ground spec-
ifications and assume that quantifiers are handled using the standard CEGIS
framework.

Assumptions. Our synthesis algorithm makes a few important, but realistic
assumptions, that we rely on in the remainder of this section. First, we assume
that there is a pre-defined partial order relation ⪯ between constants in the un-
derlying language (e.g, 1 ≺ 3, [1, 2] ≺ [1, 2, 3] etc). This partial ordering must be
well founded and must not have infinite fan-out to ensure termination. Second,
we assume that, when function f is called on some input x, other calls that f
makes can only involve values satisfying y ≺ x. This common assumption [1, 24,
33, 35] is required to ensure that recursive calls are well-founded. Finally, to fur-
ther simplify presentation, we assume that the language admits a finite number
of constants; however, our implementation does not make this assumption (see
Section 6).

5.2 Basic Synthesis Algorithm

In this section, we describe our CATA-based synthesis procedure. While this
algorithm exposes how CATAs are used for synthesis, it does not lend itself to
a practical implementation due to its eager nature. We first present the basic
algorithm and then explain how to make it more goal-directed in the next section.

Our basic synthesis procedure is summarized in Algorithm 1 and takes two
inputs, the set F of functions to synthesize and a ground relational specification
over F . The algorithm computes a solution for each f ∈ F in three steps:

– First, for each possible input c of f ∈ F , the algorithm builds a CATA Π(f, c)
that encodes how different implementations of f can behave on input c (lines
2–5). In particular, for a possible output c′, AcceptCond(Π(f, c), c′) gives the
conditions under which f can produce c′ on input c.

– Next, in lines 6–11, the algorithm builds a CATA, Ω(f), encoding all possible
input-output behaviors of different implementations of f . This is done by using
the CATA product operation defined in Section 4. Lines 6–11 also strengthen
the initial specification ψ to a stronger condition ϕ by taking into account the
acceptance condition of the constructed CATAs.
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input: Relational ground specification ψ and set of functions F to synthesize
output: Solution Ψ mapping each function to its implementation

1: procedure Synthesize(ψ,F)

▷ Create initial CATAs for each possible input for each function
2: Π ← ∅ ▷ Mapping from each function and constant to corresponding CATA
3: for each c ∈ C do
4: for each f ∈ F do
5: Π(f, c)← CreateCATA(f, c, ψ)

▷ Obtain CATA per function and strengthen specification
6: ϕ← ψ ▷ Initialization for strengthened spec
7: Ω ← ∅ ▷ Mapping from each function to its CATA

8: for each f ∈ F do
9: A ← Π(f, c1)× . . .×Π(f, cn)

10: ϕ← ϕ ∧ AcceptCond(A)
11: Ω(f)← A

▷ Synthesize implementation of each function
12: Ψ ← ∅ ▷ Solution mapping from each function to its implementation
13: for each f ∈ F do
14: A ← StrengthenSpec(Ω(f), ϕ) ▷ Update acceptance condition
15: P ← MinTree(A)
16: ϕ← ϕ ∧ AcceptCond(A, P )
17: Ψ(f)← P

18: return Ψ

Algorithm 1: Basic synthesis procedure. C denotes the set of constants in the
programming language, sorted to be consistent with partial order ⪯

– Finally, lines 12–17 of the algorithm use the per-function CATA Ω(f) and
the strengthened specification ϕ to obtain a concrete implementation of f .
To that end, the algorithm first strengthens the acceptance condition of each
state by conjoining the global specification ϕ; it then obtains a minimum
tree P accepted by the resulting automaton A. This tree corresponds to the
synthesized implementation for f , and the algorithm moves on to the next
function after strengthening the global specification ϕ to be consistent with
the acceptance condition for P .

The interesting aspect of this algorithm is that it is guaranteed to find a
set of programs that collectively satisfy the relational specification without any
need for backtracking search. Intuitively, there are three key reasons for this:

1. First, when building the CATA for each (f, c) pair, the CreateCATA pro-
cedure (formalized as inference rules in Figure 5) generates constraints under
which each transition is valid. In particular, consider the Function Call rule
in Figure 5. When adding the transition g(c) → c′, AcceptCond(Π(g, c), c′)
gives the exact conditions under which g will return c′ on input c, and this is
the case even when g is one of the functions being synthesized.
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Init

qvin ∈ Q x→ qvin ∈ ∆

Final
qv ∈ Q

Qf (qv) = ψ ∧ f(vin) = v

Unit

q() ∈ Q ()→ q() ∈ ∆

Pair
qv1 ∈ Q qv2 ∈ Q

qv1,v2 ∈ Q ( · , · )(qv1 , qv2)→ qv1,v2 ∈ ∆

Fst
qv1,v2 ∈ Q

qv1 ∈ Q fst(qv1,v2)→ qv1 ∈ ∆

Inl
qv ∈ Q

qinl v ∈ Q inl(v)→ qinl v ∈ ∆

Uneval

⊥ ∈ Q

Uneval Prod
ℓ ∈ Σ

⊥ ∈ Q ℓ(⊥, . . . ,⊥)→ ⊥

Switch Left
qinl v3 ∈ Q qv1 ∈ Q

switch(qinl v3 , qv1 ,⊥)→ qv1 ∈ ∆

Function Call
v ≺ vin

qv ∈ Q AT = CATA(g, v, ψ) qv′ ∈ States(AT ) φ = AcceptCond(AT , qv′)

qv′ ∈ Q g(qv)→φ qv′ ∈ ∆

Fig. 5: Inference rules for CreateCATA(f, vin, ψ). CATA states correspond to
constants in the language, and we write qc to denote the state representing
constant c. The state ⊥ corresponds to the non-evaluated branch of a switch.
The rules for Snd, Inr, and Switch Right are omitted for space reasons.

2. Second, the strengthened specification ϕ after lines 6-11 precisely encodes all
possible joint behaviors of all functions to be synthesized. Thus, a model of ϕ
corresponds to input-output behaviors of every f ∈ F that are both mutually
consistent and that will also satisfy the relational specification. Conceptually,
by sampling a model M of ϕ and plugging M into the transition and accep-
tance conditions of the CATAs, we can turn each CATA into an FTA and
then obtain the solution by finding programs accepted by each FTA.

3. However, one problem with the above model-sampling approach is that it
does not guarantee that the synthesized programs are small (e.g., the sampled
model may only have very complex implementations). Thus, lines 12–17 of
Algorithm 1 construct the model in a lazy way that guarantees minimality
at each step. In particular, rather than obtaining a monolithic model of ϕ,
the algorithm considers one function f at a time, strengthens its acceptance
condition using ϕ, and then finds a minimum size accepting tree P for f . Since
P induces certain assumptions on the other functions (or relies on certain
assumptions being held), ϕ is gradually concretized (by strengthening it at
line 16). Thus, the third step of the synthesis procedure can be viewed as
incremental model construction for the formula ϕ obtained after step 2.

Theorem 2. (Soundness of synthesis) If Synthesize(ψ,F) returns Ψ such
that Ψ(fi) = Pi, then we have (P1, . . . , Pn) |= ψ, where |F| = n.



14 A. Miltner et al.

input: Relational ground specification ψ and set of functions F to synthesize
output: Solution Ψ mapping each function to its implementation

1: procedure LazySynthesize(ψ,F)

▷ Initialization phase
2: Ω ← {f 7→ A⊤

T | f ∈ F} ▷ Mapping from functions to CATAs
3: Λ← ∅ ▷ Mapping from each function to counterexamples that appear in ψ

▷ Iteratively refine CATAs until solution is found
4: while true do

▷ Initialization for this refinement iteration
5: ϕ← ψ ∧

∧
f∈F AcceptCond(Ω(f)) ▷ Current global specification

6: Ψ ← ∅ ▷ Mapping from functions to candidate solution

▷ Get candidate solution
7: for each f ∈ F do
8: A ← StrengthenSpec(Ω(f), ϕ) ▷ Update acceptance condition
9: Ψ(f)← MinTree(A)

10: ϕ← ϕ ∧ AcceptCond(A, Ψ(f))

▷ Check if Ψ is a valid solution
11: θ ← {χ | (c′, χ) ∈ Eval(Ψ(f), c), c ∈ Λ(f), f ∈ F}
12: if SAT(ψ ∧

∧
i θi) then

13: return Ψ ▷ Ψ is a valid solution

▷ Refinement phase
14: γ ← UnsatCore(ψ ∧

∧
i θi)

15: for each f(c) ∈ Terms(γ) do
16: Ω(f)← Ω(f)×CreateCATA(f, c, ψ)

Algorithm 2: Lazy synthesis. A⊤
T from line 2 denotes a CATA that accepts all

terms, and Eval at line 11 refers to the instrumented semantics (Figure 4).

Theorem 3. (Completeness of synthesis) Let ψ be a ground relational spec-
ification over functions F . If there exists an implementation Pi for each fi ∈ F
such that (P1, . . . , Pn) |= ψ, then Synthesize will return a solution.

5.3 Lazy Synthesis Algorithm

Despite exposing the core ideas underlying our approach, the synthesis algorithm
described in Section 5.2 has two severe shortcomings that make it infeasible in
practice: First, it considers all possible inputs, which may be very large or even
infinite. Second, it eagerly performs CATA intersection, which is impractical due
to the exponential blow-up in CATA size. To address these shortcomings, we now
describe a lazy version of the previous synthesis algorithm that lends itself to a
much more practical implementation.4

The lazy synthesis procedure is presented in Algorithm 2. As in the previ-
ous algorithm, the synthesis procedure maintains a mapping from each function

4 We note that the eager algorithm as presented in Section 5.2 times out on all of our
experimental benchmarks.
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f ∈ F to its corresponding CATA Ω(f). However, since Ω(f) is constructed
lazily, AcceptCond(Ω(f)) over-approximates the possible input-output behav-
iors of f ’s implementations rather than characterizing them exactly. Thus, lines
4–16 of Algorithm 2 iteratively refine Ω as follows until a valid solution is found:

– It first computes the global specification ϕ (line 5) by conjoining all acceptance
conditions of the current CATAs with the initial specification ψ.

– Next, it finds a solution Ψ consistent with each CATA and the global specifi-
cation ϕ, exactly as done in Phase 3 of Algorithm 1 (lines 7–10).

– Then, it checks whether Ψ is a valid solution (lines 11–13). To do so, it executes
the candidate implementations on all relevant inputs and tracks the observed
input-output behaviors as a set of constraints θ (line 11). If the conjunction
of all of these constraints and ψ is satisfiable, then Ψ is indeed a valid solution
and is returned at line 13.

– Otherwise, the synthesis procedure obtains an unsat core γ of the resulting
unsatisfiable constraint (line 14). Intuitively, if a term f(c) appears in the
unsat core, then the CATA for f does not adequately constrain the outputs
of f on input c; hence, we must refine Ω(f) by constructing the CATA for f
on this input. Thus, line 16 of Algorithm 2 lazily refines Ω(f) by considering
inputs that appear in the unsat core rather than considering all inputs eagerly.

Our proposed lazy synthesis algorithm is also both sound and complete. The
corresponding theorems and proofs are provided in the appendix in the full
version of the paper.

Example 8. Consider the evens/odds example from §2. Initially, Ω maps both
evens and odds to AT

T , the automaton that accepts all terms for both evens and
odds. Suppose, on line 9, Contata obtains evens(xs) = [] and odds(xs) = [] as
the solution. Such a solution fails to pass the check on line 12 because it violates
the specification that evens([x, y, z]) = [x, z].

Then, on line 14, Contata computes the unsat core to be evens([0, 1, 2]) = [].
It now intersects a new CATA created from evens([0, 1, 2]) to the evens CATA,
which constrains the output of evens.

In the beginning of the next iteration, Contata updates the global specifica-
tion with the accept condition of constrained automatas. It then pops another
candidate program:

evens(l) = match l with
| Nil -> Nil
| Cons (h,t) -> odds(t)

Thus, evens(l) relies on odds([1, 2]) = [1, 2]. But the odds automaton is uncon-
strained, and thus will simply return []. So the unsat core will be odds([1, 2]) = [],
and so the automaton for [1, 2] would then be intersected with the current odds
automaton. This process will continue until eventually the algorithm is able to
find a program that relies on valid assumptions.
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Benchmark type Count Avg. soln size Example

Mutual recursion (MR) 7 31.0 Test if input is even or odd

Recursive comparators (RC) 7 64.3 Check equality of int-tuple list

Partial data structures (PDS) 12 33.6 Binary tree removal

Stack Overflow (SO) 4 45.5 Reverse a list twice

Table 1: Statistics about the benchmark set

6 Implementation

We have implemented the propsosed algorithm in a new tool called Contata,
which is written in OCaml using Z3 for discharging satisfiability queries. In this
section, we briefly discuss some implementation details and optimizations elided
in the main technical section.

Incremental search. To simplify technical presentation, earlier sections assume
that we can build a CATA representing the space of all programs consistent with
the specification. However, since this space can be very large (or even infinite),
Contata builds CATAs of increasing size. In particular, Contata first builds
a CATA of size k, increasing the CATA size to k+1 if the algorithm fails to find
a solution within that search space.

Optimizations. The implementation of Contata includes many standard type-
directed synthesis optimizations. For example, to reduce the number of seman-
tically equivalent programs, Contata only considers function implementations
that are in eta-long beta-normal form. Additionally, whenever possible, Con-
tata synthesizes generic functions with type parameters to further reduce the
search space.

7 Evaluation

In this section, we evaluate Contata through experiments that aim to answer
the following research questions:

RQ1. How does Contata compare against prior techniques?
RQ2. What benchmark features impact Contata’s performance?

Benchmarks. To answer these questions, we collected a set of 30 benchmarks
that exhibit two key characteristics that are relevant to our approach. First, all
benchmarks involve recursion or mutual recursion; and, second, the task speci-
fication is relational in nature (i.e., relates two different functions to be synthe-
sized or involves a k-safety property [42]). Because the relational specifications
we found are often highly unconstrained, we augmented some relational speci-
fications with between 1 and 3 additional input-output examples. The sources
of these benchmarks include Stack Overflow posts, functional data structure
verification benchmarks [34], and functional programming textbooks [23, 29].
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Fig. 6: (a) The number of benchmarks completed in a given amount of time. (b)
The percentage of each class of benchmark solved.

Baseline tool. To the best of our knowledge, there are no existing tools that
can solve relational synthesis tasks involving recursion. Thus, to answer RQ1,
we implemented another baseline, henceforth referred to as RelBurst, that
combines Burst’s approach [33] for dealing with recursion with the approach
of Relish [51] for handling relational specifications. At a high level, RelBurst
first builds FTAs of individual functions using angelic semantics for unknown
functions; this introduces many non-deterministic transitions in the FTA. In
the second step, RelBurst uses the relational synthesis technique from [51]
to construct an automaton representing the specification. Finally, it uses the
backtracking search algorithm of [33] to find a set of function implementations
that jointly satisfy the relational specification.

Experimental Setup. All of our experiments are conducted on a machine with an
Apple M1 Max CPU and 64 GB of physical memory, running the macOS 14.2.1
operating system. For each task, we set the timeout to 2 minutes. In addition to
relational specifications for each benchmark, we supply a handful of input-output
examples to eliminate the ambiguity of relational constraints.

Results. The results of our evaluation are presented in Figure 6. The plot on the
left shows the number of benchmarks solved as we vary the time limit, and the
plot on the right compares the percentage of benchmarks solved by Contata
against those solved by RelBurst for each class of benchmarks.

Overall, Contata can successfully complete the synthesis task for 22 out of
the 30 benchmarks (73%), whereas the baseline completes only 8 (27%). Fur-
thermore, for all completed benchmarks, Contata produces the desired ground
truth solution. Additionally, as shown in Figure 6(b), Contata consistently
outperforms the baseline across all benchmark categories. Since the key differ-
ence between Contata and RelBurst is the use constraint annotated tree
automata, these results support our claim that CATAs are useful for reducing
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backtracking search when synthesizing recursive programs from relational spec-
ifications.

Result for RQ1: Contata solves 2.8× as many benchmarks as a baseline that
combines prior techniques for relational synthesis [51] and FTA-based synthesis
of recursive procedures [33].

Failure analysis. As shown in 6(b), Contata performs the best on the mutual
recursion benchmarks and worst on the recursive comparators. The latter class
of benchmarks are particularly difficult; some involve over a hundred AST nodes
and multiple recursive calls. As expected, the synthesis algorithm is sensitive to
the size of the target program, so the complexity of the ground truth program
has a significant impact on running time. However, there are a few benchmarks
in the Partial Data Structures category where the size of the synthesized code
is relatively small (32 AST nodes) that Contata also times out on. Upon
inspection, we noticed that this is due to the “loose” nature of the specification.
In such cases, the language of the constructed CATA is quite large, making
automaton operations like intersection very expensive. However, this situation
can be averted by adding more input-output examples or augmenting the spec-
ification with additional constraints.

Result for RQ2: In addition to the complexity of the target program, Contata
is sensitive to the precision of the specifications (i.e., performs better with more
precise specifications).

8 Related Work

While there is a vast literature on program synthesis, this work is most closely
related to techniques that address the synthesis of recursive procedures as well
as those that handle relational specifications.

Synthesis of recursive procedures. Research on synthesizing recursive functional
programs dates back to the 1970’s [26, 43] and has recently become a very ac-
tive research area [17, 19, 24, 27, 31, 33, 35, 39, 54]. Many of these techniques per-
form type-directed top-down synthesis from input-output examples [17, 19, 31,
35], whereas Synquid uses refinement types as specifications [39]. Among these
approaches, the most related ones are Burst [33], Trio [30], Syrup [54], and
SE2GIS [14]. Our technique is directly inspired by Burst and aims to improve
upon it by using CATAs to reduce the amount of backtracking search. Trio and
Syrup combine deductive reasoning on input-output examples with bottom-up
enumeration. In Trio, this is done by generating straight-line programs that are
then “folded up” into a recursive program. In contrast, Syrup deduces candidate
recursion traces to identify possible clusters of valid FTAs to intersect. Both
of these approaches rely on input/output deduction and are therefore not eas-
ily extensible to the relational synthesis setting that we focus on in this paper.
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SE2GIS proves unrealizability of recursion skeletons during synthesis, whereas we
use CATAs to rule out incorrect solutions by construction. Additionally, SE2GIS
requires a reference implementation and a user-provided recursion skeleton and
doesn’t consider mutual recursion or relational specifications.

Relational verification and synthesis. This work is also related to a long line of
work on reasoning about relational properties [5, 6, 8, 38, 42, 45, 51]. Most tech-
niques in this space address the verification problem and aim to prove a relational
property, such as equivalence, between two programs [5, 6, 8, 45]. Some tech-
niques [3, 42] in this space focus on k-safety properties, such as non-interference
or associativity, where the goal is to prove that k different executions of the
same function do not violate some desired relationship. On the synthesis side,
most prior work handles specific classes of tasks, such as program inversion [22]
or data type refactoring [10, 36]. To the best of our knowledge, the only syn-
thesis tool that targets a general class of relational properties is Relish [51].
This technique is also based on tree automata and composes FTAs for individ-
ual functions in a hierarchical manner by adding non-deterministic transitions
between different functions (or different calls to the same function). However,
this approach cannot handle recursive or mutually recursive procedures.

Tree automata with constraints. There have been many previous attempts to
augment FTAs with constraints. In many of these efforts, e.g., data tree au-
tomata [7], finite-memory tree automata [25], and symbolic tree automata [46],
the tree alphabet is potentially infinite, and transitions can check constraints
over this alphabet. Other work considers finite tree alphabets but imposes global
constraints such as the equality and disequality of subtrees [12]. In contrast to
these FTA variants, transitions in our proposed CATA model can use symbols
from outside the tree alphabet, and the CATA’s models are not directly tied to
labels of the input tree. To our knowledge, such an automaton model has not
been considered in the literature.

9 Conclusion

In this paper, we introduced constraint annotated tree automata (CATA) and de-
veloped a program synthesis algorithm based on CATAs. Notably, our proposed
algorithm can synthesize recursive and mutually-recursive functions from rela-
tional specifications. We also implemented this algorithm in a tool called Con-
tata and showed experimentally that Contata outperforms prior approaches
by avoiding backtracking search.

While our approach enables solving synthesis tasks that are out of scope
for prior approaches, there remains significant future work in solving relational
synthesis tasks involving recursion. In future work, we plan to explore the com-
bination of CATAs with top-down synthesis and ML guidance.
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