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Review of Last Lecture

I What are the building blocks in FOL?

I What is an interpretation for a FOL formula?

I What is DeMorgan’s law for quantifiers?
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Translating First-Order Logic into English

Given predicates student(x ), atUT (x ), and friends(x , y), what do
the following formulas say in English?

I ∀x . ((atUT(x ) ∧ student(x )) → (∃y .(friends(x , y) ∧ ¬atUT (y))))

I ∀x .((student(x ) ∧ ¬atUT(x )) → ¬∃y .friends(x , y))

I ∀x .∀y .((student(x ) ∧ student(y) ∧ friends(x , y)) →
(atUT(x ) ∧ atUT(y)))
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Translating English into First-Order Logic

Given predicates student(x ), atUT (x ), and friends(x , y), how do
we express the following in first-order logic?

I ”Every UT student has a friend”

I ”At least one UT student has no friends”

I ”All UT students are friends with each other”
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Satisfiability, Validity in FOL

I An FOL formula F is satisfiable if there exists some
interpretation such that F evaluates to true

I Example: Prove that ∀x .(P(x ) → Q(x )) is satisfiable.

I An FOL formula F is valid if, for all interpretations, F
evaluates to true

I Prove that ∀x .(P(x ) → Q(x )) is not valid.

I Formulas that are satisfiable, but not valid are contingent,
e.g., ∀x .(P(x ) → Q(x ))
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Example

I Is the following formula valid, unsat, or contingent? Prove
your answer.

((∃x .P(x )) ∧ (∃x .Q(x ))) → (∃x .(P(x ) ∧Q(x )))
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Equivalence

I Two formulas F1 and F2 are equivalent if F1 ↔ F2 is valid

I In PL, we could prove equivalence using truth tables, but not
possible in FOL

I However, we can still use known equivalences to rewrite one
formula as the other

I Example: Prove that ¬(∀x . (P(x ) → Q(x ))) and
∃x . (P(x ) ∧ ¬Q(x )) are equivalent.

I Example: Prove that ¬∃x .∀y .P(x , y) and ∀x .∃y .¬P(x , y) are
equivalent.
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Rules of Inference

I We can prove validity in FOL by using proof rules

I Proof rules are written as rules of inference:

Hypothesis1
Hypothesis2

. . .

Conclusion

I An example inference rule:

All men are mortal
Socrates is a man

∴ Socrates is mortal

I We’ll learn about more general inference rules that will allow
constructing formal proofs
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Modus Ponens

I Most basic inference rule is modus ponens:

φ1
φ1 → φ2

φ2

I Modus ponens applicable to both propositional logic and
first-order logic
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Example Uses of Modus Ponens

I Application of modus ponens in propositional logic:

p ∧ q
(p ∧ q) → r

I Application of modus ponens in first-order logic:

P(a)
P(a) → Q(b)
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Modus Tollens

I Second imporant inference rule is modus tollens:

φ1 → φ2
¬φ2
¬φ1
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Example Uses of Modus Tollens

I Application of modus tollens in propositional logic:

p → (q ∨ r)
¬(q ∨ r)

I Application of modus tollens in first-order logic:

Q(a)
¬P(a) → ¬Q(a)
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Hypothetical Syllogism (HS)

φ1 → φ2
φ2 → φ3

φ1 → φ3

I Basically says ”implication is transitive”

I Example:
P(a) → Q(b)
Q(b) → R(c)
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Or Introduction and Elimination

I Or introduction:
φ1

φ1 ∨ φ2
I Example application: ”Socrates is a man. Therefore, either

Socrates is a man or there are red elephants on the moon.”

I Or elimination:
φ1 ∨ φ2
¬φ2
φ1

I Example application: ”It is either a dog or a cat. It is not a
dog. Therefore, it must be a cat.”
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And Introduction and Elimination

I And introduction:
φ1
φ2

φ1 ∧ φ2
I And elimination:

φ1 ∧ φ2
φ1
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Resolution

I Final inference rule: resolution

φ1 ∨ φ2
¬φ1 ∨ φ3
φ2 ∨ φ3

I To see why this is correct, observe φ1 is either true or false.

I Suppose φ1 is true. Then, ¬φ1 is false. Therefore, by second
hypothesis, φ3 must be true.

I Suppose φ1 is false. Then, by 1st hypothesis, φ2 must be true.

I In any case, either φ2 or φ3 must be true; ∴ φ2 ∨ φ3
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Resolution Example

I Example 1:
P(a) ∨ ¬Q(b)
Q(b) ∨ R(c)

I Example 2:
p ∨ q
q ∨ ¬p
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Summary Name Rule of Inference

Modus ponens

φ1

φ1 → φ2

φ2

Modus tollens

φ1 → φ2

¬φ2

¬φ1

Hypothetical syllogism

φ1 → φ2

φ2 → φ3

φ1 → φ3

Or introduction
φ1

φ1 ∨ φ2

Or elimination

φ1 ∨ φ2

¬φ2

φ1

And introduction

φ1

φ2

φ1 ∧ φ2

And elimination
φ1 ∧ φ2

φ1

Resolution

φ1 ∨ φ2

¬φ1 ∨ φ3

φ2 ∨ φ3
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Using the Rules of Inference

Assume the following hypotheses:

1. It is not sunny today and it is colder than yesterday.

2. We will go to the lake only if it is sunny.

3. If we do not go to the lake, then we will go hiking.

4. If we go hiking, then we will be back by sunset.

Show these lead to the conclusion: ”We will be back by sunset.”
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Encoding in Logic

I First, encode hypotheses and conclusion as logical formulas.

I To do this, identify propositions used in the argument:

I s = ”It is sunny today”

I c= ”It is colder than yesterday”

I l = ”We’ll go to the lake”

I h = ”We’ll go hiking”

I b= ”We’ll be back by sunset”
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Encoding in Logic, cont.

I ”It’s not sunny today and colder than yesterday.”

I ”We will go to the lake only if it is sunny”

I ”If we do not go to the lake, then we will go hiking.”

I ”If we go hiking, then we will be back by sunset.”

I Conclusion: ”We’ll be back by sunset”
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Formal Proof Using Inference Rules

1. ¬s ∧ c Hypothesis
2. l → s Hypothesis
3. ¬l → h Hypothesis
4. h → b Hypothesis
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Another Example

Assume the following hypotheses:

1. It is not raining or Kate has her umbrella

2. Kate does not have her umbrella or she does not get wet

3. It is raining or Kate does not get wet

4. Kate is grumpy only if she is wet

Show these lead to the conclusion: ”Kate is not grumpy.”
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Encoding in Logic

I First, encode hypotheses and conclusion as logical formulas.

I To do this, identify propositions used in the argument:

I r = ”It is raining”

I u= ”Kate has her umbrella”

I w = ”Kate is wet”

I g = ”Kate is grumpy”
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Encoding in Logic, cont.

I ”It is not raining or Kate has her umbrella.”

I ”Kate does not have her umbrella or she does not get wet”

I ”It is raining or Kate does not get wet.”

I ” Kate is grumpy only if she is wet.”

I Conclusion: ”Kate is not grumpy.”
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Formal Proof Using Inference Rules

1. ¬r ∨ u Hypothesis
2. ¬u ∨ ¬w Hypothesis
3. r ∨ ¬w Hypothesis
4. g → w Hypothesis
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Additional Inference Rules for Quantified Formulas

I Inference rules we learned so far are sufficient for reasoning
about quantifier-free statements

I Four more inference rules for making deductions from
quantified formulas

I These come in pairs for each quantifier (universal/existential)

I One is called generalization, the other one called instantiation
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Universal Instantiation

I If we know something is true for all members of a group, we
can conclude it is also true for a specific member of this group

I This idea is formally called universal instantiation:

∀x .P(x )

P(c)
(for any c)

I If we know ”All CS classes at UT are hard”, universal
instantiation allows us to conclude ”CS311 is hard”!
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Example

I Consider predicates man(x) and mortal(x) and the hypotheses:

1. All men are mortal:

2. Socrates is a man:

I Using rules of inference, prove mortal(Socrates)
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Universal Generalization

I Suppose we can prove a claim for an arbitrary element in the
domain.

I Since we’ve made no assumptions about this element, proof
should apply to all elements in the domain.

I This correct reasoning is captured by universal generalization

P(c) for arbitrary c

∀x .P(x )
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Example

Prove ∀x .Q(x ) from the hypotheses:

1. ∀x . (P(x ) → Q(x )) Hypothesis

2. ∀x . P(x ) Hypothesis

3. P(c) → Q(c) ∀-inst (1)

4. P(c) ∀-inst (2)

5. Q(c) Modus ponens (3), (4)

6. ∀x .Q(x ) ∀-gen (5)
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Caveat About Universal Generalization

I When using universal generalization, need to ensure that c is
truly arbitrary!

I If you prove something about a specific person Mary, you
cannot make generalizations about all people

__________________________________
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Existential Instantiation

I Consider formula ∃x .P(x ).

I We know there is some element, say c, in the domain for
which P(c) is true.

I This is called existential instantiation:

∃x .P(x )

P(c)
(for unused c)

I Here, c is a fresh name (i.e., not used before in proof).

I Otherwise, can prove non-sensical things such as: ”There exists
some animal that can fly. Thus, rabbits can fly”!

Instructor: Işıl Dillig, CS311H: Discrete Mathematics First Order Logic, Rules of Inference 33/40

Example Using Existential Instantiation

Consider the hypotheses ∃x .P(x ) and ∀x .¬P(x ). Prove that we
can derive a contradiction (i.e., false) from these hypotheses.

1. ∃x .P(x ) Hypothesis
2. ∀x .¬P(x ) Hypothesis
3.
4.
5.
6.
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Existential Generalization

I Suppose we know P(c) is true for some constant c

I Then, there exists an element for which P is true

I Thus, we can conlude ∃x .P(x )

I This inference rule called existential generalization:

P(c)

∃x .P(x )
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Example Using Existential Generalization

Consider the hypotheses atUT (George) and smart(George).
Prove ∃x . (atUT (x ) ∧ smart(x ))

1. atUT (George) Hypothesis
2. smart(George) Hypothesis
3.
4.
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Summary of Inference Rules for Quantifiers

Name Rule of Inference

Universal Instantiation
∀x .P(x )

P(c)
(anyc)

Universal Generalization
P(c) (for arbitraryc)

∀x .P(x )

Existential Instantiation
∃x .P(x )

P(c) for fresh c

Existential Generalization
P(c)

∃x .P(x )
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Example I

I Prove that these hypotheses imply ∃x .(P(x ) ∧ ¬B(x )):

1. ∃x . (C (x ) ∧ ¬B(x )) (Hypothesis)

2. ∀x . (C (x ) → P(x )) (Hypothesis)
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Example II

I Prove the below hypotheses are contradictory by deriving false

1. ∀x .(P(x ) → (Q(x ) ∧ S (x ))) (Hypothesis)

2. ∀x .(P(x ) ∧ R(x )) (Hypothesis)

3. ∃x .(¬R(x ) ∨ ¬S (x )) (Hypothesis)
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Example III

Prove ∃x . father(x ,Evan) from the following premises:

1. ∀x .∀y . ((parent(x , y) ∧male(x )) → father(x , y))

2. parent(Tom,Evan)

3. male(Tom)
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