

Questions

- What is maximum number of leaves in binary tree of height 5 ?
- If binary tree has 100 leaves, what is a lower bound on its height?
- If binary tree has 2 leaves, what is an upper bound on its height?

Corollary

Corollary: If m-ary tree has height h and n leaves,
then $h \geq\left\lceil\log _{m} n\right\rceil$

Instructor: Is, Dilils,	CS311H: Discrete Mathematics Graph Theory

Balanced Trees

- An m-ary tree is balanced if all leaves are at levels h or $h-1$

- "Every full tree must be balanced." - true or false?
- "Every balanced tree must be full." - true or false?
Instuctor: Isill Dililis. CS311H: Discrete Mathematic Graph Theory III

Planar Graphs

- A graph is called planar if it can be drawn in the plane without any edges crossing (called planar representation).

- Is this graph planar?

- In this class, we will assume that every planar graph has at least 3 edges.

A Non-planar Graph

- The complete graph K_{5} is not planar:

- Why can K_{5} not be drawn without any edges crossing?

Instructor : san Dilils. CS311H: Discrete Mathematics Graph Theory III

Examples

- How many regions does this graph have?

- What is the degree of its outer region?
- How many regions does a graph have if it has no cycles?
- Given a planar simple graph with at least 3 edges, what is the minimum degree a region can have?
- What is the relationship between $\sum \operatorname{deg}(R)$ and the number of edges?

Proof of Euler's Formula

- Case 1: G does not have cycles (i.e., a tree)
- If G has $|V|$ nodes, how many edges does it have?
- How many regions does it have?
- $|R|=1=(|V|-1)-|V|+2 \quad \checkmark$

Regions of a Planar Graph

- The planar representation of a graph splits the plane into regions (sometimes also called faces):

- Degree of a region R, written $\operatorname{deg}(R)$, is the number of edges bordering R
- Here, all regions have degree 3.

Euler's Formula

Euler's Formula: Let $G=(V, E)$ be a planar connected graph with regions R. Then, the following formula always holds:

$$
|R|=|E|-|V|+2
$$

All planar representations of a graph split the plane into the same number of regions!

Instructor: IsIn Dilig. CS311H: Discrete Mathematics Graph Theory III

Proof, cont.

- Case 2: G has at least one cycle.
- The proof is by induction on the number of edges.
- Base case: G has 3 edges (i.e., a triangle)
- Induction: Suppose Euler's formula holds for planar connected graphs with e edges and at least one cycle.
- We need to show it also holds for planar connected graphs with $e+1$ edges and at least one cycle.

Proof, cont.

- Create G^{\prime} by removing one edge from the cycle \Rightarrow has e edges
- If G^{\prime} doesn't have cycles, we know $|R|=e-|V|+2$ (case 1)
- If G^{\prime} has cycles, we know from IH that $|R|=e-|V|+2$
- Now, add edge back in; G has $e+1$ edges and $|V|$ vertices
- How many regions does G have? $|R|+1$
- $e+1-|V|+2=|R|+1 \quad \checkmark$

A Corollary of Euler's Formula

Theorem: Let G be a connected planar simple graph with v vertices and e edges. Then $e \leq 3 v-6$

- Proof: Suppose G has r regions.
- Recall: $2 e=\sum \operatorname{deg}(R)$
- Hence, $2 e \geq 3 r$
- From Euler's formula, $3 r=3 e-3 v+6$; thus
$2 e \geq 3 e-3 v+6$
- Implies $e \leq 3 v-6$

Another Corollary

Theorem: If G is a connected, planar simple graph, then it has a vertex of degree not exceeding 5 .

- Proof by contradiction: Suppose every vertex had degree at least 6
- What lower bound does this imply on number of edges?
-

An Application of Euler's Formula

- Suppose a connected planar simple graph G has 6 vertices, each with degree 4.
- How many regions does a planar representation of G have?
- How many edges?
- How many regions?

Why is this Theorem Useful?

Theorem: Let G be a connected planar simple graph with v vertices and e edges. Then $e \leq 3 v-6$

- Can be used to show graph is not planar.
- Example: Prove that K_{5} is not planar.
- How many edges does K_{5} have?
- $3 \cdot 5-6=9$, but $10 \not \leq 9$

