

Г	
Direct Proof	More Direct Proof Examples
• To prove $p ightarrow q$ in a direct proof, first assume p is true.	An integer a is called a perfect square if there exists an integer b such that a = b ² .
Then use rules of inference, axioms, previously shown theorems/lemmas to show that q is also true	 Example: Prove that every odd number is the difference of two perfect squares.
• Example: If n is an odd integer, than n^2 is also odd.	
▶ Proof: Assume <i>n</i> is odd. By definition of oddness, there must exist some integer <i>k</i> such that $n = 2k + 1$. Then, $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, which is odd. Thus, if <i>n</i> is odd, n^2 is also odd.	
Instructor: Ipi Dillig. CS111H: Discrete Mathematical Proof Techniques 7/31	Instructor: Ipil Dillig, CS31114: Discrete Mathematics: Mathematical Proof Techniques 8/31
Proof by Contraposition	Proof by Contradiction
▶ In proof by contraposition, you prove $p \to q$ by assuming $\neg q$ and proving that $\neg p$ follows.	Droof by contradiction proves that a big is true by proving
 Makes no difference logically, but sometimes the contrapositive is easier to show than the original 	unsatisfiability of its negation
• Prove: If n^2 is odd, then n is odd.	• What is negation of $p \rightarrow q$?
	► Assume both p and ¬q are true and show this yields contradiction
Instructor: Ipl Dillig. CS111H: Discrete Mathematical Proof Techniques 9/31	Instructor: Ișil Dilig, CS311H: Discrete Mathematica Mathematical Penof Techniques 10/31
Example	Another Example
▶ Prove by contradiction that "If $3n + 2$ is odd, then <i>n</i> is odd."	Recall: Any rational number can be written in the form ^p / _q where p and q are integers and have no common factors.
	Example: Prove by contradiction that $\sqrt{2}$ is irrational.
	►
	►
Instructory fol Dillar (SUIH) Discuss Mathematical Mathematical David Tachelinana (1994)	Instructure for Differ CS111H Disrept Medianovier Medianovier Medianovier Medianovier 1974
, or COLLET, DALACE INSTRUMENTS (100) ICCITEQUES 11/31	Costario constanti matematica matematica ("NOI recimigatis 12/31

Invalid Proof Strategies

or: Ișil Dillig,

- Proof by obviousness: "The proof is so clear it need not be mentioned!"
- Proof by intimidation: "Don't be stupid of course it's true!"
- ▶ Proof by mumbo-jumbo: $\forall \alpha \in \theta \exists \beta \in \alpha \diamond \beta \approx \gamma$
- Proof by intuition: "I have this gut feeling.."
- Proof by resource limits: "Due to lack of space, we omit this part of the proof..."

CS311H: Discrete Mathematics Mathematical Proof Technique

Proof by illegibility: "sdjikfhiugyhjlaks??fskl; QED."

Don't use anything like these in CS311!!