

Direct Proof

- To prove $p \rightarrow q$ in a direct proof, first assume p is true.
- Then use rules of inference, axioms, previously shown theorems/lemmas to show that q is also true
- Example: If n is an odd integer, than n^{2} is also odd.
- Proof: Assume n is odd. By definition of oddness, there must exist some integer k such that $n=2 k+1$. Then, $n^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$, which is odd. Thus, if n is odd, n^{2} is also odd.

Instructor: Isil Dilige.
CS311H: Discrete Mathematics Mathematical Proof Techniques

Proof by Contraposition

- In proof by contraposition, you prove $p \rightarrow q$ by assuming $\neg q$ and proving that $\neg p$ follows.
- Makes no difference logically, but sometimes the contrapositive is easier to show than the original
- Prove: If n^{2} is odd, then n is odd.
-
-
-

Example

More Direct Proof Examples

- An integer a is called a perfect square if there exists an integer b such that $a=b^{2}$.
- Example: Prove that every odd number is the difference of two perfect squares.

Proof by Contradiction

- Proof by contradiction proves that $p \rightarrow q$ is true by proving unsatisfiability of its negation
- What is negation of $p \rightarrow q$?
- Assume both p and $\neg q$ are true and show this yields contradiction

Instructor: Isfl Dilis. CS311H: Discrete Mathematics Mathematical Proof Techniques

Another Example

- Recall: Any rational number can be written in the form $\frac{p}{q}$ where p and q are integers and have no common factors.
- Example: Prove by contradiction that $\sqrt{2}$ is irrational.
-
-
-

| Combining Proofs, cont. |
| :---: | :---: |
-
-
-
-
-

If and Only if Proofs

- Some theorems are of the form " P if and only if Q " $(P \leftrightarrow Q)$
- The easiest way to prove such statements is to show $P \rightarrow Q$ and $Q \rightarrow P$
- Therefore, such proofs correspond to two subproofs
- One shows $P \rightarrow Q$ (typically labeled \Rightarrow)
- Another subproof shows $Q \rightarrow P$ (typically labeled \Leftarrow)

	CS311H: Discrete Mathematics Mathematical Proof Techiques	21/31

Counterexamples

- So far, we have learned about how to prove statements are true using various strategies
- But how to prove a statement is false?
- What is a counterexample for the claim "The product of two irrational numbers is irrational'?

Lesson from Example

- In this proof, we combined direct and proof-by-contradiction strategies
- In more complex proofs, it might be necessary to combine two or even more strategies and prove helper lemmas
- It is often a good idea to think about how to decompose your proof, what strategies to use in different subgoals, and what helper lemmas could be useful

Instructor: Isy1 Dililg. CS331H: Discrete Mathematics. Mathematical Proof Techniques

Example

- Prove "A positive integer n is odd if and only if n^{2} is odd."
\Rightarrow We have already shown this using a direct proof earlier.
- \Leftarrow We have already shown this by a proof by contraposition.
- Since we have proved both directions, the proof is complete.

Instuctor: Isll Dilig. CS311H: Discrete Mathematics Mashematial Proof Techniques

Prove or Disprove

Which of the statements below are true, which are false? Prove your answer.

- For all integers n, if n^{2} is positive, n is also positive.
- For all integers n, if n^{3} is positive, n is also positive.
- For all integers n such that $n \geq 0, n^{2} \geq 2 n$

Non-Constructive Proof Example

- Prove: "There exist irrational numbers x, y s.t. x^{y} is rational"
- We'll prove this using a non-constructive proof (by cases), without providing irrational x, y
- Consider $\sqrt{2}^{\sqrt{2}}$. Either (i) it is rational or (ii) it is irrational
- Case 1: We have $x=y=\sqrt{2}$ s.t. x^{y} is rational
- Case 2: Let $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$, so both are irrational.

Then, $\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}=\sqrt{2}^{2}=2$. Thus, x^{y} is rational
Instructor: Ssil Dilig. \quad CS311H: Discrete Mathematics Mathematical Proof Techniques $\quad 27 / 31$

Example of Uniqueness Proof

- Prove: "If a and b are real numbers with $a \neq 0$, then there exists a unique real number r such that $a r+b=0$ "
- Existence: Using a constructive proof, we can see $r=-b / a$ satisfies $a r+b=0$
- Uniqueness: Suppose there is another number s such that $s \neq r$ and $a s+b=0$. But since $a r+b=a s+b$, we have $a r=a s$, which implies $r=s$.

Existence Proofs

- One simple way to prove existence is to provide an object that has the desired property
- This sort of proof is called constructive proof
- Example: Prove there exists an integer that is the sum of two perfect squares
- But not all existence proofs are contructive - can prove existence through other methods (e.g., proof by contradiction or proof by cases)
- Such indirect existence proofs called nonconstructive proofs

Instructor: :syl Dillis. CS311H: Discrete Mathematics Mathematical Proof Techiques

Proving Uniqueness

- Some statements in mathematics assert uniqueness of an object satisfying a certain property
- To prove uniqueness, must first prove existence of an object x that has the property
- Second, we must show that for any other y s.t. $y \neq x$, then y does not have the property
- Alternatively, can show that if y has the desired property that $x=y$

Instructor: Isin Diliig. CS311H: Discrete Mathematics Mathematical Proof Techiques

Summary of Proof Strategies

- Direct proof: $p \rightarrow q$ proved by directly showing that if p is true, then q must follow
- Proof by contraposition: Prove $p \rightarrow q$ by proving $\neg q \rightarrow \neg p$
- Proof by contradiction: Prove that the negation of the theorem yields a contradiction
- Proof by cases: Exhaustively enumerate different possibilities, and prove the theorem for each case
- Proof by obviousness: 'The proof is so clear it need not be mentioned!"
- Proof by intimidation: "Don't be stupid - of course it's true!"
- Proof by mumbo-jumbo: $\forall \alpha \in \theta \exists \beta \in \alpha \diamond \beta \approx \gamma$
- Proof by intuition: 'I have this gut feeling.."
- Proof by resource limits: 'Due to lack of space, we omit this part of the proof..."
- Proof by illegibility: "sdjikfhiugyhjlaks??fskl; QED."

Don't use anything like these in CS311!!
Instructor: Ssill Dilig. C C53114: Discrete Mathematics Mathematical Proof Techniques

