

Number of r-combinations

- The number of r-combinations of a set with n elements is written $C(n, r)$
- $C(n, r)$ is often also written as $\binom{n}{r}$, read "n choose r "
- $\binom{n}{r}$ is also called the binomial coefficient
- Theorem:

$$
C(n, r)=\binom{n}{r}=\frac{n!}{r!\cdot(n-r)!}
$$

Examples

- How many hands of 5 cards can be dealt from a standard deck of 52 cards?
$-$
- There are 9 faculty members in a math department, and 11 in CS department.
- If we must select 3 math and 4 CS faculty for a committee, how many ways are there to form this committee?
-

An Example

- Consider expansion of $(a+b)^{3}$
- $(a+b)^{3}=(a+b)(a+b)(a+b)$
- $\quad=\left(a^{2}+2 a b+b^{2}\right)(a+b)$
- $\quad=\left(a^{3}+2 a^{2} b+a b^{2}\right)+\left(a^{2} b+2 a b^{2}+b^{3}\right)$
- $\quad=1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}$
$1 \begin{array}{llll} & 3 & \end{array}$
$\binom{3}{0}\binom{3}{1}\binom{3}{2}\binom{3}{3}$

Insstuctor: IsI\| Dilig.	

Binomial Coefficients

- Recall: $C(n, r)$ is also denoted as $\binom{n}{r}$ and is called the binomial coefficient
- Binomial is polynomial with two terms, e.g., $(a+b),(a+b)^{2}$
- $\binom{n}{r}$ called binomial coefficient b / c it occurs as coefficients in the expansion of $(a+b)^{n}$

The Binomial Theorem

- Let x, y be variables and n a non-negative integer. Then,

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
$$

- What is the expansion of $(x+y)^{4}$?

Corollary of Binomial Theorem

- Binomial theorem allows showing a bunch of useful results.
- Corollary: $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$
-
-

Instructor: :\{191 Dililg.

Another Corollary
- Corollary: $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$
-
-

Proof of Pascal's Identity

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

- This identity is known as Pascal's identity
- Proof:

$$
\binom{n}{k-1}+\binom{n}{k}=\frac{n!}{(k-1)!(n-k+1)!}+\frac{n!}{(k)!(n-k)!}
$$

- Multiply first fraction by $\frac{k}{k}$ and second by $\frac{n-k+1}{n-k+1}$:

$$
\binom{n}{k-1}+\binom{n}{k}=\frac{k \cdot n!+(n-k+1) n!}{(k)!(n-k+1)!}
$$

Interesting Facts about Pascal's Triangle

- What is the sum of numbers in n 'th row in Pascal's triangle (starting at $n=0$)?
- Observe: This is exactly the corollary we proved earlier!

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Pascal's Triangle

$\left.{ }^{(0}\right)^{\circ}$
$\binom{0}{0}$
$\binom{1}{0} \quad\binom{1}{1}$
$\binom{1}{0} \quad\binom{1}{1}$
$\left(\begin{array}{ll}\binom{2}{0} & \binom{2}{1} \quad\binom{2}{2}\end{array}\right.$
$\binom{3}{0} \quad\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3}$
$\left(\begin{array}{llll}\binom{3}{0} & \binom{3}{1} & \binom{3}{2} & \binom{3}{3}\end{array}\right.$
$\begin{array}{lllll}\binom{4}{0} & \binom{4}{1} & \binom{4}{2} & \binom{4}{3} & \binom{4}{4}\end{array}$

- Pascal arranged binomial coefficients as a triangle
- n 'th row consists of $\binom{n}{k}$ for $k=0,1, \ldots n$

Instructor: Isfl Dililis.
CS311H: Discrete Mathematics Perrutations and Combinations

Proof of Pascal's Identity, cont.

$$
\binom{n}{k-1}+\binom{n}{k}=\frac{k \cdot n!+(n-k+1) n!}{(k)!(n-k+1)!}
$$

- Factor the numerator:

$$
\binom{n}{k-1}+\binom{n}{k}=\frac{(n+1) \cdot n!}{(k)!(n-k+1)!}=\frac{(n+1)!}{k!\cdot(n-k+1)!}
$$

- But this is exactly $\binom{n+1}{k}$

Some Fun Facts about Pascal's Triangle, cont.

- Pascal's triangle is perfectly symmetric
- Numbers on left are mirror image of numbers on right
- Why is this the case?

Permutations with Repetitions

- Earlier, when we defined permutations, we only allowed each object to be used once in the arrangement
- But sometimes makes sense to use an object multiple times
- Example: How many strings of length 4 can be formed using letters in English alphabet?
- A permutation with repetition of a set of objects is an ordered arrangement of these objects, where each object may be used more than once

General Formula for Permutations with Repetition

- $P^{*}(n, r)$ denotes number of r-permutations with repetition from set with n elements
- What is $P^{*}(n, r)$?
- How many ways to assign 3 jobs to 6 employees if every employee can be given more than one job?
- How many different 3-digit numbers can be formed from $1,2,3,4,5$?

