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Online streaming algorithms, tailored for continuous data processing, offer substantial benefits but are
often more intricate to design than their offline counterparts. This paper introduces a novel approach for
automatically synthesizing online streaming algorithms from their offline versions. In particular, we propose
a novel methodology, based on the notion of relational function signature (RFS), for deriving an online
algorithm given its offline version. Then, we propose a concrete synthesis algorithm that is an instantiation
of the proposed methodology. Our algorithm uses the RFS to decompose the synthesis problem into a set of
independent subtasks and uses a combination of symbolic reasoning and search to solve each subproblem.
We implement the proposed technique in a new tool called Opera and evaluate it on over 50 tasks spanning
two domains: statistical computations and online auctions. Our results show that Opera can automatically
derive the online version of the original algorithm for 98% of the tasks. Our experiments also demonstrate
that Opera significantly outperforms alternative approaches, including adaptations of SyGuS solvers to this
problem as well as two of Opera’s own ablations.
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1 INTRODUCTION
The increasing demand for analyzing large volumes of data has sparked considerable interest
in stream processing frameworks like Apache Flink [43], Spark Streaming [79], Kafka [45], and
others [1, 55]. Because streaming applications process data as it arrives in a continuous fashion,
they can derive significant advantages from using online streaming algorithms (online algorithms
for short). In contrast to offline algorithms that receive the input data in a single batch, online
algorithms are designed to process data incrementally, without requiring access to the entire data
set at once.
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Despite the potential advantages of online algorithms in many scenarios, offline algorithms are
often easier to design than their online counterparts [2–6, 58]. As an example, Figure 2a shows the
implementation of an offline algorithm for calculating statistical variance for a list of numbers. Its
online version, on the other hand, is known as Welford’s algorithm [76] and, as shown in Figure 2b,
it is significantly more complex than its offline version. In particular, note that the online version
takes as input several auxiliary parameters (v, s, sq, n) and, in addition to returning the variance,
the algorithm also needs to compute the updated values of these parameters.

This paper proposes a new technique for automatically synthesizing online algorithms from their
offline version. At a high level, the problem addressed in this paper falls under the general umbrella
of incremental computation on which there is a significant body of work [7–9, 11, 17, 33, 36–38, 48,
60, 64, 68]. However, as discussed in more detail later (see Section 9), most prior work in this space
focuses on programming language support and runtime systems for incrementalization [8, 9, 11, 36–
38]. There is also some prior research on generating incremental algorithms, but existing techniques
are either domain-specific [7, 33, 60, 64, 68], or require hand-crafted rewrite rules to derive the
target program [17, 48].

In contrast to existing techniques, we propose a fully automated and general method for syn-
thesizing online algorithms. Given an offline algorithm P over input list 𝑥𝑠 , our method can
automatically generate its online implementation scheme S = (I,P′) consisting of an initializer I
and online algorithm P′. Here, the initializer specifies the computation result for an empty list, and
P′ incrementally computes the output given only the previous computation result and a new stream
element. Our approach can automatically derive both the initializer and the online algorithm and
ensures that the synthesized scheme is semantically equivalent to its offline version.

From a technical perspective, this paper makes two key contributions. The first one is a new
synthesis methodology for deriving online schemes, and the second contribution is a concrete
synthesis algorithm that is an instantiation of this methodology. Our methodology hinges upon the
concept of a relational function signature (RFS) which relates parameters of the online algorithm to
computation results in the offline version. At a high level, the RFS (which is inferred automatically)
serves as a relational specification between the offline and online algorithms and drives the entire
synthesis process. In particular, our methodology relies on the notion of inductiveness relative to an
RFS and can be shown to be both sound and (under certain realistic assumptions) complete.

A second technical contribution of this paper is a new synthesis algorithm that is an instantiation
of the proposed methodology. As shown schematically in Figure 1, our method first statically
analyzes the offline program to infer a suitable relational function signature. Along with the source
code of the offline program, this RFS is used to generate a program sketch of the online algorithm.
Crucially, the RFS-guided synthesis methodology ensures that each unknown in this sketch can be
solved completely independently. This yields several independent synthesis subtasks, each requiring
the discovery of an expression that satisfies its specification modulo the RFS. However, because
these expressions can nevertheless be quite large, existing synthesis techniques (e.g., based on
enumerative search) struggle to synthesize such expressions that arise in realistic online algorithms.
Our algorithm addresses this challenge by proposing a novel expression synthesis technique that
marries the power of symbolic reasoning with the flexibility of search.

We have implemented our approach in a tool called Opera1 and evaluated it on more than 50
offline-online conversion tasks spanning two domains (statistical algorithms and online auctions).
Our evaluation shows that Opera can automate this conversion process for 98% of the tasks. We
also perform a comparison against two baselines by adapting SyGuS solvers to this task and show
that our proposed approach significantly outperforms these baselines: in particular, Opera can

1Opera stands for Online Program gEneRAtor
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Fig. 1. Schematic illustration of our synthesis methodology

1 def variance(xs):
2 s = 0
3 for x in xs:
4 s += x
5 avg = s / len(xs)
6
7 sq = 0
8 for x in xs:
9 sq += (x - avg) ** 2

10 return sq / len(xs)

(a) Two-pass algorithm for offline variance.

1 def welford(v, s, sq, n, x):
2 new_s = s + x
3 new_n = n + 1
4 avg = new_s / new_n
5 tmp = s / n
6 new_sq = sq + (x - tmp) * (x - avg)
7 new_v = new_sq / new_n
8 return new_v, new_s, new_sq, new_n

(b) Welford’s algorithm for online variance.

Fig. 2. Offline and online algorithms for computing variance, implemented in Python. In the online version,

x corresponds to the new stream element, and the first four are auxiliary parameters. We assume that all

division operators are safe, meaning that they produce a default value of 0 when the denominator is 0.

solve 2.6× as many tasks as its closest competitor. Finally, we present ablation studies that quantify
the relative importance of the different ingredients of our approach.

To summarize, this paper makes the following key contributions:
• We propose a novel synthesis methodology for deriving online algorithms from their offline

counterparts which is based on the concept of relational function signatures (RFS) and the notion
of inductiveness relative to an RFS.
• We describe a concrete synthesis algorithm that is an instantiation of our proposed RFS-based

methodology. This algorithm decomposes the overall synthesis problem into a set of completely
independent sub-tasks and utilizes a novel expression synthesis technique that marries the power
of symbolic reasoning with the flexibility of search. As shown experimentally, both of these
ingredients are important for the practicality of our approach.
• We implement our algorithm in a tool called Opera and use it to derive online versions of 51

offline algorithms. Opera can solve all benchmarks except one and significantly outperforms
two baselines, which are problem-specific adaptations of leading SyGuS solvers.

2 OVERVIEW
In this section, we motivate our proposed technique with the aid of a motivating example for

calculating statistical variance for a list 𝑥𝑠 of 𝑛 data points, defined as:

a =

∑𝑛
𝑖=0 (𝑥𝑠 [𝑖] − `)2

𝑛
(1)

where ` denotes the arithmetic mean of values in 𝑥𝑠 . Figure 2a shows the standard two-pass
algorithm, written in Python, for implementing Eq. 1. This algorithm first computes the mean in
one pass over the input list 𝑥𝑠 (lines 2-5) and then does a second pass to compute the squared

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 188. Publication date: June 2024.



188:4 Ziteng Wang, Shankara Pailoor, Aaryan Prakash, Yuepeng Wang, and Işıl Dillig

1 variance xs =
2 let
3 s = foldl (+) 0 xs
4 avg = s / (length xs)
5 f acc x = acc + (x - avg)^2
6 in (foldl f 0 xs) / (length xs)

(a) Two-pass algorithm for offline variance.

1 welford (v, s, sq, n) x =
2 let
3 new_s = s + x
4 new_n = n + 1
5 avg = new_s / new_n
6 new_sq = sq + (x - s / n) * (x - avg)
7 in (new_sq / new_n, new_s, new_sq, new_n)

(b) Welford’s algorithm for online variance.

Fig. 3. Intermediate presentation of variance computation.

differences from the mean (lines 7-10). To simplify this example and the presentation in the rest
of the paper, we assume that all division operations are safe, meaning that they produce a default
value of zero if the denominator is zero.

In contrast, Figure 2b shows the Python implementation of its online version, known as Welford’s
method, based on a 1962 paper called Note on a Method for Calculating Corrected Sums of Squares
and Products [76]. The key insight behind Welford’s method is the following pair of recurrence
relations relating the new mean `′ and variance a ′ to their previous values `, a :

`′ = ` + (𝑥 − `)
𝑛

a ′ =
a × (𝑛 − 1) + (𝑥 − `) × (𝑥 − `′)

𝑛

(2)

Here, 𝑥 denotes the new element and 𝑛 denotes the total number of elements processed so far.
Figure 2b uses these recurrence relations to compute the variance in an incremental way. Specif-

ically, the online algorithm takes as input the new element x to be processed and four previous
computation results v, s, sq, and n where v denotes the previously computed variance, s denotes
the sum of all previous elements, sq denotes the previous sum of squared differences from the
mean, and n denotes the number of elements processed thus far. It is easy to confirm that the
implementation in Figure 2b computes the new variance as:

a ′ =
𝑠𝑞 + (𝑥 − 𝑠

𝑛
) × (𝑥 − 𝑠+𝑥

𝑛+1 )
𝑛 + 1

which is mathematically equivalent to Equation 2. Thus, assuming that the initial auxiliary argu-
ments of welford are provided correctly (all zeros in this example), the online program yields the
correct variance for a given stream of data points. In the remainder of this section, we explain how
our approach can automatically synthesize an implementation of Welford’s algorithm given the
offline version shown in Figure 2a.
Functional IR. While our tool, Opera, can take as input Python programs, it first converts the
input to an intermediate functional representation that facilitates synthesis. Figure 3a shows the
corresponding intermediate representation of the two-pass variance computation, implemented
using fold operations. Specifically, line 3 computes the sum of all elements using fold in the
expected way, and line 4 computes the average as sum divided by length. Finally, line 6 computes
variance using a fold operation and the accumulator function f declared on the previous line.
As we will see later, this functional IR both simplifies presentation and also facilitates deductive
reasoning.
RFS inference. Our approach does not take any inputs beyond the implementation of the offline
algorithm, so it must first infer a suitable signature of the online program. Each online program takes
as input the new element x and the previous computation result v; however, it may require additional
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Parameter Specification
v variance xs

s foldl (+) 0 xs

sq foldl (\acc x -> acc + (x - avg)^2) 0 xs

n length xs
Fig. 4. Relational Function Signature for Welford’s algorithm

online_variance (v, s, sq, n) x =
let new_s = □1

new_n = □2
avg = s / new_n
new_sq = □3

in (new_sq / new_n, new_s, new_sq, new_n)

(a) Sketch.

Unknown Specification
□1 foldl (+) 0 xs

□2 length xs

□3 foldl (\acc x -> acc + (x-avg)^2) 0 xs

(b) Specification.

Fig. 5. Sketch generated by Opera for variance.

inputs. To determine what auxiliary parameters may be required, Opera statically analyzes the
input code to identify sub-expressions that are dependent on the input list and introduces a new
parameter for each such sub-expression. In particular, Figure 4 shows the four auxiliary parameters
inferred for the variance algorithm, along with the sub-computations that they represent. We refer
to the mapping from Figure 4 as a relational function signature (RFS): the RFS maps each auxiliary
argument of the online program to an expression 𝑓 (𝑥𝑠) in the offline program.
Initializer. Recall that an online scheme consists of an initializer and an online algorithm. The
initializer needs to handle the base case (i.e., empty list/stream), and it is easy to construct using
the RFS. In particular, we can obtain suitable initial values for the v, s, sq, n by evaluating the
right-hand side expressions in Figure 4 on an empty list. In this case, this yields (0, 0, 0, 0) for the
initializer for the online variance scheme.
RFS-guided synthesis methodology. Given a relational function signature like the one from
Figure 4, Opera tries to synthesize an online program that is inductive relative to this RFS. That is,
assuming that the arguments of the online program are related to the original version as stipulated
by the RFS, then the values returned by the online program should also satisfy the RFS. For example,
consider the welford implementation from Figure 3b. The inductiveness of the RFS means that
new_v, new_s, new_sq, and new_n should all satisfy the specification associated with v, s, sq,
n in Figure 4 respectively.
Syntax-directed sketch generation. To synthesize an online program that is inductive relative
to the RFS, our approach generates a sketch from the offline program in a syntax-directed way.
For instance, for our running example, Opera generates the sketch shown in Figure 5a, with the
specification for each hole shown in Figure 5b. The key idea behind sketch generation is to retain
the reusable parts of the offline program, while replacing expressions that depend on the input list
with holes. Furthermore, for each hole in the generated sketch, we can use the original expression
as its specification and thereby decompose the synthesis problem into multiple independent sub-
problems. For example, because the sketch shown in Figure 5 contains three holes, each with
its own specification, Opera can reduce the overall synthesis task to solving three independent
sub-problems.
Expression synthesis. Given the sketch shown in Figure 5, Opera aims to find an expression 𝑒𝑖 for
each hole □𝑖 such that 𝑒𝑖 satisfies the corresponding specification for that hole. As an example, let
us consider the problem of synthesizing □1 — that is, we wish to find an expression over variables
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v, s, sq, n, and x such that the specification 𝑓 (𝑥𝑠) for □1 is satisfied. But what does it even mean
for an expression to satisfy its specification?

To answer this question, consider the specification for □1, and suppose the online algorithm
has already processed elements xs and that the new element to be processed is x. Now, we want
to synthesize an expression 𝑒1 for □1 such that 𝑒1 = 𝑓 (xs ++ [x]) assuming that the function
arguments satisfy the RFS. In this case, the RFS tells us that s = foldl (+) 0 xs which means
we want to find an expression 𝑒1 for □1 such that 𝑒1 is equivalent to foldl (+) 0 (xs ++ [x]).
Using the RFS and the semantics of fold, we can show that the expression s + x satisfies this
specification because we have:

(s = foldl (+) 0 xs) ⇒ (s + x = foldl (+) 0 (xs ++ [x]))

Thus, Opera can infer that s + x is a valid completion for □1 in isolation without having to reason
about the rest of the sketch.

But how does Opera find the expression s + x? The simplest solution is to perform enumerative
search. While this works in simple cases, the expressions that we need to synthesize can be quite
large. For example, while the completion for □1 is the simple expression s + x, the completion
for □3 is a much more complex expression, namely sq + (x - s / n) * (x - avg). To deal
with this challenge, Opera combines search with symbolic reasoning to derive expressions that
are likely to be used in the target solution, as discussed later in Section 5.2.2. Intuitively, our
key idea is to construct a logical formula in such a way that implicates of this formula either
directly correspond to the solution for the hole or they can be used as useful building blocks when
performing enumerative synthesis. As we show experimentally in Section 7, this combination of
symbolic reasoning and search is very beneficial in practice.
Summary. To summarize, Opera can automatically derive Welford’s online algorithm for comput-
ing variance given only its standard two-pass (offline) implementation. To do so, it first statically
analyzes the offline implementation to learn a relational function signature, which drives the
entire synthesis process. Opera also utilizes the offline program to generate a program sketch,
which, along with the RFS, facilitates compositional synthesis of each hole using a combination of
search-based and symbolic methods.

3 PROBLEM STATEMENT
In this section, we introduce the syntax and semantics of online and offline programs and formalize
our problem statement.
Offline Programs. Figure 6 shows the syntax of a simple functional language in which we express
offline programs for batch processing. A program in this language takes as input a list 𝑥𝑠 and
evaluates an expression 𝐸. Expressions include constants 𝑐 , variables 𝑥 , list expressions 𝐿, function
applications 𝑔(𝐸, . . . , 𝐸) (where 𝑔 is either a built-in function or a user-defined lambda abstraction),
and conditionals 𝐸 ? 𝐸 : 𝐸. List expressions are formed using the standard list combinators map,
filter, and fold, which may be arbitrarily nested. Despite looking simple, this language is nevertheless
Turing complete, and many batch processing programs are written in frameworks that support this
style of functional programming [21, 43, 78].

Example 3.1. Consider the following offline program _𝑥𝑠. foldl(+, 0, 𝑥𝑠) / length(𝑥𝑠). This pro-
gram takes as input a list 𝑥𝑠 of numbers and outputs their arithmetic mean.

In the remainder of this paper, we assume a standard set of built-in functions such as the + and
length operators used in the previous example. Given program P, we use the notation JPK𝑙 = 𝑐 to
indicate that executing P on list 𝑙 yields value 𝑐 .
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Program P ::= _𝑥𝑠. 𝐸

Expression 𝐸 ::= 𝑐 | 𝑥 | 𝐿 | 𝑔(𝐸, . . . , 𝐸) | 𝐸 ? 𝐸 : 𝐸
List Expr 𝐿 ::= 𝑥𝑠 | map(𝑔, 𝐿) | filter(𝑔, 𝐿) | foldl(𝑔, 𝐸, 𝐿)
Function 𝑔 ::= _𝑥 .𝐸 | 𝑓

𝑐 ∈ Constants 𝑥 ∈ Variables 𝑥𝑠 ∈ List Variables 𝑓 ∈ Built-in Functions

Fig. 6. Syntax of the intermediate representation for offline programs.

Scheme S ::= (I,P)
Initializer I ::= (𝑐1, . . . , 𝑐𝑛)

Online program P ::= _(𝑦1, . . . , 𝑦𝑛) ._𝑥 . (𝐸1, . . . , 𝐸𝑛)
Expression 𝐸 ::= 𝑐 | 𝑥 | 𝑦𝑖 | 𝑔(𝐸, . . . , 𝐸) | 𝐸 ? 𝐸 : 𝐸

Function 𝑔 ::= _𝑧.𝐸 | 𝑓
𝑐 ∈ Constants 𝑥,𝑦, 𝑧 ∈ Variables 𝑓 ∈ Built-in Functions

Fig. 7. Syntax of the intermediate representation for online scheme.

J(I,P)KNil = [fst(I)]
(Lift-Nil) 𝑠,I ⊢ P ⇓ 𝑠′

J(I,P)K𝑠 = 𝑠′
(Lift-Cons)

Nil, _ ⊢ P ⇓ Nil (S-Nil) JPKℎ,𝑐 = 𝑐′ 𝑡, 𝑐′ ⊢ P ⇓ 𝑠′

ℎ : 𝑡, 𝑐 ⊢ P ⇓ fst(𝑐′) : 𝑠′ (S-Cons)

Fig. 8. Semantics of the online scheme. J(𝐼 , 𝑃)K𝑠 = 𝑠′ means evaluating online scheme (𝐼 , 𝑃) on stream 𝑠

yields stream 𝑠′, and 𝑠, 𝑐 ⊢ (𝐼 , 𝑃) ⇓ 𝑠′ is an auxiliary relation, meaning online scheme (𝐼 , 𝑃) evaluates to 𝑠′
given stream 𝑠 and current accumulators 𝑐 .

Online scheme. As shown in Figure 7, an online implementation scheme (or online scheme for
short) is a pair S = (I,P′) where I, the initializer, is a tuple of constants (𝑐1, . . . , 𝑐𝑛), and P′ is a
so-called online program. Since the online program is expected to perform the same computation as
the offline program but in an incremental fashion, it takes two arguments: (1) a tuple (𝑦1, . . . , 𝑦𝑛)
which corresponds to the computational results over the previously processed stream elements,
and (2) 𝑥 , which corresponds to the new stream element to be processed. The return value of the
online program is another tuple (𝑦′1, . . . , 𝑦′𝑛), which corresponds to the new results after processing
additional element 𝑥 . Note that expressions in the online program are the same as their counterparts
in offline programs except that list combinators are disallowed to force incremental computation.
Semantics. Figure 8 presents the semantics for online scheme S = (I,P′) using the notation
J(I,P′)K𝑠 = 𝑠′, indicating that executing S on input stream 𝑠 yields another stream 𝑠′. To define
the semantics, Figure 8 uses an auxiliary relation of the form: 𝑠, 𝑐 ⊢ P′ ⇓ 𝑠′ that keeps track of the
running accumulator 𝑐 (i.e., first argument of the online program). Given a non-empty stream 𝑠 ,
the Lift-Cons rule in Figure 8 initializes the accumulator to I and evaluates online program P′ on
𝑠 using the auxiliary rule S-Cons. In particular, given a stream 𝑠 with head ℎ and tail 𝑡 , S-Cons first
evaluates online program P′ on ℎ and current accumulator 𝑐 and then recurses on tail 𝑡 with new
accumulator values 𝑐′. Note that our convention in this paper is to designate the first element of
the tuple returned by the online program to correspond to the result of the offline program. As
such, S-Cons appends 𝑠′ to the first element of the tuple in 𝑐′.

Example 3.2. The online scheme S for the arithmetic mean program Example 3.1 consists of the
initalizer I = (0, 0) and the following online program P′:

P′ ((𝑦, 𝑧), 𝑥) = ((𝑦 · 𝑧 + 𝑥) /(𝑧 + 1), 𝑧 + 1)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 188. Publication date: June 2024.
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Here, 𝑦 corresponds to the running mean and 𝑧 is the number of stream elements processed so far.
Then, given the stream 𝑠 = [0, 1, 2, 3, . . .], we have:

JSK𝑠 = [0, 0.5, 1, 1.5, . . .]

Next, we define what it means for an offline program to be equivalent to an online scheme:

Definition 3.3 (Online-Offline Equivalence). Let P be an offline program and (I,P′) be an
online scheme. We say that (I,P′) is equivalent to P, denoted P ≃ (I,P′), if for any list 𝑥𝑠 and
its corresponding stream representation 𝑥𝑠′, we have:

JPK𝑥𝑠 = last(J(I,P′)K𝑥𝑠′ )
where last denotes the last element in a finite stream.

Problem statement. Given an offline program P, our goal is to synthesize an online scheme (I,P′)
such that P ≃ (I,P′).

4 METHODOLOGY
Before presenting our concrete synthesis algorithm, we first introduce the general methodology
and justify its correctness. As stated earlier, our methodology hinges on the following notion of
relational function signature (RFS):

Definition 4.1 (Relational Function Signature). Let P be an offline program with argument 𝑥𝑠
and let P′ be an online program with arguments 𝑦, 𝑥 where 𝑦 = (𝑦1, . . . , 𝑦𝑛). A Relational Function
Signature (RFS) Φ maps each 𝑦𝑖 to an offline expression 𝑓𝑖 (𝑥𝑠). We also write Φ(𝑥𝑠,𝑦) to denote the
formula

∧𝑛
𝑖=1 𝑦𝑖 = Φ[𝑦𝑖 ].

Intuitively, a relational function signature specifies the semantics of the additional arguments
𝑦1, . . . , 𝑦𝑛 of the online program in terms of expressions in the offline program.

Example 4.2. Consider the offline program P from Example 3.1 and the online program P′ from
Example 3.2. The relationship between P and P′ is captured through the following RFS:

Φ[𝑦] = foldl(+, 0, 𝑥𝑠) / length(𝑥𝑠) Φ[𝑧] = length(𝑥𝑠)
Intuitively, this RFS states that the additional argument 𝑦 of the online program corresponds to the
previous computation result and that 𝑧 keeps tracks of the number of list elements processed so far.

Next, we introduce the notion of inductiveness relative to a relational function signature:

Definition 4.3 (Inductiveness relative to RFS). Let Φ be an RFS between offline program P (with
argument 𝑥𝑠) and online program P′ (with arguments 𝑦, 𝑥 ). We say that P′ is inductive relative to
Φ if and only if the following Hoare triple is valid:

{Φ(𝑥𝑠,𝑦)} 𝑦′ := P′ (𝑦, 𝑥); 𝑥𝑠′ = 𝑥𝑠 ++[𝑥] {Φ(𝑥𝑠′, 𝑦′)}

Intuitively, an RFS is inductive if it is preserved after processing the next element in the input
stream. That is, given an input stream 𝑥𝑠′ = 𝑥𝑠 ++[𝑥], if the RFS holds between 𝑥𝑠 and 𝑦, then it
should continue to hold between 𝑥𝑠′ and 𝑦′ where 𝑦′ is the result of executing the online program
P′ on the new stream element 𝑥 and previous computation results 𝑦.

Example 4.4. Consider the offline and online programs from Examples 3.1 and 3.2, and the RFS
from Example 5.1. This RFS is inductive because:
(1) Φ[𝑧] is preserved: assuming that 𝑧 is the length of 𝑥𝑠 , then 𝑧′ is 𝑧 + 1, which is the length of

𝑥𝑠 ++[𝑥].
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(2) Φ[𝑦] is preserved: assuming that 𝑦 is the arithmetic mean of 𝑥𝑠 , then 𝑦′ is computed as (𝑦 × 𝑧 +
𝑥)/(𝑧 + 1), which is indeed the arithmetic mean of 𝑥𝑠 ++[𝑥].

Definition 4.5 (Model of RFS). We say that an online scheme S = (I,P′) is a model of RFS Φ,
denoted S |= Φ if the following conditions are satisfied:
(1) Φ(Nil,I) evaluates to true, denoted I |= Φ
(2) P′ is inductive relative to Φ

Example 4.6. Consider again the RFS Φ from Example 4.4 and the online scheme from Example 3.2.
This online scheme is a model of Φ since it is inductive with respect to P′ (as shown in example 4.4),
and Φ[𝑦] = Φ[𝑧] = 0 on the empty list. Thus, the initializer I = (0, 0) also satisfies I |= Φ.

We now state the following theorem that forms the basis of our synthesis methodology:

Theorem 4.7. Let P = _𝑥𝑠.𝐸 be an offline program and S = (I,P′) an online scheme. Let Φ(𝑥𝑠,𝑦)
be an RFS between P and P′ such that Φ[𝑦1] = 𝐸. Then, if S |= Φ, we have P ≃ S.

Proofs of all theorems can be found in the extended version of the paper [74].
Synthesis methodology. The previous theorem forms the basis of our synthesis algorithm. In
particular, our synthesis methodology consists of three key steps:
(1) Given the offline program P = _𝑥𝑠.𝐸, find a relational function signature Φ such that Φ[𝑦1] = 𝐸.
(2) Construct an initializer I such that I |= Φ.
(3) Synthesize an online program P′ that is inductive relative to Φ.

If we can synthesize such a triple (Φ,I,P′) satisfying properties (1)-(3) from above, Theorem 4.7
guarantees that the resulting online scheme S = (I,P′) is equivalent to input P. Furthermore, we
can also show that this methodology is complete under certain realistic assumptions:

Theorem 4.8. Let P = _𝑥𝑠.𝐸 be an offline program and let S = (I,P′) be an online scheme such
that P ≃ S. If the expression foldl(P′,I, 𝑥𝑠) has an inductive invariant _𝑥𝑠._𝑦.𝜙 where 𝜙 ≡ ∧

𝑖 𝑦𝑖 =

𝐸𝑖 with 𝐸1 = 𝐸, then there exists an RFS satisfying conditions (1) – (3) of our methodology.

To gain some intuition about this theorem, we first observe that forP and (I,P′) to be equivalent,
we must have P(𝑥𝑠) = fst(foldl(P′,I, 𝑥𝑠)) for any input list 𝑥𝑠 . Hence, at the very least, we must
have 𝑦1 = 𝐸 as an invariant of P′, where 𝐸 is the body of the offline program. However, since it
may not be an inductive invariant, we may need to logically strengthen it to make it inductive. The
theorem states that, as long as the required strengthening is of the form

∧𝑛
𝑖=2 𝑦𝑖 = 𝐸𝑖 (where 𝑦𝑖 ’s are

the auxilary arguments of the online program and 𝐸𝑖 is an offline expression), then the synthesis
methodology is also complete. This is a very mild assumption that also underlies other prior work
on incremental computation [33, 48]. Intuitively, we can find an inductive invariant because online
programs maintain an auxiliary state that is always equivalent to some computation result, so the
invariant can be expressed as a conjunction of equalities.

5 SYNTHESIS ALGORITHM
In this section, we describe our synthesis algorithm based on the methodology introduced in the
previous section.

5.1 Top-Level Algorithm
Our top level synthesis procedure is presented in Algorithm 1 and follows the methodology from
Section 4. Specifically, it first constructs an RFS by analyzing the offline program (line 2). It then
synthesizes the initializer by replacing each occurrence of 𝑥𝑠 in Φ with Nil and obtaining a model of
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Algorithm 1 Online Scheme Synthesis
1: procedure Synthesize(P)

Input: An offline program P
Output: An equivalent online scheme (I,P′)

2: Φ← ConstructRFS(P)
3: I ← Model(Φ[𝑥𝑠 ↦→ Nil])
4: P′ ← SynthesizeOnlineProg(P,Φ)
5: return (I,P′)

Algorithm 2 Learning RFS
1: procedure ConstructRFS(P)

Input: An offline program P = _𝑥𝑠.𝐸

Output: A relational function signature Φ
2: Φ← {𝑦1 ↦→ 𝐸}
3: for 𝑒2, . . . , 𝑒𝑛 ∈ ListExpr(𝐸) do
4: Φ← Φ[𝑦𝑖 ↦→ 𝑒𝑖 ]
5: return Φ

the resulting formula (line 3). Finally, it invokes the SynthesizeOnlineProg procedure to construct
an online program P′ such that P′ is inductive relative to Φ (line 4).

Algorithm 2 presents our technique for constructing a relational function signature. The key
idea underlying ConstructRFS is the following: For any expression 𝑒 of P that performs some
operation over the input list 𝑥𝑠 , the online program may require an additional argument to store
the previous computation result. Thus, ConstructRFS iterates over list expressions 𝑒2, . . . , 𝑒𝑛 in
the offline program and introduces a new argument 𝑦𝑖 for each 𝑒𝑖 , with the corresponding mapping
Φ[𝑦𝑖 ] = 𝑒𝑖 . Here (and in the remainder of the paper), we use the term “list expression" to mean any
expression that has 𝑥𝑠 as a child in the abstract syntax tree of P. Since our convention is to store
the result of the offline program in 𝑦1, note that line 2 of Algorithm 2 maps 𝑦1 to 𝐸, which is the
body of the offline program.
Remark. The ConstructRFS procedure may end up introducing more accumulators (i.e., auxiliary
parameters) than necessary. If the synthesized online program does not end up using them, our
implementation removes such unnecessary variables from the signature of the online program in a
subsequent post-processing step.

Example 5.1. Consider the offline program from Example 3.1. Our algorithm produces the
following relational function signature:

{𝑦1 ↦→ foldl(+, 0, 𝑥𝑠) / length(𝑥𝑠), 𝑦2 ↦→ length(𝑥𝑠), 𝑦3 ↦→ foldl(+, 0, 𝑥𝑠)}

5.2 Synthesis of Online Programs
Algorithm 3 presents our approach for synthesizing online programs. As mentioned in Section 1, the
main idea is to decompose the synthesis task into several subproblems that can be solved completely
independently. In particular, the algorithm performs this decomposition by first generating a program
sketch, where each hole represents an independent synthesis task with its own specification (line
2). The loop in lines 4–6 then solves each sub-problem by calling the SynthesizeExpr procedure
(line 4). In the remainder of this section, we describe our decomposition technique and expression
synthesis algorithm in more detail.
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Algorithm 3 Online Program Synthesis
1: procedure SynthesizeOnlineProg(P,Φ)

Input: Offline program P, relational function signature Φ
Output: An online program P′ such that Φ is inductive with respect to P′

2: P′,Δ← Decompose(Φ,P)
3: for each ℎ ∈ Holes(P′) do
4: 𝐸 ← SynthesizeExpr(Φ,Δ[ℎ])
5: if 𝐸 = ⊥ then return ⊥
6: P′ ← P′ [𝐸/ℎ]
7: return P′

dom(Φ) = {𝑦1, . . . , 𝑦𝑛}
Φ ⊢ Φ[𝑦1] ↩→ Ω1,Δ1 . . . Φ ⊢ Φ[𝑦𝑛] ↩→ Ω𝑛,Δ𝑛

Φ ⊢ _𝑥𝑠.𝐸 ↩→ _(𝑦1, . . . , 𝑦𝑛) ._𝑥 .(Ω1, . . . ,Ω𝑛), Δ1 ∪ . . . ∪ Δ𝑛
(Prog)

LeafExpr(𝐸)
Type(𝐸) ≠ List

Φ ⊢ 𝐸 ↩→ 𝐸, { } (Leaf)

□ = Hole(𝐿)
Φ ⊢ 𝐿 ↩→ □, {□ ↦→ 𝐿} (List)

Φ ⊢ 𝐸1 ↩→ Ω1,Δ1 . . . Φ ⊢ 𝐸𝑛 ↩→ Ω𝑛,Δ𝑛

Φ ⊢ 𝑔(𝐸1, . . . , 𝐸𝑛) ↩→ 𝑔(Ω1, . . . ,Ω𝑛), Δ1 ∪ . . . ∪ Δ𝑛
(Func)

Φ ⊢ 𝐸1 ↩→ Ω1,Δ1 Φ ⊢ 𝐸2 ↩→ Ω2,Δ2 Φ ⊢ 𝐸3 ↩→ Ω3,Δ3
Φ ⊢ 𝐸1 ? 𝐸2 : 𝐸3 ↩→ Ω1 ? Ω2 : Ω3, Δ1 ∪ Δ2 ∪ Δ3

(ITE)

Fig. 9. Rules for decomposition.

5.2.1 Decomposition. We present our decomposition technique using inference rules of the form
Φ ⊢ 𝐸 ↩→ Ω,Δ where Ω is an expression with holes (i.e., sketch) and Δ is a mapping from each hole
to its corresponding specification. Here, the specification is an expression in the offline program,
and the goal of the subsequent synthesis task is to generate an online expression 𝑒 for each hole ℎ
such that 𝑒 is equivalent to Δ[ℎ] modulo the RFS.

Before we go into the details of our sketch generation procedure, we first provide some high-level
intuition. The key idea is to replace expressions that directly operate over the input list with
holes but reuse the general high-level structure of the offline algorithm. For example, consider
the expression 𝑒 given by foldl(+, 0, xs) / length(xs). If we have a way of incrementally
computing foldl(+, 0, xs) and length(xs) using expressions 𝑒1 and 𝑒2 respectively, we can
also incrementally compute 𝑒 as 𝑒1/𝑒2. Thus, our decomposition technique implicitly assumes that
the online program can be obtained by composing incremental computations over list expressions
using operators that already appear in the offline program. While this assumption could in principle
be violated (thereby causing our synthesis algorithm to lose completeness), we have, in practice,
not encountered any cases violating this assumption.

Figure 9 presents our decomposition algorithm as inference rules. The first rule labeled Prog
utilizes the RFS to generate a sketch for the entire program. In particular, if there are 𝑛 variables
in the domain of the RFS, the body of the online program consists of an 𝑛-ary tuple (Ω1, . . . ,Ω𝑛)
where each sketch Ω𝑖 corresponds to Φ[𝑦𝑖 ]. The next rule, labeled Leaf, is used to “copy over"
shared expressions that belong to the syntax of both online and offline programs. The rule labeled
List introduces holes: Since list expressions 𝐿 are disallowed in online programs, they must be
synthesized from scratch, and the resulting expression must be semantically equivalent to expression
𝐿 in the offline program. Thus, this rule states that the specification for the introduced hole is 𝐿. The
remaining rules are used to recursively construct sketches for compound expressions. For example,
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foldl(𝑔, 𝑐, 𝑥𝑠++[𝑥]) = 𝑔(foldl(𝑔, 𝑐, 𝑥𝑠), 𝑥)
map(𝑔, 𝑥𝑠++[𝑥]) = map(𝑔, 𝑥𝑠)++[𝑔(𝑥)]
filter(𝑔, 𝑥𝑠++[𝑥]) = 𝑔(𝑥) ? filter(𝑔, 𝑥𝑠)++[𝑥] : filter(𝑔, 𝑥𝑠)

Fig. 10. Axioms involving higher-order combinators.

given an expression 𝑔(𝐸1, . . . , 𝐸𝑛) the Func rule constructs a sketch 𝑔(Ω1, . . . ,Ω𝑛) by recursively
constructing sketches for each 𝐸𝑖 .

Example 5.2. Consider the RFS from Example 5.1 and the offline program from Example 3.1. Our
decomposition procedure generates the following program sketch for the online program:

_(𝑦1, 𝑦2, 𝑦3)._𝑥 . (□1/□2,□2,□1)
and the specifications of each hole are as follows:

{□1 ↦→ foldl(+, 0, 𝑥𝑠), □2 ↦→ length(𝑥𝑠)}
Thus, the decomposition produces two independent synthesis tasks.

5.2.2 Expression Synthesis. The goal of expression synthesis is to find an online expression 𝐸′ that
is equivalent to an offline expression 𝐸 modulo the RFS. Thus, before we discuss our synthesis
algorithm, we first introduce the concept of equivalence modulo RFS:

Definition 5.3. (Equivalence modulo RFS) We say that an offline expression 𝐸 is equivalent to
online expression 𝐸′ modulo the RFS iff:

Φ(𝑥𝑠,𝑦) |= 𝐸′ = 𝐸 [(𝑥𝑠++[𝑥])/𝑥𝑠]

In other words, an online expression𝐸′ is equivalent to𝐸 if we can show that𝐸′ = 𝐸 [(𝑥𝑠++[𝑥])/𝑥𝑠]
under the assumption that the RFS holds. To gain further intuition about this definition, recall that
𝑥𝑠 denotes the previously processed elements and 𝑥 is the new element, so the elements processed
so far correspond to the list 𝑥𝑠++[𝑥]. This is why 𝐸′ should be equivalent to 𝐸 after substituting 𝑥𝑠

(the argument of offline program) with 𝑥𝑠++[𝑥]. Furthermore, since the RFS gives the mapping
between the auxiliary variables of the online program and sub-expressions in the offline program,
equality between 𝐸 and 𝐸′ only makes sense when we utilize the mapping given by the RFS.

Example 5.4. Consider the RFS Φ from Example 4.4. Then, the online expression (𝑦1 × 𝑦2) + 𝑥 is
equivalent to foldl(+, 0, 𝑥𝑠) modulo Φ because:

𝑦1 = foldl(+, 0, 𝑥𝑠) / length(𝑥𝑠) ∧ 𝑦2 = length(𝑥𝑠) |= foldl(+, 0, 𝑥𝑠++[𝑥]) = (𝑦1 × 𝑦2) + 𝑥

Algorithm 4 presents our expression synthesis algorithm for finding an online expression 𝐸′ that
is equivalent to offline expression 𝐸 modulo the RFS Φ. The basic idea is to use symbolic reasoning
to find an implicate of Φ that is of the form 𝐸′ = 𝐸 [(𝑥𝑠++[𝑥])/𝑥𝑠] where 𝐸′ is a term over variables
𝑥,𝑦1, . . . , 𝑦𝑛 . By definition, an implicate of a formula is implied by it; thus, if we can find an implicate
of Φ of this form, it satisfies Definition 5.3 by construction. However, the key challenge is that both
the RFS Φ and offline expression 𝐸 contain higher-order combinators such as foldl and map, so it is
not immediately obvious how to use an SMT solver to find a suitable implicate.

Our core approach to solving this problem is summarized in the FindImplicate procedure in
Algorithm 4. This algorithm takes as input the RFS Φ and an implicate template 𝑇 , and computes
an instantiation of 𝑇 that is implied by Φ as follows:
(1) First, it adds axioms that relate the result of applying a higher-order combinator to 𝑥𝑠++[𝑥] to

the result of applying the combinator to 𝑥𝑠 (line 9). Figure 10 shows a set of axiom schema that
are instantiated based on the specific terms used in Φ.
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Algorithm 4 Expression synthesis algorithm
1: procedure SynthesizeExpr(Φ, 𝐸)

Input: Relational function signature Φ, offline expression 𝐸

Output: Online expression 𝐸′

2: 𝜒 ← FindImplicate(Φ, 𝐸 [(𝑥𝑠++[𝑥])/𝑥𝑠] = □)
3: if 𝜒 matches □ = 𝐸′ then
4: return 𝐸′

5: else

6: \ ← MineExpressions(Φ, 𝐸)
7: return EnumSynthesize(Φ, 𝐸, \ )

8: procedure FindImplicate(Φ,𝑇 )
Input: Relational function signature Φ, implicate template 𝑇
Output: Implicate of Φ

9: A ← AddAxioms(Φ)
10: 𝜓 ← Φ ∧𝑇 ∧∧𝑖 A𝑖

11: (𝜓 ′,𝑉 ) ← ReplaceListExprs(𝜓 )
12: return ElimQuantifier(∃𝑉 .𝜓 ′)

13: procedure MineExpressions(Φ, 𝐸)
Input: RFS Φ, offline expression 𝐸, unrolling depth 𝑘 (hyperparameter)
Output: Set of terms that are likely to be useful in enumerative synthesis

14: 𝜑 ← True; (𝐸′,𝑉 ) ← Unroll(𝐸, 𝑘 + 1)
15: for (𝑦𝑖 , 𝐸𝑖 ) ∈ Φ do

16: (𝐸′𝑖 ,𝑉𝑖 ) ← Unroll(𝐸𝑖 , 𝑘); 𝜑 ← 𝜑 ∧ (𝑦𝑖 = 𝐸′𝑖 ); 𝑉 ← 𝑉 ∪𝑉𝑖
17: 𝜓 ← ElimQuantifier(∃𝑉 . (𝜑 ∧ □ = 𝐸′))
18: return {Templatize(𝑡) | (□ = 𝑡) ∈ Literals(𝜓 )}

(2) Next, it constructs a formula that is the conjunction of Φ,𝑇 , and all the axioms A generated in
the previous line.

(3) Third, it replaces each list expression with a fresh variable by calling the ReplaceListExprs

procedure at line 11. The idea is to eliminate higher-order combinators like map and fold after
adding all relevant axioms about them. Here, ReplaceListExprs returns a new formula𝜓 ′ and a
set of variables 𝑉 introduced by this transformation.

(4) Finally, it uses quantifier elimination to obtain a formula over variables 𝑥,𝑦1, . . . , 𝑦𝑛 .
We illustrate this procedure through a simple example:

Example 5.5. Consider the RFS Φ and offline expression 𝐸 from Example 5.4 where:

Φ ≡ 𝑦1 = foldl(+, 0, 𝑥𝑠) / length(𝑥𝑠) ∧ 𝑦2 = length(𝑥𝑠)
𝑇 ≡ □ = foldl(+, 0, 𝑥𝑠++[𝑥])

For this example, there is only one relevant axiom, namely:

foldl(+, 0, 𝑥𝑠++[𝑥]) = foldl(+, 0, 𝑥𝑠) + 𝑥
After replacing list expressions with fresh variables, we obtain the following formula:

𝑦1 = 𝑣1/𝑣2 ∧ 𝑦2 = 𝑣2 ∧ 𝑣3 = 𝑣1 + 𝑥 ∧ □ = 𝑣3
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where 𝑣1, 𝑣2, 𝑣3 represent foldl(+, 0, 𝑥𝑠), length(𝑥𝑠), and foldl(+, 0, 𝑥𝑠++[𝑥]) respectively. Finally,
after eliminating 𝑣1, 𝑣2, 𝑣3 from this formula, we obtain:

□ = (𝑦1 × 𝑦2) + 𝑥

Hence, given the expression foldl(+, 0, 𝑥𝑠), SynthesizeExpr returns (𝑦1 ×𝑦2) + 𝑥 as the equivalent
online expression.

If FindImplicate returns an equality of the form □ = 𝐸′ (line 3 in Algorithm 4), then 𝐸′ is the
equivalent online expression for 𝐸, so the algorithm returns 𝐸′ at line 4. However, FindImplicate
may not always return such a formula because, for example, the added axioms may not be sufficient
to adequately capture the semantics of all list expressions. In this case, the SynthesizeExpr
algorithm falls back on enumerative synthesis (line 7) but leverages the insights from FindImplicate
to mine useful expressions that can be used as building blocks. In particular, given the RFS Φ and
offline expression 𝐸, the MineExpressions procedure returns a set of templatized expressions that
are likely to be useful for enumerative synthesis.

The basic idea behind MineExpressions is the same as FindImplicates; however, rather than
adding axioms about the higher-order combinators, it simply unrolls them: That is, given an offline
expression 𝐸 over list 𝑥𝑠 , the procedure Unroll instantiates 𝑥𝑠 with a symbolic list of size 𝑘 and
symbolically executes 𝐸 on this list. Thus, the formula 𝜑 in the MineExpressions algorithm
corresponds to an unrolled version of Φ on lists of size 𝑘 , and 𝐸′ corresponds to an unrolled version
of 𝐸 on a list of size 𝑘 + 1. As in the FindImplicates procedure, we use quantifier elimination to
find an implicate of the formula 𝜑 ∧ □ = 𝐸′ over variables 𝑥,𝑦1, . . . , 𝑦𝑛 . However, because 𝜑 and
𝐸′ are essentially under-approximations of Φ and 𝐸 respectively, the resulting formula may not
be a valid implicate. Thus, our synthesis algorithm simply mines templatized expressions from the
resulting formula by replacing constants, which are typically the root cause for the formula not
being a valid implicate, with holes. These templatized expressions are then added to the grammar
for online expressions to expedite enumerative synthesis at line 7. This EnumSynthesize procedure
is based on basic top-down enumerative search and checks correctness using testing (see Section 6).

Example 5.6. Consider the RFS Φ and offline expression Φ[sq] from Figure 4 in Section 2 where:

Φ ≡ sq = foldl(_𝑐._𝑥 . 𝑐 + (𝑥 − avg)2, 0, 𝑥𝑠) . . .
𝑇 ≡ □ = foldl(_𝑐._𝑥 . 𝑐 + (𝑥 − avg′)2, 0, 𝑥𝑠++[𝑥])

For this example, there is only one relevant axiom, namely

foldl(_𝑐._𝑥 . 𝑐 + (𝑥 − avg)2, 0, 𝑥𝑠++[𝑥]) = foldl(_𝑐._𝑥 . 𝑐 + (𝑥 − avg)2, 0, 𝑥𝑠) + (𝑥 − avg)2

After replacing list expressions with fresh variables, we obtain the following formula for Φ ∧𝑇 :

sq = 𝑣2 ∧ □ = 𝑣3,

After eliminating the fresh variables, we obtain true as an implicate, which is not useful. Hence, in
line 6 of Algorithm 4, we mine expressions by instantiating 𝑥𝑠 with a symbolic list of size 𝑘 and
symbolically execute 𝜙 [sq] on this list. When 𝑘 = 3 and 𝑥𝑠 = [𝑥1, 𝑥2, 𝑥3], we have the following
after executing line 14-16 of Algorithm 4:

Φ ≡ sq = (𝑥1 − avg)2 + (𝑥2 − avg)2 + (𝑥3 − avg)2 ∧ 𝑛 = 3 ∧ . . .

𝑇 ≡ □ = (𝑥1 − avg′)2 + (𝑥2 − avg′)2 + (𝑥3 − avg′)2 + (𝑥 − avg′)2

𝜑 ≡ ∃𝑥0, 𝑥1, 𝑥2. Φ ∧𝑇

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 188. Publication date: June 2024.



From Batch to Stream: Automatic Generation of Online Algorithms 188:15

where we introduced avg = 1
3 (𝑥1 + 𝑥2 + 𝑥3) and avg′ = 1

4 (𝑥1 + 𝑥2 + 𝑥3 + 𝑥) to simplify presentation.
Finally, running quantifier elimination gives the following expression:

□ =
1
12 (𝑠

2 − 6 · 𝑠 · 𝑥 + 12 · sq + 9 · 𝑥2),

After replacing constants with holes, we obtain the following template:

𝑠2− ??1 ∗ 𝑠 ∗ 𝑥+ ??2 ∗ sq + ??3 ∗ 𝑥2

??4

Note that the desired expression, which is:

𝑠2 − (2𝑛) ∗ 𝑠 ∗ 𝑥 + (𝑛(𝑛 + 1)) ∗ sq + (𝑛2) ∗ 𝑥2

𝑛(𝑛 + 1)
can be obtained from this template by replacing the unknowns with expressions 2𝑛, 𝑛(𝑛+1), 𝑛2, and
𝑛(𝑛 + 1) respectively. Hence, obtaining such templates via MineExpressions ends up significantly
speeding up enumerative synthesis.

Theorem 5.7. If SynthesizeExpr(Φ, 𝐸) returns 𝐸′, then 𝐸′ is indeed equivalent to 𝐸 modulo Φ.

Finally, we conclude this section by stating the soundness of the end-to-end synthesis procedure:

Theorem 5.8. If Synthesize(P) returns (I,P′), then we have P ≃ (I,P′).

6 IMPLEMENTATION
We have implemented our proposed technique in a tool called Opera written in Python. Opera
uses the Reduce computer algebra system [34] to perform quantifier elimination for both linear and
nonlinear integer and rational arithmetic. When invoking Reduce, Opera ensures that formulas
belong to a theory that admits quantifier elimination by replacing foreign terms with fresh variables.
Conversion to functional IR. As mentioned earlier, Opera operates over offline programs written
in a functional IR with higher-order combinators. However, Opera can also take as input Python
programs and automatically converts them to our intermediate representation using a set of
syntax-directed translation rules. Since transpilation from imperative to functional languages is an
orthogonal problem, we refer the interested reader to prior papers on this topic [50].
Handling additional arguments. While our technical section assumes that the offline program
takes a single list 𝑥𝑠 as an argument, real-world programs can take additional arguments. In this
case, the RFS constructed by Opera includes those additional arguments and assumes a one-to-one
correspondence between the additional arguments of the offline and online programs.
Solving templates via polynomial interpolation. Recall from Section 5.2.2 that MineExpressions
returns a set of templates (expressions with unknowns), which are utilized when performing
enumerative search. However, there are several cases where the unknowns in these templates can
be directly solved for using polynomial interpolation [75]. In particular, if the online procedure takes
an auxiliary parameter 𝑛 that represents the number of processed stream elements i.e, the length of
the list, then the desired expression can oftentimes be obtained by instantiating the unknowns in the
templates with univariate polynomials over 𝑛. Opera utilizes SciPy’s interpolation library [70] to
infer candidate univariate polynomials and checks whether the synthesized expression is equivalent
to its offline version modulo the RFS. If it is not, Opera falls back upon enumerative search using
the generated template. We refer the interested reader to the extended version of the paper for
more details [74].
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Table 1. Statistics about the benchmark set

Avg. AST Size Median AST Size
Offline Online Offline Online

Stats 25 45 24 39
Auction 79 76 42 44

Checking Equivalence modulo RFS. Ideally Opera would check equivalence between the online
and offline expressions over all possible input streams. However, since automatically checking
equivalence is out of scope for existing techniques, Opera resorts to unsound equivalence checking
methods based on testing and bounded verification. However, in practice, we have not come across
any cases where the equivalence checker yielded an incorrect result.

7 EVALUATION
In this section, we evaluate Opera through experiments that aim to answer the following research
questions:
RQ1. (Usefulness) Can Opera convert non-trivial offline programs into equivalent online schemes?
RQ2. (Comparison against existing tools) How does Opera compare against state-of-the-art general

purpose synthesizers like CVC5 [14] and Sketch [65, 66]?
RQ3. (Ablation) How important are the key ideas underlying our approach?

Sources of benchmarks. To answer these questions, we collected benchmarks from two domains
where online algorithms play a key role:
• Statistics. Online algorithms are particularly important in the context of statistical computations

over streaming data. To evaluate Opera in this context, we collected 34 batch-processing programs
that perform statistics over a list of elements. These functions are taken from two sources: The
first is SciPy [70],2 an open-source Python library used for scientific computing, and the second
one is OnlineStats.jl [20], a popular open-source Julia library that implements useful single-pass
algorithms. Since the Julia benchmarks are online programs, we manually wrote their offline
version in Python. These statistics benchmarks include functions for computing skewness [58],
standard error of the mean (SEM) [13], geometric mean, LogSumExp, etc.
• Auctions. Another domain where online algorithms play an important role is online auctions

that involve queries over continuous data streams. To evaluate Opera in this context, we consider
18 queries from the Nexmark benchmark suite, which includes queries that commonly arise
in online auctions [69].3 Example tasks from this benchmark suite include generating bidding
statistics reports, monitoring new bidders, determining top-𝑘 bids, etc.

Obtaining ground truth schemes. Some of the benchmarks in our suite contain both the offline
program and its corresponding online implementation. For offline programs whose corresponding
online version was not available, we either found its (established) online version from a different
source or wrote it ourselves.
Statistics about benchmarks. Table 1 provides statistics about these benchmarks in terms of the
average and median program size, where size is measured in terms of the number of nodes in the

2Many SciPy functions use external libraries, such as numpy, for numerical computations. Since our prototype Opera
does not support such external libraries, we manually pre-processed those benchmarks.

3While there 23 queries in the Nexmark benchmark suite, 5 of them require mini-batching, which we currently do not
support, so we consider 18 out of these 23 benchmarks. Furthermore, since all of these queries are written for streaming
data, we manually wrote their batch processing versions.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 188. Publication date: June 2024.



From Batch to Stream: Automatic Generation of Online Algorithms 188:17

Table 2. Main synthesis result.

Stats Auction
% solved Avg. Time (s) % solved Avg. Time (s)

Opera 97% 33.4 100% 10.0
Sketch 12% N/A 17% N/A
CVC5 36% N/A 39% N/A
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Fig. 11. Comparison between Opera and baselines.

abstract syntax tree (AST). While the size of the offline and online programs are similar for the
auction benchmarks, we note that the size of the online programs are significantly larger (1.7×)
on average for the statistics benchmarks. We also note that some of these benchmarks require
synthesizing very complex expressions (up to size 96).
Experimental setup. All of our experiments are conducted on a machine with an Apple M1 Pro
CPU and 32 GB of physical memory, running the macOS 14.1 operating system. For each task, we
set the timeout to 10 minutes.

7.1 Main Results
To answer our first two research questions, we evaluate Opera on our 51 benchmarks and compare
it against two baselines. Since there are no existing tools for generating online algorithms from their
offline version, we adapt two SyGuS solvers (namely, CVC5 [14] and Sketch [65, 66] to our problem
setting. We chose CVC5 and Sketch among the SyGuS solvers because they support non-linear
arithmetic, which is required for most of our benchmarks.) To adapt these tools to our problem, we
define the grammar of the target program to be Figure 7, and we adapt the online-offline equivalence
definition from Definition 3.3 as the synthesis specification (using so-called oracle constraints in
SyGuS). Specifically, we assert that the synthesis result satisfies the relational function signature
for a list of fixed length. We intentionally used lists of fixed size to avoid problems with the SMT
solver. Finally, since SyGuS solvers require the signature of the function to be synthesized, we
manually specify their signature.

Table 2 summarizes the results of our evaluation for both Opera and the two SyGuS baselines.
In particular, Table 2 shows the percentage of benchmarks solved by each tool in the Statistics and
Auction data sets, together with the average running time (in seconds) for Opera.4 We say that a
tool solves a benchmark if it produces an online scheme that is equivalent to the offline program,
which we also verify manually.

4The table does not report time for the other tools because they time out on most benchmarks within the 10 min limit.
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def kurtosis_online(v, m4, m3, m2, s, n, x):
n += 1
new_s = s + x
delta = x - (s / n)
delta_n = delta / n
new_m4 = m4 + (delta * delta_n * (n - 1) * (delta_n**2) * (n**2 - 3 * n + 3)

+ 6 * delta_n**2 * m2 - 4 * delta_n * m3)

new_m3 = m3 + delta * delta_n * (n - 1) * delta_n * (n - 2) - 3 * delta_n * m2
new_m2 = m2 + delta * delta_n * (n - 1)
sigma = (m2 / n) ** 0.5
return (new_m4 / n) / (sigma**4) - 3, new_m4, new_m3, new_m2, new_s, n

Fig. 12. Python implementation of online kurtosis computation.

The key takeaway from this experiment is that Opera can solve 50 of the 51 offline programs in
our benchmark suite within the 10 minute time limit. In contrast, CVC5 and Sketch solve 37% and
14% of the benchmarks, respectively. We also note that average synthesis time for Opera across all
benchmarks is 25.0 seconds.

To evaluate whether the SyGuS baselines can solve more benchmarks when given a longer time
limit, we also run an additional experiment with a time limit of 1 hour per task. The results of this
experiment are shown in Figure 11 as a cumulative distribution function (CDF) where the 𝑥-axis
provides cumulative running time and the 𝑦-axis shows the percentage of benchmarks solved. As
we can see, increasing the time limit does not allow any of the tools to solve additional benchmarks.
Qualitative Analysis for Opera. Of the 51 benchmarks Opera solves, we found that 41 of the
synthesized schemes are the same as the manually written program. Among the 10 cases where
the results differ, we found that the synthesized schemes perform the same computation but use
different auxiliary parameters. To gain more intuition about how this can happen, consider the
following example: The average, 𝑣 ′, of a stream of numbers can be computed by using the sum of
previously processed elements, 𝑠 , or the previous average, 𝑣 as shown below:

𝑣 ′ = (𝑠 + 𝑥)/(𝑛 + 1) 𝑣 ′ = (𝑣 ∗ 𝑛 + 𝑥)/(𝑛 + 1).

Both of them are mathematically equivalent but use different auxiliary parameters. We note that
the synthesized schemes have the same time and space complexity as the ground truth and are
comparable in terms of AST size.
Failure analysis. The only benchmark that Opera fails to solve involves computing kurtosis, which
is a measure of the tailedness of a probability distribution. Figure 12 shows the online algorithm for
computing kurtosis based on the method from [58]. As we can see, the online algorithm involves a
very large expression (in line 6 and also highlighted in the code) that is very difficult to synthesize,
so our SynthesizeExpr procedure times out when trying to synthesize this complex expression.
Summary. Our evaluation reveals the followings answers for our first two research questions:

Result for RQ1: Opera can automatically synthesize 50 out of 51 online schemes with
an average synthesis time of 25.0 seconds.

Result for RQ2: Opera outperforms existing SyGuS solvers, synthesizing 2.6× and 7.2×
as many tasks as CVC5 and Sketch respectively.
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Fig. 13. Comparison between Opera and its ablations.

7.2 Ablation Study
The core technical idea underlying Opera is the RFS-driven synthesis methodology, which also
enables two additional optimizations used in our synthesis algorithm, namely decomposition and
the use of symbolic techniques (namely, quantifier elimination) for expression synthesis. In this
section, we evaluate the relative impact of these two ideas by considering two ablations of Opera:
(1) Opera-NoDecomp: This is a variant of Opera that disables compositional synthesis. In other

words, rather than synthesizing a set of independent expressions, it attempts to synthesize the
entire online program at once. However, it still employs the symbolic reasoning techniques that
are part of the SynthesizeExpr procedure.

(2) Opera-NoSymbolic: This is a variant of Opera that replaces solver-based derivation of
expressions with enumerative search. In other words, it replaces the body of SynthesizeExpr
with a call to EnumSynthesize.

Figure 13 shows the Cumulative Distribution Function (CDF) for Opera and its ablations. As
standard, the 𝑥-axis corresponds to the total running time, and the 𝑦-axis shows the percentage of
benchmarks solved. As we can see, both ablations perform worse than Opera with these optimiza-
tions enabled. In particular, the variant of Opera without the symbolic technique solves 73% of
the benchmarks, whereas the ablation without decomposition solves 67% of the benchmarks. For
benchmarks that can be solved by both ablations, the average running time of Opera is 10.3 seconds,
whereas Opera-NoDecomp and Opera-NoSymbolic take 20.9 and 6.6 seconds respectively. As
expected, decomposition has a positive impact on synthesis time regardless of the complexity of the
task. In contrast, the symbolic expression synthesis technique that utilizes quantifier elimination
slightly hurts performance for easy benchmarks, however, it allows significantly more benchmarks
to be solved within the 10-minute time limit overall.

Result for RQ3: Decomposition and symbolic reasoning have a significant positive
impact on the performance of Opera. In particular, ablated versions of Opera without
one of these optimizations solve 31% and 26% fewer benchmarks within the 10-minute
time limit.

8 LIMITATIONS
In this section, we discuss some of the main limitations of the proposed approach.
Limitations of problem statement. First, our problem statement is defined in terms of a functional
IR, which means that the offline program needs to be expressible in this IR. In practice, we found
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that almost all offline algorithms are naturally expressed in this core functional language, and, as
discussed in [41], a functional language with fold is quite expressive . Second, our problem statement
requires the synthesis result to be semantically equivalent. However, for some offline algorithms
(e.g., quantile computation [49]), any online algorithm that does not require remembering the entire
stream necessitates approximation algorithms. We believe that synthesizing online approximation
algorithms is a very interesting direction for future work.
Limitations of synthesis approach. Our synthesis methodology relies on the assumption stated
in Theorem 4.8 – i.e., that it has an inductive invariant that is a conjunction of equalities. This
assumption is realistic because online algorithms take additional arguments that correspond to sub-
computations; thus, the inductive invariant can, in practice, always be expressed as a conjunction
of equalities. Second, as stated in Section 5.2, Opera decomposes the synthesis task based on the
assumption that the online program can be constructed by composing incremental computations
over list expressions using operators that appear in the offline program.

9 RELATEDWORK
This paper is related to a long line of work on incremental computation, which attempts to
only recompute those outputs which depend on changed data. Online algorithms fall under the
general umbrella of incremental computation in that they compute the result one element at a
time by reusing previous computations. Most of the work on incremental computation focuses
on dynamic incrementalization [8–11, 15, 16, 36–38, 56, 61] by providing language support and
runtime frameworks to improve running time at the cost of space. In this paper, we take a different
approach by automatically synthesizing incremental online algorithms from their batch processing
version. Thus, the following discussion focuses on approaches that are more closely related to
synthesis.
Synthesizing incremental computation. There is a body of prior work on synthesizing incre-
mental computations [7, 17, 33, 48, 60, 64, 68]. At a high level, these techniques take as input a base
program 𝑓 , a change operator ⊕ and attempt to generate an efficient program 𝑓 ′ that computes
𝑓 (𝑥 ⊕ 𝑦) given 𝑦 and 𝑓 (𝑥). Some of the existing approaches in this space are domain-specific.
For example, Shaikha et al. focus on linear algebra [64], and Zhou at al. [33] studies incremental
computations related to graph processing. The technique by Pu et al. is not domain specific per se;
however, their focus is on automatic derivation of dynamic programming algorithms from recur-
rence relations [60]. In a similar vein, Sun et al. [68] studies the synthesis of efficient memoization
algorithms for dynamic programming subproblems.

Among prior work on synthesizing incremental computation, the most closely related to ours
is that of Liu [48], which utilizes a set of pre-defined rewrite rules to transform a base program
𝑓 to its incremental version 𝑓 ′. Their technique first transforms the base program to save all
intermediate/auxiliary results and then tries to rewrite the program to utilize the newly introduced
variables. In contrast to this rewrite-based approach, our method employs program synthesis to
solve the slightly different problem of deriving online algorithms. More recent work by Cai et al. [17]
aims to statically derive incremental versions of programs written in a higher-order language. They
propose a theory of changes and derivatives and describe a type-directed method—parametrized by
so-called plug-ins for incrementalizing each type—to automatically generate a function’s derivative.
In contrast, our method is not type-directed and does not rely on type-specific plug-ins.
Related approaches in program synthesis. This paper is also related to a long line of work on
program synthesis, which aims to generate a program from the user’s specification (e.g., input-
output examples or logical formula) [18, 30, 35, 59, 66, 72, 80]. Particularly related to this work are
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compositional synthesis techniques that aim to decompose the original problem into independent
subproblems. For example, _2 utilizes the semantics of functional combinators to infer input-output
examples for their arguments [30], and Synquid [59] leverages refinement types to decompose
the problem. In contrast to prior work on compositional synthesis, our method utilizes the offline
program and the relational function signature to obtain completely independent synthesis sub-tasks.

Another prominent aspect of our approach is the use of symbolic reasoning to derive expressions
in the target program. In particular, for expression synthesis, our approach utilizes quantifier
elimination to find implicates of a certain shape. There are prior techniques that have also leveraged
quantifier elimination in the context of synthesis. For example, Comfusy [46, 47] and AE-VAL [29]
both apply quantifier-elimination within a deductive synthesizer to rewrite a logical specification
over integer and rational arithmetic into straight-line code. The use of quantifier elimination in
Opera is most closely related to the recent work of Pailoor et al. [57] on ADT refactoring. In
that work, they utilize quantifier elimination to perform abductive reasoning (as done previously
in [12, 23–25]), and they combine abductive reasoning with search to expedite synthesis. In contrast
to their approach, we use quantifier elimination to infer logical implicates of a certain shape
by encoding the semantics of list combinators. Finally, recent work by Goharshady et al. [32]
presents a promising alternative to quantifier elimination for synthesizing real valued polynomial
expressions. At a high level, their approach requires a user to specify the maximum degree of the
polynomial to be synthesized, a set of variables, along with a specification, and it synthesizes a
polynomial over those variables that satisfies the specification. To make synthesis scalable, they
reduce the synthesis problem to an instance of quadratic programming using fundamental theorems
in algebraic geometry. While this technique is specific to generating real polynomials, Opera could,
in principle, apply this technique during expression synthesis if the offline expression is real-valued.

Due to our use of relational function signatures to drive online program generation, this paper is
also related to relational synthesis [40, 52, 53, 62, 67, 73], where the goal is to synthesize programs
based on relational specifications that relate multiple programs or multiple runs of a program. For
example, Relish [73] leverages hierarchical finite tree automata to synthesize comparators, string
encoders and decoders. Genic [40] and PINS [67] study the program inversion problem [22] using
symbolic extended finite transducers and path-based inductive synthesis, respectively. There is
another line of works that infer a relational specification to guide the synthesis. Mask [62] synthe-
sizes replacement classes defined by the inter-class equivalence relationship. Unlike Relish [73],
Genic [40], and PINS [67], Opera does not have the relational specification as part of the input, so it
infers an RFS as the relational specification, which is similar to Mask [62]. However, the relational
specifications in our context are very different than those [62].

Opera is also related to prior work on divide-and-conquer program synthesis [26, 27, 42] which
aims to synthesize a divide-and-conquer based procedure from a reference implementation. This is
because one can view an online scheme as an instance of divide-and-conquer which processes the
first𝑛−1 elements of the stream and then joins the result with values induced by the𝑛th element. For
example, Parsynt [26, 27] transforms a single-pass algorithm into a divide-and-conquer program by
lifting a sequential loop into a list homomorphism. Such a technique would not work in our context
where the reference implementations can be multi-pass procedures. AutoLifter [42] is the most
closely related to our approach as it removes the restriction that the implementation is single-pass
and attempts to simultaneously determine the set of auxiliary variables (called aux function in
the paper) and the online program (referred to as the comb function). Crucially, this approach
first requires users to provide a relational specification between the aux and comb after which
AutoLifter will synthesize aux and comb. It does so by iteratively rewriting the specification into
multiple sub-specifications that are only in terms of aux and comb, and then uses a CEGIS-based
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synthesizer to solve the sub-problems. However, unlike Opera, AutoLifter does not exploit the
syntactic structure of the offline program nor perform any symbolic reasoning to infer templates
or implicates, both of which are essential to Opera’s success.

Finally, Opera is also related to prior work on recursive program synthesis [28, 30, 54, 59, 77].
Conceptually, one could view an online scheme as a recursive function that returns the initializer
in the base case and performs the online computation by combining the new input with the result
of recursive calls over the processed elements. However, many of these synthesizers take as input
either I/O examples or formal specifications in the form of types or logical formulas. A more
recent tool, Synduce [28], utilizes the reference implementation to synthesize recursive programs;
hence, it could potentially be applied to our setting, as the offline program constitutes a reference
implementation. However, Synduce is not fully automatic as it requires the user to provide a
so-called recursion skeleton. Furthermore, even when we tried to manually supply Synduce with
the ground truth recursion skeleton, we were unable to get it work on some of our simple examples,
such as arithmetic mean. We conjecture that Synduce is not suitable for our setting because of the
heavy use of non-linear arithmetic in these benchmarks.
Program transformation and optimization techniques. This paper is also related to a long
line of work on program optimizations that aim to eliminate unnecessary computations. Loop
fusion is one such technique that consolidates multiple loops manipulating the same array into a
single loop [44], reducing the overhead of loop control and enhancing data locality. In the context
of functional programming, lazy evaluation allows postponing computations until their result is
actually needed [39]. Work on list fusion and deforestation [19, 31, 51, 63, 71] aims to eliminate
intermediate data structures (e.g., lists, trees) in programs written using higher-order combinators
like map and fold.

10 CONCLUSION
In this paper, we studied the problem of automatically synthesizing online streaming algorithms
from their offline batch-processing version. Our method first infers a so-called relational function
signature (RFS), which specifies the auxiliary parameters of the online program as well as how
those parameters relate to computations in the offline program. Our synthesis methodology then
boils down to finding an online program that is inductive relative to this RFS. Our specific synthesis
algorithm uses the offline program, together with the RFS, to decompose the original problem
into a set of into a set of independent sub-problems, which are solved through a combination of
symbolic reasoning and search.

We have implemented the proposed approach in a tool called Opera and evaluated it on over 50
algorithms from two domains, namely, statistical computing and online auctions. Our evaluation
shows that Opera can successfully solve all but one of the benchmarks and that it significantly
outperforms two baselines that are adaptations of existing SyGuS solvers. Our evaluation also
demonstrates the benefits of decomposition and symbolic reasoning through ablation studies.
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